Naslov Osnovni pojmovi geometrijske teorije grupa
Naslov (engleski) Basic notions of the geometric group theory
Autor Dino Peran
Mentor Vlasta Matijević (mentor)
Član povjerenstva Vlasta Matijević (predsjednik povjerenstva)
Član povjerenstva Nikola Koceić Bilan (član povjerenstva)
Član povjerenstva Gordan Radobolja (član povjerenstva)
Ustanova koja je dodijelila akademski / stručni stupanj Sveučilište u Splitu Prirodoslovno-matematički fakultet (Odjel za matematiku) Split
Datum i država obrane 2015-09-25, Hrvatska
Znanstveno / umjetničko područje, polje i grana PRIRODNE ZNANOSTI Matematika
Sažetak U ovom radu bavimo se geometrijom grupe i djelovanjem grupe na grafove i metričke prostore. Naš objektiv oštro je usmjeren na beskonačne, konačno generirane grupe, jer nam klasična teorija grupa ne daje jasnu sliku o strukturi navedenih grupa ako izuzmemo klasifikacijski teorem o konačno generiranim Abelovim grupama. U početku se bavimo osnovnim rezultatima klasične teorije grupa kako bi u nastavku mogli unaprijediti navedene rezultate koristeći metode geometrijske teorije grupa. Općenito promatramo djelovanja grupe na povezane grafove, prvenstveno stabla, uvodimo pojam Cayleyjevog grafa grupe i dokazivamo važne teoreme o strukturi grupe. Posebno se osvrćemo na karakterizaciju slobodne grupe pomoću djelovanja na stabla i Nielsen-Schreierov teorem o podgrupi slobodne grupe. Nadalje, objašnjavamo što nam predstavlja pojam geometrije grupe. Naime, uređenom paru grupe i nekog njenog skupa generatora pridjeljujemo neki metrički prostor čija metrika mnogo ovisi o strukturi grupe. Navedenu metriku zovemo metrikom riječi navedene grupe, s obzirom na zadani skup generatora. Problem je u tome što različiti skupovi generatora grupe daju međusobno različite metrike. Zbog toga uvodimo kriterij razlikovanja metričkih prostora do na kvazi-izometriju kako bi u danoj kategoriji različiti generatori davali izomorfne metričke prostore. Nakon toga promatramo izometričko djelovanje grupe na neki kvazi-geodezijski prostor i dokazujemo slavnu Švarc-Milnorovu lemu. Potom se bavimo rigidnim ili geometrijskim svojstvima grupe, to jest svojstvima koja čuva kvazi-izometrija. Posebno promatramo tip rasta grupe kao jako važno geometrijsko svojstvo i govorimo o slavnim teoremima Bassa, Wolfa, Milnora i Gromova te njihovim posljedicama. Na koncu se osvrćemo na kratki pregled hiperboličkih i kvazi-hiperboličkih prostora te osnovnih svojstava hiperboličkih grupa i njihovu primjenu na takozvani Problem riječi.
Sažetak (engleski) In these papers we deal with geometry of group and group actions on graphs and metric spaces. Our objective is to observe infinite, finitely generated groups, because there are no strong results about structure of those groups in standard group theory, except the main result about finitely generated Abelian groups. To begin with, we deal with some basic results in standard group theory, because we want to improve such basic results using methods of geometric group theory. In general, we observe group actions on connected graphs, especially trees. We introduce notion of Cayley graph of group and deal with some important results about group structure. We prove some teorems about caracterization of free groups, by looking on group action on trees and Nielsen-Schreier’s teorem about subgroup of free group. Furthermore, we define what is geometry of group. We give every group and its set of generators some metric space, with metric which strongly depends on group structure. This metric, we call word metric on some group, regarding given set of generators. Only problem is that this metric strongly depends on set of generators. Therefore, we introduce a criterium in order to differentiate metric spaces up to quasy-isometry, so that every finite set of generators will induce isomorphic metric spaces in given category. Furthermore, we observe isometric group action on quasi-geodesic spaces. After that, we prove famous Švarc-Milnor lemma and deal with rigid or geometric group properties. Such properties are some properties of groups wich are invariant regarding quasi-isometry. We especially observe growth of groups, as important geometric property of groups and we deal with famous Bass, Wolf, Milnor and Gromov theorems and their consequences. In the end, we observe hyperbolic and quasi-hyperbolic spaces and hyperbolic groups in order to give some application of those notions on so-called Word problem.
Ključne riječi
teorija grupa
kategorije
slobodne grupe
konačno prezentirane grupe
nilpotentne grupe
policikličke grupe
rješive grupe
djelovanje grupe na objekt u kategoriji
stabla
Cayleyjev graf
gruba geometrija
bilipschitzovo ulaganje
izometrija
kvazi-izometrija
funkcija rasta grupe
Bassov teorem
Wolfov teorem
Gromovljev teorem
geodezijski prostor
kvazi-geodezijski prostor
Švarc-Milnorova lema
hiperbolički prostor
kvazi-hiperbolički prostor
hiperboličke grupe
duljina puta u metričkom prostoru
Dehnova prezentacija grupe
Problem riječi
Ključne riječi (engleski)
group theory
categories
free groups
finitely presented groups
nilpotent groups
polycyclic groups
solvable groups
group action on object of category
trees
Cayley graph
coarse geometry
bilipschitzembedding
isometry
quasi-isometry
growthfunctionsofgroups
Basstheorem
Wolftheorem
Grommov theorem
geodesic space
quasi-geodesic space
Švarc-Milnor lemma
hyperbolic space
quasihyperbolic space
hyperbolic groups
length of path in metric space
Dehn presentation of group
Word problem
Jezik hrvatski
URN:NBN urn:nbn:hr:166:158666
Studijski program Naziv: Matematika; smjerovi: teorijski, računarski, nastavnički Smjer: teorijski Vrsta studija: sveučilišni Stupanj studija: diplomski Akademski / stručni naziv: magistar/magistra matematike (mag. math.)
Vrsta resursa Tekst
Način izrade datoteke Izvorno digitalna
Prava pristupa Pristup korisnicima matične ustanove
Uvjeti korištenja
Datum i vrijeme pohrane 2017-09-25 15:15:50