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“the beauty of a glycan is not the sugars that go into it, 
but the way those sugars are put together” 

(from GlycoBase) 
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1. INTRODUCTION 

1.1. From Glycans to the Glycome and Glycomics 

Investigating the structure, biosynthesis and biological function of glycans has been the focus of 

the field of glycobiology. Glycobiology owes its fast expansion and growth to the development 

and continuous improvement of technological approaches aimed to explore the structural 

complexity of glycans. 

1.1.1. Glycans 

Glycans are considered to be the most abundant and diverse biopolymers formed in nature and 

they constitute one of the four major building blocks of cells, together with proteins, nucleic 

acids and lipids. Through the years, advances in glycobiology have revealed several essential 

roles played by glycans at the molecular level, extending the initial view of glycans as simple 

structural components and sources of energy in a cell. 

Glycans are chains of monosaccharides (or simple sugars) which have variable length from a few 

sugars to several hundred. Glycans are the product of a series of stepwise reactions involving the 

complex interaction of hundreds of enzymes and transcriptional factors and can be found in free 

form or as glycoconjugates when attached to another molecule, usually a protein or a lipid. 

1.1.2. Glycome 

The spectrum of all glycans and glycoconjugates in an organism forms the glycome which is 

estimated to be much larger than the proteome itself (Lee et al., 2005). The interrelated and 

complicated pathways participating in the synthesis of glycans and the various linkages allowed 

between monosaccharides, together contribute to the structural and functional diversity presented 

by the glycome. 

The glycome has a role in both normal physiology and disease and its importance in molecular 

biology should be regarded at the same level as the one of the proteome or transcriptome. The 

fact that glycans are an essential part in the function of physiologic systems highlights the need 

to include and take them into account in research analyses of biological systems and processes 

whenever possible. The diversity of the glycome might hold necessary information to link 

biological theories or uncover new findings. 
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1.1.3. Glycomics 

Research in the fields of genomics, proteomics and transcriptomics has enabled unquestionably 

important discoveries. Nonetheless, the view of human physiology is far from being complete 

and many explanations regarding the different mechanisms and processes occurring in biological 

systems are still lacking. The new emerging field of glycomics is believed to contain a great deal 

of significant information that can help filling in the existing biological gaps as well as to give 

additional insights into the current view of biological processes. 

The concept of glycomics has emerged in reference to the glycome and concerns the systematic 

study of genetic, physiologic and pathologic aspects of the glycome expressed by specific cells, 

tissues or organisms in order to elucidate the factors regulating the synthesis of glycans and the 

association of glycans with biological processes. 

In comparison to the analogous terms of genomics and proteomics, glycomics is a much more 

recent discipline and its achievements are far beyond those attained in genomics and proteomics. 

Increased understanding of the functions of glycans and of the importance of glycosylation has 

led to a growing interest in glycomics which has contributed to its own development. The limited 

and late development of glycomics is due to challenges unique to glycan analysis. The 

experimental and analytical methodologies inherent to glycomics have undergone several 

improvements which have simplified the procedures and decreased the time required for glycan 

analysis as well as enabled the analysis of a larger number of samples. Such improvements have 

allowed the first large-scale studies involving glycan structures and brought glycomics into line 

with the 'omics' approaches of genomics, proteomics and transcriptomics. 

Nonetheless, the multiplicity of questions asked by all areas of glycobiology cannot be 

adequately addressed by analysing only the glycan moieties isolated from glycoproteins. For 

certain glycan-related subjects, such as changes in protein properties, bacterial binding and 

antigenicity specificities or therapeutic efficacy of glycoproteins, the analysis of intact 

glycoproteins or glycopeptides is required (Marino et al., 2010). The wide range of glycoprotein 

analyses and the questions behind them developed into a field of its own – glycoproteomics – 

which is rapidly growing in parallel with glycomics. Despite having slightly different goals, 

glycomics and glycoproteomics complement each other and contribute to the main scope of 

elucidating the complex regulation of glycosylation. Although the overview of objectives and 

applications of glycoproteomics is out of scope of this thesis, it seemed worth to briefly mention 
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its importance and its coexistence with glycomics (for a review of glycopeptide analysis and 

glycoproteomics applications, see Wei & Li (2009) and Dallas et al. (2013)). 

In glycobiology, as in most areas of science, the question to be answered dictates the type of 

glycosylation analysis strategy to be employed which should be selected to adequately suit the 

needs of the study. 

1.2. Glycosylation 

1.2.1. Principles overview 

Glycosylation is an enzymatic process through which glycans are concurrently synthesized and 

typically attached to proteins and lipids producing glycoproteins and glycolipids, respectively. 

Contrary to protein synthesis, where a single gene codes for a protein, there is no universal code 

for the structure of glycans. Glycan synthesis is not template driven but rather encoded by a 

complex network of glycotransferases, glycosidases, transcription factors, transporters and other 

proteins (Lauc et al., 2010b). It is estimated that 1% of genes in mammalian genome participate 

in glycan formation and modification (Lowe & Marth, 2003). 

The numerous enzymes and factors involved in glycan synthesis cooperate in an organized 

manner in stepwise reactions which lead to the final glycan structure. The resulting glycan 

moeities are assembled from only nine monosaccharides: glucose (Glc), galactose (Gal), fucose 

(Fuc), mannose (Man), xylose (Xyl), N-acetylglucosamine (GlcNAc), N-acetylgalactosamine 

(GalNAc), iduronic acid (IdoA) and sialic acid (SA) (Moremen et al., 2012). Although the 

number of available monosaccharides may not appear sufficient to accomplish the claimed 

diversity of the glycome, a variety of combinations can be formed by establishing different 

glycosidic linkages between monosaccharides. In this way, a modest number of monosaccharides 

is able to generate a vast repertoire of glycan variants. 

The coordination of glycosylation mechanisms is crucial for the accurate synthesis of glycans 

which were shown to be essential factors in the maintenance of an organism’s homeostasis 

(Ohtsubo & Marth, 2006). Dysregulation of glycosylation pathways has been associated with 

several diseases, such as cancer and diabetes as well as cardiovascular, congenital and 

immunological disorders. 
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Investigating the behaviour of glycosylation-related factors and the interaction of glycan 

structures in either physiological or pathological conditions may help to gain a deeper knowledge 

of the intricate regulation of glycosylation. 

1.2.2. Protein glycosylation 

Glycosylation is the most complex and one of the most abundant post-translational protein 

modifications occurring in eukaryotes and prokaryotes. In fact, nearly all proteins in serum and 

in the plasma membrane are glycosylated (Narimatsu, 2006). 

Protein glycosylation can be categorized into specific groups based on the nature of the glycan-

peptide bond and the glycan attached. The most commonly detected types of glycosylation are 

N- and O-linked glycosylation whose glycans products are designated N- and O-glycans, 

respectively. In the case of N-linked glycosylation, glycans are covalently bound to the protein 

via the nitrogen atom of an asparagine (Asn) residue, while in O-linked glycosylation glycans are 

attached to the oxygen atom of serines (Ser) or threonines (Thr) residues. 

The two types of glycosylation play distinct key roles in cell biology: N-linked glycosylation is 

important for processes such as protein folding and cell-cell recognition, whereas O-linked 

glycosylation is essential in the biosynthesis of the proteins that form mucus secretions – mucins. 

The principles of O-linked glycosylation and the description of the structures, biosynthesis and 

functions of O-glycans are behind the scope of this thesis (for further reading, see Hayes et al. 

(2012) and Van den Steen et al. (1998)). The N-linked glycosylation process is the focus of this 

thesis and its main aspects will be later described in greater detail. 

1.2.3. Structural basis of glycan and glycoprotein diversity 

The linkage between two monosaccharide units – a glycosidic bond – is at the basis of diversity 

existent among glycans. Contrary to peptide bonds, glycosidic bonds are extremely flexible, 

meaning they can be established in several different ways between two monosaccharides and 

allow the formation of isomers differing not only in their three-dimensional structures but also in 

their biological activities. The versatility of glycosidic bonds accounts for the fact that an 

ensemble of monosaccharides yields a greater number of possible final configurations than the 

same number of amino acids would yield. In particular, three different amino acids are able to 

form only six different chains of three residues each, whereas three different monosaccharides 

can produce more than thousand unique chains of three residues (Varki et al., 2009). This 

http://en.wikipedia.org/wiki/Asparagine
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difference in complexity becomes even more visible as the number of monosaccharide units 

increases, leading to the theoretical presence of an infinite number of glycan structures in nature. 

However, glycan structures studied so far are composed of only some of the available 

monosaccharide units linked in a limited number of combinations, with many more structures 

expected to be discovered. The number and nature of the monosaccharide units and the 

conformational arrangements between them also contribute to the variety of existing sugar 

chains by influencing their length (short or long chains), composition (types of sugar in the 

chain) and structure (branched or unbranched chains). 

When compared to other post-translational modifications of proteins, glycosylation is found to 

contribute to a higher degree to the diversity of proteome. Two main reasons are pointed out. 

First, due to the complexity of glycosylation and the non-template driven process of glycan 

synthesis, the molecular steps occurring during every glycosylation event are likely to vary, 

leading to slightly different final glycoconjugate products (Kung et al., 2009). Second, in a 

glycoprotein, diversity arises due to not only the attachment of different glycan structures, but 

also because of the variable occupancy of glycosylation sites (Marino et al., 2010). 

1.3. N-glycosylation and N-glycans in Eukaryotes 

The general term of glycosylation is often characterised as a post-translational modification. 

Although this is a fact for other types of glycosylation, it is not the case of N-linked 

glycosylation which mainly occurs co-translationally. 

N-linked glycosylation (N-glycosylation in short) is the most common type of glycosylation with 

extreme importance for the normal metabolism of cells as evidenced by the multiple functions 

played by N-linked glycoproteins in the regulation of vital cellular processes. Moreover, N-

glycosylation is essential to life as demonstrated by the fact that a lack of all N-glycans is lethal 

in species ranging from yeast to mammal (Freeze, 2006). 

From this point forward and unless stated otherwise, the terms N-glycosylation and N-glycans 

will refer to N-linked protein glycosylation and its glycan products in eukaryotes, respectively. 

1.3.1. Synthesis of N-glycans 

N-glycosylation comprises a complex series of reactions catalyzed by two groups of enzymes 

having opposite activities: glycosyltransferases which synthesize glycan chains and glycosidases 
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which hydrolyze glycan linkages. Glycosyltransferases and glycosidases are responsible for the 

assembly and transformation of N-glycans and their attachment to proteins. The main processing 

steps occurring during glycan biosynthesis, from the N-glycan initiation in the endoplasmic 

reticulum (ER) to the complete maturation in the Golgi apparatus are depicted in a simplified 

manner in Figure 1 and are outlined and briefly described below. 

N-glycan synthesis begins on the cytosolic side of the ER with the assembly of the N-glycan 

precursor by the addition of 14 monosaccharides to a lipid anchor molecule named dolichol 

phosphate (Figure 1, upper panel). As a result, a lipid-linked oligosaccharide carrying an N-

glycan precursor composed of 14 sugars is formed. The lipid-linked oligosaccharide is then 

flipped across the ER membrane and re-oriented to the reticular lumen. Subsequently, a protein 

complex called oligosaccharyltransferase catalyzes the co-translational transfer en bloc of the N-

glycan precursor from the lipid anchor to an asparagine residue of nascent proteins (newly 

synthesized proteins which are being translocated to the ER). The glycan precursor is directly 

linked to a specific asparagine residue through an N-glycosidic bond involving the nitrogen atom 

(N) of the asparagine, hence the term N-glycosylation (Snider, 2013). The asparagine residues 

candidates to receive N-glycans are usually part of the sequence motif Asn-X-Ser/Thr, where an 

asparagine (Asn) is followed by any amino acid (X) except proline and ends with a serine (Ser) 

or threonine (Thr). Following the co-translational attachment of the N-glycan precursor to a 

nascent protein, an initial trimming of the N-glycans occurs in the ER along with the protein 

folding.  

Additional enzymatic processing and maturation of N-glycans are completed in the Golgi 

apparatus with the glycoprotein already folded. In the Golgi apparatus, N-glycans are further 

trimmed and extensively modified by the incorporation of new monosaccharides until a mature, 

complex N-glycan structure is produced (Figure 1, lower panel). Such modifications include the 

formation and elongation of branches, also called antennary structures, and the addition of 

terminal sugars such as N-acetylgalactosamine, galactose, sialic acid and fucose to the elongated 

branches. 

In summary, the process of N-glycosylation can be divided into two spatially separated steps: the 

first step occurring in the ER and concerning the formation and transfer of the N-glycan 

precursor in association with protein folding; and the second step taking place in the Golgi 

apparatus and involving the modification and diversification of glycan structures (Helenius & 

Aebi, 2001). Regarding the glycan-binding site, it should be noted that not all asparagine 
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residues of a protein can accept an N-glycan. The Asn-X-Ser/Thr motif is considered the 

glycosylation sequon, i.e., a sequence of three consecutive amino acids in the glycan-acceptor 

polypeptide chains which is recognized by the oligosaccharyltransferase complex as the 

attachment site for glycans. Although the Asn-X-Ser/Thr sequon is the most frequently occurring 

site of glycosylation, N-glycans are also found to be linked in a smaller proportion to other non-

standard sequences such as the Asn-X-Cys motif (where Cys is cysteine) (Moremen et al., 2012). 

In eukaryotes, the extensive and intricate biosynthetic pathways of N-glycosylation are able to 

transform a simple N-glycan precursor into a wide and diversified range of complex N-glycan 

structures. One of the main differences between N-glycosylation in eukaryotes and prokaryotes 

concerns precisely this source of variability of the N-glycans. While eukaryotes synthesize a 

conserved lipid-linked oligosaccharide structure and in later steps produce variable antennary 

structures, prokaryotes synthesize a diverse array of the initial lipid-linked oligosaccharides 

(Schwarz & Aebi, 2011). Despite the N-glycosylation properties characteristic of each domain of 

life, the principal events of N-glycosylation described above (the lipid-linked oligosaccharide 

assembly, flipping across a membrane and transfer to the protein) are shared among the three 

domains of life and occur in a similar manner (Dell et al., 2010). 

 

Figure 1. Biosynthesis of N-glycans. The N-glycosylation process can be divided into two spatially separated 

steps: the first step occurs in the ER (upper panel) and includes the assembly of the N-glycan precursor, the 
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transfer of the N-glycan precursor to the nascent protein and some minimal trimming; the second step takes 

place in the Golgi apparatus (lower panel) and involves trimming, elongation and maturation of the N-glycans. 

While the glycan precursors formed in the ER are conserved, the Golgi reactions generate highly diverse 

glycan structures that also differ widely between species. In the final mature N-glycan structure, the number 

and size of branches present is variable, as is the nature of the sugars added; only one of the many possible 

terminal glycosylation pathways is shown. Adapted from Helenius & Aebi (2001). 

1.3.2. Structure of N-glycans 

N-glycans are typically an ensemble of 10 to 15 monosaccharides. Unlike DNA and protein 

molecules which have a linear primary structure, N-glycans are often highly branched molecules 

of complex structure. 

The different ways in which the initial and plain N-glycan precursor is trimmed and modified in 

the ER and, to a greater extent, in the Golgi apparatus generate three major structural classes of 

N-glycans: complex, hybrid and oligomannose or high-mannose (Figure 2). These structures 

vary in the number and size of the antennary structures as well as in the nature of their 

constituting sugars, while sharing a common core consisting of five monosaccharides kept from 

the original N-glycan precursor. 

The core and branches of the major N-glycan structures are usually subjected to further 

modifications originating mature N-glycan structures. The main core modification in vertebrates 

is the addition of fucose to the core residues, called core fucosylation (Varki et al., 2009). 

Another frequent modification of the N-glycan core is the transfer of an N-acetylgalactosamine 

residue (GlcNAc) to the mannose residue at the base of the N-glycan core, producing a bisecting 

GlcNAc structure. The elongated branches can be altered by the addition of terminal sugars 

through capping reactions such as galactosylation, sialylation and fucosylation which add 

galactose, sialic acid and fucose, respectively. 

The human glycome is estimated to comprise more than 7000 N-glycan structures of which only 

circa 2000 structures have been described (Cummings, 2009). These glycan structures known so 

far are composed of only some of the available monosaccharide units linked in a limited number 

of combinations, with many more structures expected to be discovered. 
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Figure 2. Major structural classes of mature N-glycans in eukaryotes. The structure of mature N-glycans 

can be divied into three major classes: complex (A), hybrid (B) and oligomannose or high-mannose (C). The 

monosacharides forming the common core of N-glycans are coloured in red while the monosacharides 

belonging to the antennary structures are coloured in green. A fucose attached to the core is also shown in the 

complex N-glycan structure (A). The Asn-X-Ser/Thr binding motif is represented at the bottom of each glycan 

(where Asn is asparagines, X is any amino acid except proline, Ser is serine and Thr is threonine). 

Monosaccharide abbreviations: Fuc - fucose; Gal - galactose; GlcNAc - N-acetylglucosamine; Man - mannose; 

SA - sialic acid. Adapted from Balzarini (2007).  

1.3.3. Diversity of N-glycans and N-glycoproteins 

The diversity found in N-glycans arises from the association between the nature and adopted 

configuration of the joined monosaccharide units and the complex network of different reactions 

involved in the N-glycosylation process. 

In addition to the inherited basic features common to sugar chains (discussed in section 1.2.3), 

N-glycans exhibit their own diversity achieved through multiple elongation and modification 

reactions occurring during the N-glycosylation. Even though the reactions responsible for the 

assembly of the branches of the core of N-glycans are arranged in a stepwise manner, they 

follow a variable pathway which mainly depends on the localization of the glycotransferases and 

glycosidases through the ER and Golgi apparatus. The enzymatic activity flow associated with 

the regulatory activity of other factors influences the fate of the core of N-glycans by dictating 

the main composition and configuration of the antennary structures. Terminal sugars can be 

further added both to the core of N-glycans (such as fucose or GlcNAc) and to the antennary 

structures (such as fucose, sialic acid and galactose). Altogether, these modifications introduce 
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various degrees of structural variability to the common core of N-glycans and account for the 

enormous spectrum of mature N-glycan structures displayed at the cell surface. 

Glycosylation is the most extensive source of protein heterogeneity and N-linked glycosylation 

in particular is a major contributor to that heterogeneity. N-glycosylation is characterised by a 

selective and diversified attachment of N-glycans to proteins which generates glycoproteins 

exhibiting macro- and microheterogeneity (Marino et al., 2010). Macroheterogeneity concerns 

the glycosylation sites assigned for the attachment of N-glycans (not all available N-

glycosylation sites on proteins are occupied) and the number of N-glycans simultaneously linked 

to the protein (typically between two and five glycans are attached to an average protein). 

Microheterogeneity refers to the diversity of glycan structures that can be found at a specific 

glycosylation site of a given protein, i.e. the same class of proteins might have distinct glycan 

structures attached to identical glycosylation sites. Macro- and microheterogeneity appear to be 

associated with the activity of glycosyltransferases and glycosidases. Since these enzymes have a 

remarkable degree of substrate specificity, their activity can be easily constrained due to protein 

sequence and conformation as well as environmental factors. Changes in enzymatic activity 

influence the fate of newly synthesized glycoproteins and lead to different glycosylation patterns 

characteristic of different cell types and stages of cell cycle, such as development, differentiation 

and maintenance. 

The intrinsic variability of N-glycans and the heterogeneity of glycoproteins give rise to a vast 

glycome composed of thousands of glycan isomers and glycoprotein isoforms and increase the 

structural diversity of an already broad proteome. 

1.3.4. Biological roles of N-glycans in health and disease 

As opposed to the core synthesis of N-glycans which is mainly conserved, the assembly of 

antennary structures is often regulated in a tissue- or cell lineage-specific manner suggesting that 

the branches can be directly implicated in the different functions of N-glycans (Varki et al., 

2009). 

N-glycans are complex extensions of the glycoproteins and their impact on the protein itself is 

not restricted to the structural level but extends to its biochemical and functional properties. 

Small structural modifications of N-glycans can be sufficient to cause loss or impairment of 

protein function showing that N-glycans are neither passive nor functional independent 

components of glycoproteins; on the contrary, N-glycans and proteins forming glycoproteins 



 

11 
 

work as one functional unit. Thus, the functional universe of proteins should not be explored 

without their glycan moieties since they are an integral part of the identity of glycoproteins. 

Determining the functions of glycans and unravelling their contribution to the activity and 

properties of glycoproteins has been a challenging task. The strategies applied vary from the 

inactivation of enzyme-coding genes through genetic mutation methods to the use of inhibitors 

for specific N-glycosylation reactions and the study of features presented by mutant cells or 

organisms with a defect in N-glycosylation (Varki et al., 2009). However, to fully understand the 

function of glycans it is necessary to have a detailed characterization of their structures which is 

technically difficult to achieve due to their tremendous structural diversity. 

Regardless of the obstacles posed, advances in the area of functional glycobiology have been 

attributing fundamental roles to N-glycans in a multitude of key biological processes including 

protein folding, stability and targeting, molecular trafficking and clearance, cell adhesion, signal 

transduction and cell-cell interactions. 

Like other co- and post-translational modifications occurring in the ER, N-glycosylation is 

important for correct protein folding. In the absence or failure of N-glycosylation, glycoproteins 

usually misfold and aggregate and, consequently, are subjected to degradation by quality control 

mechanisms in the ER. Therefore, the most basic known function of N-glycans is to facilitate 

protein folding in the ER which explains the fact that glycans are attached co-translationally to 

nascent polypeptide chains still in their unfolded state (i.e. not in their native structure). N-

glycans ensure the proper folding of proteins by directly stabilizing their structure or by acting as 

recognition tags and promoting interactions between glycoproteins and enzymes involved in 

protein folding (Helenius & Aebi, 2004). 

Concurrent with the aid in protein folding is the involvement of N-glycans in the protein quality 

control system in the ER. The main purpose of this quality control system is to monitor the 

integrity of protein synthesis and prevent aberrant proteins (misfolded or non-functional) from 

going further in the secretory pathway by assigning them for degradation. The mechanisms of 

quality control employ glycan moieties as tags to mediate the correct recognition of misfolded 

proteins which are then selectively retained and targeted for posterior degradation (Yoshida, 

2003). It has been proposed that glycans attached to misfolded proteins might not be properly 

trimmed, thus functioning as indicators of the protein structure condition, i.e., whether the 

protein failed to fold or folded correctly (Gamblin et al., 2009). 
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Furthermore, glycans might play a role in the secretion and intracellular transport of proteins and 

they appear to protect proteins from proteolysis as suggested by the fact that proteins lacking N-

glycans are more susceptible to proteolytic degradation (Fiedler & Simons, 1995). Even though 

some glycoproteins have shown to be functional when lacking N-glycan moieties, they still 

require the presence of N-glycans for folding and transport out of the ER as N-glycans will affect 

protein conformation and stability (Trombetta, 2003). 

The reported importance of N-glycans in cell differentiation, adhesion and migration as well as 

in cell-cell communication and signal transduction is somehow expected since most receptors 

and adhesion molecules on the cell surface are N-glycosylated (Gu & Taniguchi, 2008). For 

instance, it has been shown that the branching structures of N-glycans in growth factor receptors 

serve as important determinants for the signalling function of the receptors (Takahashi et al., 

2004). In addition, N-glycans have been found to have crucial roles in the nervous system 

development, regeneration and synaptic plasticity by mediating the formation of neural cell 

interactions (Kleene & Schachner, 2004). 

Some of the hormones regulating major metabolic and reproductive functions of the body are 

also N-glycosylated. Evidence suggests that N-glycan moieties of these glycoprotein hormones 

have a biological role in hormonal control by being involved in their differential targeting and 

blood clearance (Thotakura & Blithe, 1995). 

Due to the participation of N-glycans in an extensive list of vital processes, defects in N-glycan 

biosynthesis can compromise the course of these processes and, consequently, lead to disease. 

Not surprisingly, N-glycans have been associated with many pathological events, including host-

pathogen interactions, tumour invasion and metastasis, diabetes, cardiovascular, immunological 

and genetic disorders, among others. Common to all these pathological conditions is the 

observation of an altered pattern of glycosylation. 

N-glycans present in cell surface glycoproteins that mediate cell–cell and cell–matrix 

interactions have been described to be implicated and greatly contribute to the metastatic process 

(Zhao et al., 2008). In epithelial tumours, including those of breast, colon and prostate, the 

adhesion and signalling properties of cells are affected due to modifications in N-glycan 

structures displayed at the cell surface (Rambaruth & Dwek, 2011). These structural alterations 

in N-glycans lessen the interactions between glycans and their binding partners and promote cell 

migration and invasion, thus providing favourable conditions for tumour progression and 

dissemination. 
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Among the large number of genetic disorders related to glycosylation which have been identified 

in recent years, the group of congenital disorders of glycosylation is one of the most explored. 

Congenital disorders of glycosylation are a group of rare but severe inherited metabolic disorders 

characterised by defects mainly in the N-glycosylation pathway (Marquardt & Denecke, 2003). 

In congenital disorders of glycosylation, genetically inherited mutations in glycosylation-related 

genes are the cause of deficiency in 34 different enzymes participating in the N-glycan synthetic 

pathway (Sparks & Krasnewich, 2005). Congenital disorders of glycosylation usually affect 

multiple organ systems (especially nervous, gastrointestinal, hepatic, visual and immune 

systems) and present a broad spectrum of clinical features ranging from psychomotor difficulties 

to mental retardation. The various different symptoms manifested by patients who suffer from 

congenital disorders of glycosylation pose an obstacle to a correct and early diagnosis of these 

diseases (Marquardt & Freeze, 2001). 

As can be seen, N-glycans regulate many physiological and pathological processes and a correct 

N-glycosylation is a prerequisite for the normal function of the cells and, consequently, of the 

entire organism. One the one hand, understanding in more detail how N-glycans influence the 

behaviour of glycoproteins can help to clarify the precise function of N-glycans as well as to 

provide new insights on the biology of glycosylation-related disorders. On the other hand, 

understanding the mechanisms leading to disease and identifying specific alterations in 

glycosylation associated with it can aid the discovery of new biomarkers and therapeutic targets 

and promote the development of novel and more efficient diagnostic and treatment solutions. 

1.4. Human Plasma N-glycome 

1.4.1. Challenges of structural analyses of N-glycans 

Understanding the biological roles of glycans and their involvement in diseases or establishing 

the cause of different glycosylation patterns are relevant topics in the field of glycobiology. 

Although developing at a slow pace over the years, glycobiology has given crucial insights into 

the importance of glycans and glycosylation which have contributed to the recent growing 

interest in glycan analysis. 

Glycan analysis provides a structural description of glycans that can be valuable for a more 

comprehensive view of the functional significance of glycans (and glycosylation). However, the 

challenges faced by glycan analysis account for the fact that the knowledge of glycan structures 
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and their synthesis lags behind the knowledge acquired in protein or nucleic acids research 

which are not affected by such problems. 

The heterogeneity and structural complexity exhibited by glycans and the inexistence of a 

universal glycan structure code capable of explaining such diversity have been a bottleneck in 

the determination of glycan structures and a restraint to glycan analysis. Such extremely 

challenging nature of glycan structures demands adequate, robust and efficient methods that can 

provide a correct and detailed analysis of glycans. Chromatographic and mass spectrometry-

based methodologies are the principal strategies used for structural analysis of glycans (Stumpo 

& Reinhold, 2010). While mass spectrometry techniques have higher resolution and are able to 

identify a greater number of glycan structures, chromatography methods are better at separating 

isomers despite their limited resolution. The methodology-related variability yields slightly 

different results creating comparability issues and making the validation of results obtained from 

different sources a more difficult task (Thobhani et al., 2009). Since no reference standards are 

available, results from glycan analysis should be interpreted in the light of the methodology of 

choice. 

Additionally, structural analyses of glycans have been restricted to a reduced number of samples 

due to technological limitations and, thus, a complete and detailed characterization of the 

glycome composition has remained scarce. High-performance liquid chromatography, the 

simplest technique used for a broad profiling analysis of glycans, has been recently adapted for 

high-throughput glycan quantification (Royle et al., 2008). The possibility to quantify glycans in 

a relatively large number of samples opens new venues for the study of glycans and the 

investigation of factors associated with glycosylation in a large scale. 

1.4.2. Variability, heritability and stability of N-glycans 

Recent developments in methodological procedures, namely the adaptation of high-performance 

liquid chromatography for high-throughput analysis of glycans, has allowed the first large scale 

study evaluating the variability and heritability of the human plasma N-glycome (Knezevic et al., 

2009). The plasma N-glycan profiles of 1008 individuals were analysed based on a 

chromatographic division of 33 peaks containing similar glycan structures. The observed 

variability of glycans at the population level was larger than expected emphasizing the need for a 

careful approach when using glycan levels for diagnostic purposes. A broad range of variation in 

heritability of glycans was also found suggesting that the influence of genetic and environmental 

factors varies according to different structural glycan groups. 
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Since the variability found at the population level was larger than changes reported to be 

associated with disease, a follow up study was conducted to test the stability of the human 

plasma N-glycome over a period of time and evaluate the validity of the use of glycan changes 

for diagnostic purposes (Gornik et al., 2009). Several plasma N-glycan profiles were obtained 

for 12 healthy individuals during 5 days and the profiles within an individual were compared. 

The plasma N-glycome showed a good temporal stability suggesting a significant genetic 

background control. Thus, glycan changes arising from environmental factors and/or altered 

physiological processes present themselves as potential diagnostic markers for diseases. 

A comprehensive analysis of association between N-glycans of human plasma and several 

environmental factors and biochemical traits reported smoking, diet, lipid status, gender and age 

to affect different glycosylation features (Knezevic et al., 2010). However, the parameters 

analysed explained only a small fraction of the variability observed in glycan levels supporting 

the previous evidence that glycans are under great genetic control. 

The relation between glycosylation and ageing is attracting a lot of attention and few studies 

have investigated how plasma N-glycans change during ageing (Ding et al., 2011; Knezevic et 

al., 2010; Vanhooren et al., 2010; Vanhooren et al., 2008). Similar age-related structural changes 

in N-glycan profiles were consistently reported in all studies regardless of the ethnic origin of the 

populations considered (Belgian, Chinese, Croatian and Italian).  Some of these studies also 

analysed the relation between glycan levels and gender. However, in this case, glycan 

differences between males and females at different age stages were not reproducible in all 

studies. This age and gender dependence of glycans should be taken into account in the 

development of glycan-based diagnostic tools as well as in the data analysis of studies 

comparing different groups. 

Glycosylation changes associated with the intake of different medications were analysed and few 

sporadic associations were identified but not demonstrated in all tested groups (Saldova et al., 

2012). Additional studies analysing a larger number of samples are necessary to validate the 

associations observed. 

The recent availability of considerable amounts of glycomic and lipidomic data and the 

biological importance of these two major classes of molecules motivated the first glycome and 

lipidome-wide association study intended to reveal possible interactions between 46 plasma N-

glycan structural features and 183 lipid traits in individuals from three geographically distinct 

population cohorts (Igl et al., 2011). Although strong associations between N-glycans and lipids 
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were found in each individual population, these patterns of association were different and not 

completely replicable across populations. The observations suggest potential interactive 

metabolic pathways between glycans and lipids and show the presence of population-specific 

correlations which are thought to derive from exposure to different environments and genetic 

background. 

All these studies on plasma N-glycans are an attempt to characterise in detail the human N-

glycome and provide a complete description of its behaviour and peculiarities at a large scale and 

at the population level. The overall findings of the overviewed analysis suggest a strong 

influence of the genetic component on the glycan levels and possible associations of glycans 

with several (patho)physiological  phenotypes. The integration of glycan traits, phenotypes and 

genotype data is required in further studies in order to determine the extent of validity of these 

preliminary findings. 

1.4.3. Potential diagnostic value of the N-glycome 

Blood is the central transport medium across the human body and is composed of blood cells 

suspended in blood plasma. Blood plasma is the liquid component of blood containing dissolved 

proteins, among other substances such as glucose and clotting factors. 

The majority of proteins in blood plasma are glycosylated. As said before, glycosylation is the 

most common post-translational modification of proteins and a biological important process for 

the human physiological metabolism. Dysregulation of glycosylation has been implicated in 

several diseases, making it plausible to assume that glycosylation alterations can be a sensitive 

indicator of changes in the external and internal environment of the cell. Modifications in the 

mechanisms controlling and changing glycosylation will ultimately lead to glycan structural 

variation which can be examined and determined through glycan analysis. Therefore, the 

composition of plasma N-glycome is expected to reflect diverse physiological status of the 

organism and to be able to act as a biomarker. 

The potential value of glycan profiles as a diagnostic biomarker for a type of maturity-onset 

diabetes of the young (MODY) has been assessed (Thanabalasingham et al., 2013). Glycan 

profiles were shown to be altered in individuals presenting the condition and the particular 

changes identified were suggested to be used together with existing biomarkers to improve the 

diagnosis of the disease. Probable genotype-phenotype relationships were also indicated but the 

validation of such evidences requires more extensive studies. Similar studies involving other 
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diseases can help to clarify the role of glycans in pathological conditions and to explore their use 

as biomarkers. 

In the context of biomarkers application, it should be noted that to date the majority of studies 

involving the analysis of N-glycans report findings exclusively in adult populations. However, 

the glycosylation profiles in childhood are of equal importance and should not be 

underestimated, especially when children are largely affected by congenital disorders of 

glycosylation. The composition of plasma and IgG N-glycome was analysed in childhood and 

was reported to vary from the glycosylation profiles observed in adulthood (Pucic et al., 2012). 

Thus, the use of glycans as diagnostic biomarkers and the development of glycan-based 

therapeutics should take into account the different glycosylation patterns found in children and 

adults. 

Analysing the plasma N-glycome and monitoring glycosylation changes can bring insights into 

the mechanisms of glycosylation in health and disease as well as open new possibilities to the 

clinical application of glycans in medical prognosis, diagnosis and therapy procedures. The great 

and promising potential of the human N-glycome as a disease biomarker is further strengthened 

by the ready availability of plasma and by the simplicity and non-invasiveness of blood sampling 

procedures. 

1.4.4. Genome and Glycome-wide association studies 

Genome-wide association studies (GWAS) aim to find associations between genotype and 

phenotype. The genotype is represented by single-nucleotide polymorphisms (SNPs) while the 

phenotype is represented by a disease trait or a biochemical/physiological feature. Although it is 

the current strategy of choice for screening relevant genetic variants underlying human diseases 

and traits, GWAS shows major drawbacks. 

The first limitation is related with the application of GWAS to the case of polygenic diseases or 

traits. GWAS can accurately detect mutations responsible for single gene disorders (also known 

as Mendelian disorders) due to the fact that a certain disease is caused by SNPs in a single gene. 

On the contrary, complex diseases and traits involve complicated interconnections between 

multiple genes as well as environmental factors and gene-environment interactions. As such, the 

cause-effect relation between genotype and phenotype is not as direct as in the single-gene 

disorders and establishing associations between variants and complex diseases and traits 

becomes a less simple and straightforward task (Hirschhorn & Daly, 2005). Nonetheless, GWAS 
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has been widely applied to the study of polygenic diseases and traits, such as diabetes, asthma, 

cancer, cardiovascular and neurological disorders, obesity and elevated blood cholesterol levels. 

Although several common genetic variants influencing complex human diseases and traits have 

been indentified, GWAS is unable to recover all loci involved (Cooper & Shendure, 2011). 

Moreover, it should be emphasized that the majority of the variants discovered by GWAS only 

explain a small proportion of the genetic contribution to the phenotype variance and thus, cannot 

be taken with full reliability as risk factors for disease (Queitsch et al., 2012). 

The second limitation concerns the rationale behind the GWAS approach. GWAS are mainly 

based on a series of single-locus analysis where each SNP is examined independently for 

association with the phenotype through a statistical test that depends on the nature of the 

phenotype (quantitative or categorical). Such gene selection approaches using univariate (gene-

by-gene) analysis are easy to implement and to interpret and are computationally inexpensive 

(Moore et al., 2010). However, these traditional univariate models are often unable to deal with 

nonlinear relationships and high-dimensional data which are characteristic to large studies. 

Additionally, univariate methods assume the existence of a simple genetic architecture excluding 

possible gene-gene interactions, which are known to occur in complex diseases and traits. While 

being part of the genetic architecture, gene-gene interactions are likely to play an important role 

in the genotype to phenotype mapping relationship and should be considered in GWAS. 

Modified versions of GWAS and complementary approaches have been proposed through the 

years to overcome the drawbacks and improve the potential of GWAS. In particular, multi-locus 

analyses that explore the interactions between SNPs have been investigated. However, genome-

wide studies currently generate between 500,000 and 1,000,000 markers and combinatorially 

examining all possible pairwise or higher-order SNP interactions is a computationally infeasible 

approach (Bush & Moore, 2012). 

Strategies aimed to reduce the number of tested SNPs propose that the analysis should be 

performed in two-stages: in the first stage, a subset of likely associated genetic variants is 

selected based on a chosen method (usually single-locus methods); and in the second stage, a 

desired multi-locus analysis is performed on this filtered and reduced subset (Cordell, 2009). 

Although often employed in genetic analyses, filtering strategies might miss potential interacting 

markers with small marginal effects as these will be missed and eliminated in the first stage of 

SNP selection. 
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Machine learning approaches such as tree-based methods or support vector machines have been 

used as a promising alternative to filtering algorithms in several association studies (Jiang et al., 

2009; Li et al., 2011; Mittag et al., 2012; Yao et al., 2009). Popular tree-based methods are the 

Random Forests and the Random Jungle which is an improved version of Random Forests 

implemented to allow the analysis of high-dimensional data (Schwarz et al., 2010; Winham et 

al., 2012). These ensemble learning methods do not include the interaction between SNPs per se 

but allow for their interaction during the process of tree contruction. In other words, the paths in 

the tree-like structures correspond to particular combinations of SNPs which might mirror 

potential interactions between them. 

Analysing all SNPs available for a genome-wide study as well as existent SNP-SNP interactions 

would be the ideal scenario for GWAS. Despite the great effort put into trying to solve this 

problem, there are still computational, statistical and logistical challenges which need to be 

overcome. Due to the computational and memory requirements inherent to the analysis of high-

dimensional data, algorithms with high statistical efficiency and computational performance are 

necessary to provide faster analyses and to improve the findings discovered by current genome-

wide approaches. Recently, multivariate methods have been developed to address the problem of 

SNP selection and their use in GWAS has shown satisfactory results (Rotival et al., 2011; Zhou 

et al., 2013; Zuber et al., 2012). Such multivariate methods implement polygenic modelling 

algorithms which are able to simultaneously analyse multiple SNPs and account for their 

dependencies while executing the task in an acceptable amount of time. Polygenic modelling is 

viewed as a promissing and valuable approach in genome-wide studies and has been gaining 

more attention over the commonly used standard univariate methods.  

Glycosylation is a polygenic trait characterised by the production of different glycan structures. 

The levels of these glycan products can be measured and considered as individual phenotypes in 

analyses having the same rationale as GWAS. Such glycome wide studies aim to get more 

insights into the genetic regulation of the glycosylation process as well as into the association of 

glycans with diseases. 

This was the fundament for the first comprehensive analysis of common genetic polymorphisms 

affecting protein glycosylation which was recently performed by combining high-throughput 

glycan analysis with the GWAS approach (Lauc et al., 2010a). This pilot study conducted a 

meta-analysis of GWAS data for 13 N-glycan features in individuals from three European 

populations (Vis, Korčula and Orkney). N-glycan levels in human plasma were found to be 
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influenced by a set of polymorphisms located at three loci comprising the fucosyltransferase 8 

(FUT8), the fucosyltransferase 6 (FUT6) and the hepatic nuclear factor 1 alpha (HNF1A) genes. 

A complementary study was performed to include an additional population sample (Sweden) and 

to extend the analyses to 46 glycosylation traits (Huffman et al., 2011). The results of the pilot 

study were reinforced and three novel associations with glycan features were identified for b-1,3-

glucuronyltransferase 1 (B3GAT1), solute carrier family 9, member 9 (SLC9A9) and 

mannosyl(a-1,6-)-glycoprotein b-1,6-N-acetyl-glucosaminyltransferase V (MGAT5) genes. For 

the first time, high-throughput data from genomics and glycomics is brought together in an effort 

to map the complex network of genes involved in the regulation of protein N-glycosylation and 

to unravel the mechanisms behind the genetic associations observed.  

Despite the optimistic results achieved in these preliminary studies, the polygenic nature of 

glycosylation reflects itself in the still scarce understanding of the genetic regulation of 

glycosylation. In this context, the polygenic modelling methods could show their usefulness in 

fetching new polymorphisms related to glycosylation or to be used as a faster alternative to 

GWAS analysis. 

1.5. Immunoglobulin G: an N-linked glycoprotein 

1.5.1. Structure and function of IgG 

Antibodies, or immunoglobulins, are glycoproteins produced by the immune system in response 

to bacteria, virus, toxins or other pathogens. Antibodies are released throughout the body to 

mediate a variety of effector functions, aimed at identification, neutralization and removal of 

infectious agents and their products. Usually, the antibody is required to bind its antigen (a 

specific part of pathogens which is unique to each of them) in order to trigger the effector 

functions. 

In mammals, antibodies can be grouped according to their structure into five major classes, also 

called antibody isotypes: IgA, IgD, IgE, IgG and IgM; where the prefix Ig stands for 

immunoglobulin. These antibody isotypes differ in their biological properties, functional 

locations and each of them helps to coordinate an appropriate immune response for a given 

pathogen. 

Immunoglobulin G, or IgG, is the most abundant antibody isotype found in human blood 

accounting for approximately 75% of the total immunoglobulins in plasma of healthy 
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individuals. IgG is a major effector molecule of the humoral immune response by activating the 

complement system and inducing phagocytosis in order to protect against bacterial and viral 

infections. 

IgG is a glycoprotein composed of two identical light chains and two heavy chains connected by 

disulfide bonds and forming a tetramer with a Y-shaped structure (Figure 3). The structure of 

IgG can be divided into two regions: the antigen-binding fragment (Fab) comprising the arms of 

the Y structure and the crystallizable fragment (Fc) forming the tail region of the Y structure. 

These two regions account for the main biological activities of IgG: the Fab portion is 

responsible for the recognition of pathogens by bearing the site to bind antigens; and the Fc 

domain initiates the effector functions by interacting with cell surface receptors. 

 

Figure 3. Immunoglobulin G structure. The Y-shaped structure of the human IgG is composed of the Fab 

region (responsible for the antigen-binding activity) and the Fc region (responsible for the effector functions). 

A single N-glycan is attached to each asparagine-297 residue in the Fc portion and is shown in red in the tri-

dimensional molecule. Four possible structures of Fc-linked N-glycans are shown; the monosaccharides 

represented are N-acetylglucosamine (blue squares), mannose (green circles), fucose (red triangles), galactose 

(yellow circles) and sialic acid (pink diamonds). Adapted from New England BioLabs  (2013).  
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1.5.2. Glycosylation of IgG 

Glycosylation of Fc fragments is fundamental for this domain to be able to mediate the effector 

functions of the IgG. In the glycosylated state, each heavy chain of IgG has a single biantennary 

N-glycan attached to the highly conserved N-glycosylation site asparagine 297 of the Fc region 

(Figure 3). The two N-glycan moieties, also known as Fc glycans, are crucial for the interaction 

between IgG and the receptors, as demonstrated by the fact that interaction between the two parts 

is lost in the absence of glycosylation (Kaneko et al., 2006). Fc glycans are believed to maintain 

an open conformation of the heavy chains which is favorable to the binding of IgG to receptors 

(Anthony & Ravetch, 2010). 

Glycosylation of IgG varies considerably due to modifications of the biantennary core or 

elongation of the arms of the Fc glycans through sugar additions. These structural alterations are 

frequent and over 30 different glycans have been detected on IgG in healthy individuals 

(Anthony et al., 2012). However, certain glycan structures might alter the conformation of the Fc 

region in a way that affects its affinity to receptors and, as a result, have a profound impact on 

the effector functions of the IgG. 

One of the most striking examples is the presence of terminal sialic acids which totally reverts 

the innate function of IgG. Sialylation alters the binding ability of IgG and converts IgG from 

having pro-inflammatory into having anti-inflammatory activity (Kaneko et al., 2006). The 

potential anti-inflammatory behaviour manifested by IgG has been used successfully in the 

intravenous IgG therapy, a common treatment for a number of autoimmune diaseases (Lux et al., 

2010). 

A fucose residue attached to the glycan core is present in the majority of IgGs but rarely found in 

other plasma proteins. This core-fucosylation seems to negatively influence the action of IgG on 

the antibody-dependent cell-mediated cytotoxicity mechanism, as opposed to a lack of core-

fucose which enhances the affinity of IgG to bind receptors of cells involved in the antibody-

dependent cell-mediated cytotoxicity process (Gornik et al., 2012). 

The first report implicating IgG glycosylation in disease dates back to 1985 and describes 

decreased IgG galactosylation to be associated with rheumatoid arthritis (Wuhrer et al., 2007). 

Since then, the interest in the potential role of IgG glycosylation in disease increased and several 

studies followed reporting the presence of characteristic IgG glycosylation patterns in other 

autoimmune diseases, infectious diseases and cancer. 
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A correct glycosylation is of physiological importance for glycoproteins and IgG is a clear 

example of that. Alternative glycosylation of IgG induces structural alterations in its Fc domain 

which enable IgG to perform completely different functions. In this way, IgG glycoforms play an 

important role in the modulation of inflammatory responses (Hounsell & Davies, 1993). 

Although the functions of alternative glycosylation of IgG have been analysed in health and 

disease, the molecular significance of these changes and the specific regulation of the 

glycosylation process are still mostly unknown. 

1.5.3. Structural analyses of IgG 

IgG is one of the most studied glycoproteins in terms of structural and functional aspects of 

glycosylation. The interest in IgG lies not only on its important biological activity in humoral 

immune responses but also on its glycosylation patterns which have been shown to be altered 

under various physiological and pathological conditions. Understanding the alternative 

glycosylation of IgG requires a detailed analysis of the composition of the IgG N-glycome. 

Recently, a high throughput method for the isolation of IgG was developed and applied to the 

first large-scale study of the IgG N-glycome which showed  a higher variability between 

individuals than that reported for the total plasma N-glycome (Pucic et al., 2011). Associations 

between certain IgG glycosylation features and age, such as an increase of structures with 

bisecting GlcNAc and a decrease in galactosylation and sialylation, were observed in accordance 

with previous studies which also reported the dependence of glycosylation features sex and 

pregnancy (Huhn et al., 2009). 

While the present thesis was in progress and the analyses in completion, a genome-wide 

association study of the human IgG N-glycome was published (Lauc et al., 2013). Significant 

associations with IgG glycans were found for nine genetic loci. While four loci comprise genes 

encoding known glycosyltransferases, the remaining five loci have not been previously 

implicated in protein glycosylation but comprise genes reported to be related with autoimmune 

and inflammatory conditions. 

In the studies concerning the analysis of human plasma N-glycome, the broad spectrum of N-

glycan structures considered are carried by many diverse glycoproteins which might be under 

distinct glycosylation regulation. However, these glycan analyses do not include any information 

about the glycoproteins themselves in the sense that the glycan moieties examined are not 

differentiated according to the glycoproteins from which they were released. Thus, the analysis 
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of the entire set of N-glycan moities existent in the plasma provides an overall descriptive and 

quantitative view of the N-glycome but overlooks subtle glycan structural fluctuations occuring 

at the individual level of glycoproteins. Separating the glycans by glycoproteins and analysing 

them independently has the potential to detect glycoprotein-specific glycan changes dissimulated 

at the plasma level, thus adding another dimension to the knowledge about glycosylation 

regulation. 

1.6. Aim and objectives of the thesis 

Major breakthroughs in methodological procedures created the possibility to reliably quantify 

glycans in a high-throughput manner and allowed the first large scale studies reporting a 

comprehensive description of the behaviour of human N-glycans and of possible causes behind 

that behaviour. These studies and their encouraging and promising results constitute the basis 

and the motivation for the present research. 

The aim of this thesis is to gain more insights into the genomic and environmental regulation of 

glycosylation by using advanced bioinformatics tools. At the present stage of glycome research, 

the field of bioinformatics is required to develop, adapt and improve computational algorithms 

for a more thorough exploration and accurate characterization of the available spectrum of glyco-

related data (Aoki-Kinoshita, 2008). Three isolated population cohorts characterised on the level 

of the glycome, genome and physiological/biochemical parameters were analysed as case 

studies. 

Within the aim of the thesis and regarding the available data, the following objectives were 

defined: 

- to develop a general data processing pipeline to treat and prepare the data for further 

analysis; 

- to investigate the existence of glyco-phenotypes, in particular glycan changes associated 

with medical conditions such as diabetes; 

- to examine the presence of population-based glycosylation patterns that could 

characterise geographically distinct cohorts; 

- to explore associations between glycans and genotypes that could reveal new variants 

influencing the glycosylation process. 
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Computational methods/algorithms present in literature were researched and evaluated for their 

suitability to fulfil the particular needs of each of the mentioned objectives. Several methods 

considered to be appropriate for the analyses were chosen. Since methods intended for the same 

type of analysis usually differ in their principles and might yield different results, for some of the 

analyses more than one method was investigated. In such cases, the performances of the methods 

applied were compared and the agreement of their results was assessed. Exploratory graphical 

methods were employed to enable the visualisation of the results obtained with the 

computational methods and facilitate their interpretation 
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2. MATERIALS & METHODS 

2.1. Study Populations 

Data consists of human samples from three different isolated population cohorts: the islands of 

Vis and Korčula in Croatia and the Orkney archipelago in Scotland. Individuals were recruited as 

part of larger genetic epidemiology studies intended to investigate genetic variability and map 

genes associated with common complex diseases and disease traits in genetically isolated 

populations.  

The “10 001 Dalmatians” study of Croatian island isolates includes 1008 individuals from Vis 

island (Vis cohort) and 969 individuals from Korčula island (Korčula cohort) (Rudan et al., 

2006; Rudan et al., 1999; Rudan et al., 2009). 

The Orkney Complex Disease Study (Orkney cohort) includes 2095 individuals from Orkney 

Islands (Igl et al., 2010). 

All individuals are adults over 18 years of age and the mentioned studies were approved by the 

appropriate ethical committees. In all three population studies, blood samples were drawn, 

biochemical and physiological traits were measured, lifestyle and medical-related information 

was acquired and DNA samples from individuals were genotyped following similar protocols. 

2.2. N-glycan Quantification Analysis 

2.2.1. Plasma N-glycans 

A high-throughput method was used to isolate and quantify the glycan structures present in the 

plasma samples of the individuals. The developed methodology allows a rapid and detailed 

analysis of a large number of samples by combining a 96-well plate platform with quantitative 

high-performance liquid chromatography (HPLC) profiling in an automated manner (Royle et 

al., 2008). 

Prior to the chromatographic analysis, plasma samples are required to be preprocessed for the 

release and labeling of N-glycans. First, N-glycans are enzymatically released from 

glycoproteins using peptide N-glycosidase F (PNGase F) which cleaves the linkage between the 

core of the glycans and the asparagine residue of the protein. Second, since isolated N-glycans 
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do not present any chromophores, they are labeled with 2-aminobenzamide (2-AB) for 

fluorescent detection (Adamczyk et al., 2012). The labeling of glycans is nonselective allowing 

charged and neutral glycans to be analysed simultaneously. 

The released and labeled N-glycans are then analysed by hydrophilic interaction high 

performance liquid chromatography (HILIC) with fluorescent detection to identify and quantify 

individual glycans present in the samples. 

Glycan profiling aims to identify and assign glycans structures to the various peaks in the 

chromatogram obtained on the basis of the elution positions of different glycans. For this specific 

purpose, the measured elution positions of glycans are converted to glucose units which are then 

matched against reference values in the GlycoBase database for structure assignment.  

A 2AB-labeled glucose ladder is used as an external calibration standard for the assignment of 

glucose units. The glucose ladder chromatogram contains the elution positions (or retention 

times) of glucose homopolymer species with different degrees of polymerization allowing each 

chromatographic peak to be expressed as a glucose unit. Thus, a chromatogram of a certain 

glycan pool can be compared to the reference glucose ladder and the elution positions of 

individual glycans can be assigned with glucose units. 

The prediction of glycan structures based on glucose unit values is possible due to the fact that 

each monosaccharide present in the structure has its own additional value. In this way, the 

glucose unit value of each glycan structure is directly related to the number and type of linkage 

of its constituent monosaccharides, i.e., higher glucose unit values correspond to larger glycans. 

GlycoBase contains the HPLC elution positions expressed as glucose unit values for more than 

700 2AB-labelled glycan structures both N-linked and O-linked (Campbell et al., 2008). 

The identification of different glycan structures is followed by the division of the chromatogram 

into certain chromatographic areas and the later quantification of glycans on those areas. The 

chromatograms are divided into several peaks based on peak resolutions and similarity of 

individual glycan structures; each peak containing more than one glycan structure (Figure 4). 

The amount of glycans present in each peak is expressed as a percentage of the total integrated 

area of the chromatogram and calculated as the amount of total glycan structures in the peak 

divided by the total serum N-glycome; the percentages of all peaks add up to 100% for a single 

chromatogram (Knezevic et al., 2009). 
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Figure 4. Example of a chromatographic peak division for glycan quantification. Chromatogram was 

obtained by HILIC and divided into 16 chromatographic peaks. Each peak contains more than one similar 

individual glycan structures as shown. The amount of glycans present in each peak is expressed as a 

percentage of the total integrated area of the chromatogram and calculated as the amount of total glycan 

structures in the peak/the total serum N-glycome; the percentages of all peaks add up to 100%. 

Monosaccharide abbreviations: Fuc - fucose; Gal - galactose; GlcNAc - N-acetylglucosamine; Man – 

mannose; NeuNAc - N-Acetylneuraminic acid. Adapted from Lauc & Zoldos (2010). 

Three separate chromatographic methods were used to analyse the glycans: HILIC, HILIC of 

desialylated glycans and weak anion exchange high-pressure liquid chromatography (WAX-

HPLC). HILIC analysis chromatograms were divided into 16 groups named GP1-GP16 (Figure 

5A). HILIC of desialylated glycans was performed on released N-glycans after the removal of 

sialic acids by sialidase digestion treatment and the chromatographic division resulted in 13 

groups of desialylated glycans named DG1-DG13 (Figure 5B). The individual glycan structures 

present in each of the chromatographic peaks of HILIC analysis and HILIC analysis after 

sialidase treatment are specified in Supplementary table 1. WAX-HPLC separated glycans 
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according to the level of sialylation, i.e. the number of attached sialic acids into monosialylated, 

disialylated, trisialylated and tetrasialylated (Figure 5C). In WAX-HPLC, compounds are 

separated and quantified depending on their charge density with higher charged compounds 

having longer retention times. 

 

 

Figure 5. Plasma N-glycome chromatographic and quantification analysis. Typical chromatograms from 

HILIC (A), HILIC after sialidase digestion treatment (B) and WAX-HPLC (C) of N-glycans released from 

human blood plasma. These three chromatographic methods allow the division of a plasma N-glycome profile 

into 33 chromatographic peaks. N-glycans are separated into: 16 peaks with HILIC analysis (named GP1-

GP16), 13 peaks with HILIC analysis after sialidase treatment (named DG1-DG13) and 4 peaks with WAX-

HPLC analysis (named S1 - monosialylated, S2 - disialylated, S3 - trisialylated, S4 - tetrasialylated). Adapted 

from Saldova et al. (2012). 
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Additional glycan structural features, such as fucosylation, level of galactosylation, level of 

sialylation of biantennary structures and degree of branching, were approximated by adding the 

glycans sharing the same structural characteristic from either HILIC or HILIC after sialidase 

treatment integrated glycan profiles. A total of 13 glycan structural features were derived and are 

presented in Supplementary table 2. 

HPLC analyses of plasma N-glycans were performed by collaborators in the Glycobiology 

Laboratory of Genos Ltd in Zagreb, Croatia, and in the National Institute for Biotechnology and 

Training (NIBRT) in Dublin, Ireland. 

2.2.2. IgG N-glycans 

IgG proteins were isolated and purified from plasma using a novel 96-well protein G monolithic 

plate followed by the release and labelling of N-glycans (Pucic et al., 2011). Fluorescently 

labelled N-glycans were separated by ultra performance liquid chromatography (HILIC-UPLC). 

There are two versions of this technique: the “in-gel” approach used for the quantification of IgG 

glycans in the Vis and Korčula populations; and the “in-solution” approach used to quantify the 

IgG glycans from the Orkney samples. The two approaches mainly differ in the methodology of 

the steps involved: the filtration of plasma before isolation and purification of IgG proteins was 

introduced in the in-solution version, the deglycosylation is done in solution conditions in the in-

solution method as opposed to gel blocks used in the in-gel method, microcrystalline cellulose is 

used for solid-phase extraction to remove excess of 2-AB dye in the in-solution method while 

chromatography paper is used in the in-gel method. Overall, the in-solution method has shown to 

be less laborious, much faster and cheaper than the initial in-gel approach. It should be noted, 

however, that these differences in methodological procedures will lead to slightly different 

quantification results. 

Individual glycan structures in the chromatographic peaks were identified by mass spectrometry. 

The amount of glycans present in each peak is expressed as a percentage of the total integrated 

area of the chromatogram and the percentages of all peaks add up to 100% for a single 

chromatogram. 

IgG N-glycan chromatograms obtained with HILIC-UPLC were divided into 24 peaks named 

GP1-GP24 (Figure 6) and the composition of individual glycan structures contained in each peak 

is presented in Supplementary table 3. The minor peak GP3 was excluded from all the 

calculations because its value was significantly contaminated as explained in Pucic et al. (2011). 
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Additional glycan structural features were derived and approximated from the ratios of the 23 

IgG original N-glycan peaks sharing similar structural features. A total of 54 glycosylation traits 

were derived and both their description and calculation formula are available in Supplementary 

table 4. 

The analyses and quantification of IgG N-glycans were performed by collaborators in the 

Glycobiology Laboratory of Genos Ltd in Zagreb, Croatia. 

 

 

Figure 6. IgG N-glycome chromatographic and quantification analysis. The IgG N-glycome was separated 

into 24 chromatographic peaks (named GP1-GP24) by HILIC-UPLC. The amount of glycans present in each 

peak is expressed as a percentage of the total integrated area of the chromatogram; the percentages of all peaks 

add up to 100%. Adapted from Pucic et al. (2011). 

2.3. Feature Data Sets 

Each individual sample is represented by a plasma N-glycan profile, an IgG N-glycan profile, a 

set of phenotype traits and a list of genotypes for several SNPs. 

2.3.1. Plasma N-glycan profile data 

The human plasma N-glycome was separated by three chromatographic analyses into 33 

different chromatographic peaks: 16 groups of glycans before desialylation from HILIC, 13 

groups of desialylated glycans from HILIC after sialidase treatment and 4 groups of differently 

charged glycans from WAX-HPLC. An additional group of 13 glycan structural features were 
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derived based on the above measured chromatographic peaks. The plasma profile of an 

individual consists of a total of 46 traits divided into the 4 groups previously mentioned, further 

referred to as GP (n=16), DG (n=13), Sialos (n=4) and Structural (n=13) glycans. 

2.3.2. IgG N-glycan profile data 

The human IgG N-glycome was divided into 23 chromatographic peaks which were used to 

derive 54 additional glycan structural features. The IgG profile of an individual comprises 77 

traits divided into 4 groups, further referred to as Initial (n=23), Charged (n=17), Neutral (n=14) 

and Neutral derived (n=23) glycans. 

2.3.3. Phenotype data 

Phenotype data is composed of personal and health-related data as well as physiological and 

biochemical traits. Personal data (such as name, age, gender and education level), lifestyle 

variables (such as smoking status and diet) and medical conditions (such as presence of certain 

diseases and drug intake) were collected based on extensive questionnaires. Several 

physiological traits were measured including height, weight, blood pressure, waist circumference 

and skinfold. Biochemical traits measured through biochemical analyses include levels of 

creatinine, uric acid, HDL, LDL, total cholesterol, triglycerides, insulin, fibrinogen and blood 

glucose. 

Due to the fact that different phenotypes were available for each population, a set of phenotype 

traits collected for all populations was selected. The following 21 phenotype traits were 

considered for the present analyses: age, sex, systolic and diastolic blood pressure (Sys and 

Disys), total cholesterol (Cholest), HDL, LDL, triglycerides (Trigy), blood glucose, insulin, 

glycosylated haemoglobin (HbA1c), fibrinogen (Fibrin), creatinine (Creat), calcium, uric acid, 

albumin, body mass index (BMI), waist-to-hip ratio (WaistHip), FAT, waist and hip 

circumference (WaistCir and HipCir). In parenthesis are indicated the short names of the 

phenotypes which will appear in the figures shown in the present thesis. 

The diabetes status of an individual was one of the medical conditions collected. The level of 

glycosylated hemoglobin (a marker for average blood glucose levels over prolonged periods of 

time; HbA1c in short) was used to classify the individuals into one of the three groups: non-

diabetics (HbA1c < 6%), pre-diabetics (HbA1c 6-6.49% and no record of diabetes in medical 

history) and diabetics (HbA1c >= 6.5% or physician reported diabetes in medical history or 
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treatment with anti-diabetic medication). The diabetes status was available for a total of 3248 

individuals (692 from Vis, 495 from Korčula and 2061 from Orkney) of which 2736 were 

assigned as non-diabetics, 233 as pre-diabetics and 279 as diabetics. 

2.3.4. Genotype data 

DNA samples were genotyped according to the manufacturer’s instructions on Illumina Infinium 

SNP bead microarrays (HumanHap300v1for the Vis cohort, HumanCNV370v1 for the Korčula 

cohort and HumanHap300v2 for the Orkney cohort). Genotypes were determined using Illumina 

BeadStudio software (Lauc et al., 2010a). 

Approximately 300.000 SNPs were genotyped (referred further on as the all SNPs set), including 

about 900 SNPs known to be related with glycosylation (referred further on as the glycan-related 

SNPs set). Genotyping was successfully completed on 986 individuals from Vis, 944 from 

Korčula and 890 from Orkney. 

2.4. Data Preprocessing 

Real-world data tends to be incomplete (lacking attribute values of interest), noisy (containing 

errors or outliers) and inconsistent (containing discrepancies in codes or names) (Chakrabarti et 

al., 2009). 

Data preprocessing consists of an ensemble of techniques, including data cleaning, data 

integration, data transformation and data reduction, aimed to improve the quality of the data to 

be analysed. Data preprocessing methods are applied to rectify the data by filling in missing 

values, removing errors, correcting inconsistencies or transforming data into appropriate format 

for analysis. The use of these techniques is not mutually exclusive and usually a few of them are 

applied sequentially to the same data set. 

The majority of studies concerning large size populations and the collection of various feature 

data sets for those populations frequently face the problem of having several records which are 

not complete. The reasons accounting for incomplete and inaccurate records vary from the 

impossibility of trait measurements and incorrect data entry to errors occurring during the 

methodological procedures. 
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The quality of data is of extreme importance and has a great impact on the accuracy and 

interpretation of the results for knowledge discovery. Therefore, data preprocessing is an 

important routine to consider/bear in mind prior to data analysis. 

The four available feature data sets (plasma N-glycan profiles, IgG N-glycan profiles, 

phenotypes and genotypes) follow the real-world data behaviour and as such were subjected to a 

data preprocessing pipeline as described below. 

2.4.1. Data quality control 

Data quality control was performed in order to eliminate the most incomplete samples and 

decrease the amount of missing data. The quality control procedure was applied in the same 

manner for all populations. 

Plasma and IgG N-glycan and phenotype data sets were filtered by removing samples missing 

50% or more of the features in question. The removal of all samples lacking at least one trait was 

not applied because it would greatly reduce the size of the study populations and lead to loss of 

information. 

Quality control of genotype data aims to filter out not only individuals with a small amount of 

genotype data but also SNPs which were not resolved for a large number of individuals. 

Genotyping quality control was performed on the basis of the following inclusion thresholds 

criteria: individuals were excluded when having a genotype rate less than 97%, i.e. with more 

than 3% of genotypes missing; SNPs were removed when having a call rate less than 95%, minor 

allele frequency less than 2% or Hardy-Weinberg equilibrium p-value less than 1x10-7. 

While the IgG and phenotype profiles were rather complete in all populations, the plasma 

profiles of a large part of the Orkney samples was lacking more than 50% of data and the 

genotype data was mainly incomplete for Vis and Korčula samples. The influence of data quality 

control on population sample size is summarized in Table 1. 
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Table 1. Data summary for the study population cohorts. For each population the following values are 

indicated: the initial number of individuals, the remaining individuals after data quality control by feature data 

set and the final sample size after data integration. Pop.cohorts: Population cohorts; Plasma and IgG profiles: 

refer to plasma and IgG N-glycan profiles. 

Pop. 
cohorts 

Plasma profiles IgG profiles Phenotypes Genotypes Common 
Individualsc initial after 

filteringa initial after 
filteringa initial after 

filteringa initial after 
filteringb 

Vis 1008 995 890 890 1008 1006 986 858 735 
Korčula 969 949 914 914 969 959 944 887 823 
Orkney 2095 1475 1770 1770 2095 2077 890 890 770 

a Filtering was done by excluding samples with 50% or more of the features missing. 
b Filtering was done by applying a missing rate per person of 90%. 
c Individuals present in all four feature data sets within a population cohort. 

 

2.4.2. Data integration 

Gathering different kinds of data sets for a single study population of a large sample size clearly 

provides a significant amount of data (and information) for the analysis. However, dealing with 

these various data sets afterwards can be challenging and troublesome. Particularly, when 

preparing data for analysis a certain level of data inconsistency is often encountered, for instance 

it might happen that some samples are present in some of the data sets but nonexistent in the rest. 

In such cases, data integration is performed to properly combine data extracted from multiple 

sources into a coherent whole. 

In order to achieve data consistency within a population, the individuals presenting all feature 

profiles were identified and their corresponding data selected to be used in the analyses. The 

final number of individuals after data integration is shown in Table 1. This step greatly reduced 

the number of available samples for each population, especially for Orkney where approximately 

half of the samples was not genotyped. Although global data integration was performed, pairwise 

integration, i.e., integrating data from only two feature data sets (for example, plasma profiles 

and phenotypes) according to the analysis to be performed might be a better approach since a 

smaller number of samples would be eliminated and, consequently, more samples would be 

considered for analysis. 

Data integration and data quality control also affected the number of individuals with available 

diabetes status which was drastically reduced to less than half of the original number (Table 2). 
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Table 2. Data summary for the diabetes data set. Number of samples per diabetes group (non-diabetics, pre-

diabetics and diabetics) and the composition of each group in terms of populations (Vis, Korčula and Orkney). 

In parenthesis is shown the number of samples for each group and population before the data quality control 

and data integration steps. 

Diabetes status 
Populations 

Total for groups 
Vis Korčula Orkney 

Non-diabetics 449 270 585 (2736) 1304 
Pre-diabetics 33 59 58 (233) 150 

Diabetics 47 45 35 (279) 123 

Total for populations (692) 529 (495) 374 (2061) 674 (3248) 1577 
 

The use of different SNP arrays for genotyping and the thresholds imposed in the quality phase 

control resulted in different set of SNPs available for each population. In order to ensure that the 

same core of SNPs was used throughout the analyses and be able to compare results between 

populations, the set of SNPs shared by all three populations was obtained and the corresponding 

genotype data extracted for each population. The final common set of SNPs comprises a total of 

275895 SNPs, including 971 glycosylation-related SNPs. 

2.4.3. Data normalization 

Normalization is commonly used to obtain a data set where all the variables are within the same 

value range and can be fairly compared. Several data normalization procedures exist; however, it 

is possible that they might affect the outcome of the analysis. 

Data normalization was used to adjust the values of the features to a common scale and allow a 

better comparison of features across populations. The approach selected to normalize the glycan 

and phenotype data was the median normalization which was intended to center the data to have 

median zero while keeping the data distribution specific of each population. The transformation 

was accomplished by subtracting the median value of each feature to the corresponding initial 

individual values. 

2.4.4. Data correction 

Data correction concerned the removal of batch effects present in IgG glycans and the age and 

sex correction of both plasma and IgG data sets. 
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The 23 Initial IgG glycans were corrected for batch effects resulting from the use of different 

plates in the IgG quantification analysis. First, a log transformation was applied to each glycan 

group to obtain normally distributed variables. Second, batch correction was performed using a 

linear mixed model where the methodological sources of variation (plates and columns in the 

plates) were described as random effects. The estimated batch effect (random component) was 

disregarded in the calculation of the corrected values which express only the normal biological 

variation of glycans. Third, the exponentials of the corrected values are taken to return the values 

to their original scale. The lmer function as implemented in the lme4 package for R was used for 

the purpose of the batch effect correction (Bates et al., 2013). 

N-glycans have been reported to be associated with age and gender and it has been suggested 

that the influence of these variables should be taken into account when investigating the 

relationship between glycans and phenotype traits and in genome wide association studies (Ding 

et al., 2011; Huhn et al., 2009; Knezevic et al., 2009). In this way, it is excluded the possibility 

that observed associations between certain features and glycans are a reflection of a background 

influence of aging or gender upon these features. Plasma and IgG N-glycan data was corrected 

for age and sex to eliminate any dependencies of these two variables with N-glycans. The 

correction was performed with a generalized additive model and the resulting residuals were 

considered for analysis. Generalized additive models use a local scoring algorithm which 

iteratively applies a smoothing function to the data, similar to a locally weighted regression. For 

each predictor variable in the model, the smoothing function fits the data by taking into account 

the neighbourhood of each point being fitted. The gam function as implemented in the mgcv 

package for R was used for the age and sex correction of glycans (Wood, 2011). 

The age and sex correction was done in two different ways based on whether the purpose of the 

analysis was to compare the glyco-phenotype characteristics of populations or to find general 

associations between glycans and phenotypes/SNPs. To compare populations and search for 

particular glyco-phenotype features capable of distinguish them, glycans were first normalized 

independently for each population and then the age and sex correction was applied to the pool of 

the three populations, resulting in a data set having a total of 1990 individuals. Performing the 

age and sex correction while considering the three populations as a whole assumes that the age 

covariate has the same distribution across populations. In this way, the age effect is kept constant 

across populations and noticeable differences between populations can be regarded as a 

consequence of the population structure itself. To investigate potential association patterns 

existing between glycans and phenotypes and between glycans and SNPs that can be 
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generalized, the age and sex correction was done separately for each population, resulting in a 

data set having a total of 2063 individuals. This approach ensures that the population effect on 

data is removed and, consequently, analysis intended to search general association trends 

between variables can be compared across populations and can be done on the three populations 

as a whole. 

2.4.5. Data removal of outliers 

Outlier samples were removed after age and sex correction for each glycan measure to account 

for errors in quantification and to eliminate individuals not representative of normal variation 

within populations. An individual was classified to be an outlier if its residual measure for the 

trait was more than 4 standard deviations away from the mean. Although in common practice a 

data point is considered an outlier if the corresponding residual is 3 or more standard deviations 

from the mean, a less conservative threshold of 4 was applied in order remove only extreme 

outliers. The age and sex correction model was again fit to the data sets without the outliers. 

2.4.6. Data imputation 

Several statistical tools and algorithms either discard by default any record that has a missing 

value or require complete records. To overcome these problems imputation techniques are often 

carried out. Imputation is the process of replacing missing values with a probable value based on 

the rest of the available data while preserving all the records in the data set. 

Although the major part of missing data in the four feature data sets was removed when data 

quality control was performed, incomplete records with minimal amount of missing data 

remained. Missing data in N-glycan profiles and phenotypes was handled by imputing the 

missing values with the median of the corresponding trait whereas missing genotypes were 

replaced with the most common genotype found for each SNP. Similarly to data normalization, 

various techniques can be applied to impute missing data and the approach chosen here was just 

one technique among the various existing possibilities. 

2.4.7. Data comparison 

The in-solution and in-gel methods used for high-throughput quantification of IgG N-glycans 

were compared by analysing 473 samples from the Orkney cohort which had the IgG N-glycan 

profiles measured with both methods. The agreement between the two methods was assessed by 



 

39 
 

computing their linear correlation after age and sex correction of the data. The lm function of the 

stats package for R environment was used to compute the correlation coefficients. 

2.5. Computational Tools 

2.5.1. R statistical package 

R is an open source programming language and environment for statistical computing and 

graphics (R Core Team, 2013). R integrates a wide range of methods designed to explore data in 

a variety of ways, such as modelling, classification and statistical analysis, and to graphically 

display data in a comprehensive manner to facilitate and improve data evaluation. R core 

functionality is extended by allowing users to define new functions and via additional packages 

which are freely available and provide groups of functions developed for specific analysis. 

The exploratory analysis of the data was mainly performed in the R programming environment 

(version 3.0.1) using several specialized packages according to the needs of the analysis to be 

carried out. 

2.5.2. PLINK 

PLINK is a free, open-source whole genome association analysis toolset developed to improve 

and facilitate computational analyses of large-scale genotype data (Purcell et al., 2007).  

PLINK was used to perform the genotype quality control through the commands reserved to 

specify the inclusion thresholds: --mind for the missing rate for person (value of 0.03), --geno for 

the missing rate per SNP (value of 0.05), --maf for the minor allele frequency (value of 0.02) and 

--hwe for the Hardy-Weinberg test (value of 0.0000001). 

2.5.3. Perl programming language 

Perl is a high-level and general-purpose programming language initially developed for text 

processing but rapidly extended to areas like system administration, web development and 

graphical programming (Perl, 2013). 

Perl was used to write auxiliary scripts mainly intended to perform tasks of data manipulation 

with the purpose of transforming and modifying the data format and/or structure into a suitable 

format for following computations. 
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2.6. Computational Methods/Algorithms 

Several machine learning, data mining and statistical methods as well as different graphical 

representation approaches were applied to analyse, visualise and model the data and to derive 

relevant biological information. 

2.6.1. Nearest neighbours computation 

Although the human plasma glycome is very stable and is similar among most individuals, some 

individuals with a glycan profile showing deviations from this normal glycan profile were 

observed and referred to as outliers. To form limited size groups of individuals sharing the same 

profile characteristics as the outliers, computational identification of groups of nearest neighbour 

individuals was carried out as described below (Papadias et al., 2004). 

Glycan profiles were normalized for age and gender differences and scaled to the mean residuals 

of linear regression. Individuals presenting the most similar glycan profiles to single identified 

outliers were determined using a consensus scoring of pairwise distances between vectors 

containing measured glycan values. Basically, the five nearest neighbors (i.e. the individuals 

with the smallest respective profile distances) were calculated for each outlier using five distance 

calculation methods: maximum value (maximum difference in any coordinate dimension); 

Manhattan (city block); Euclidean (square root of the sum of squared vector coordinates); 

Canberra (sum of differences between the vector coordinates); and Minkowski generalized 

distance of order 4 (fourth root of the sum of vector coordinates raised to the fourth power). 

Neighbors occurring in a group of five nearest neighbors using at least two different methods 

were selected as true neighbors and treated as a group. 

2.6.2. Clustering 

One of the most important goals of unsupervised learning is to discover meaningful clusters in 

data. Cluster analysis, an approach to unsupervised learning, aims to discover groups, or clusters, 

of data points which belong together because they are in some way similar to each other. 

Although there are hundreds of published clustering algorithms, there is no correct algorithm that 

can be applied to all cluster-related problems. Instead, the most appropriate algorithm should be 

chosen based on the capacity of its underlying cluster model to fit the data set properties in 

question (Andreopoulos et al., 2009). 
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A popular clustering algorithms employed in a broad range of areas is the K-means algorithm 

which attempts to partition the data points into k clusters so as to minimize the sum of squared 

distances between the data points and their nearest cluster center. A major drawback of K-means 

and similar algorithms is that the number of clusters (k) is often required to be specified prior to 

the analysis which is not always desirable. Another issue concerns the assignment of the initial 

cluster centers which is randomly performed; an inadequate initial choice of centers might lead 

to poor results. This is the reason why K-means is often rerun several times with different 

initialization centers in order to be able to find an acceptable solution. 

Affinity propagation is a clustering approach that simultaneously considers all data points as 

potential centers, or exemplars, and recursively exchanges value-encoded messages along the 

network formed by these data points until a high-quality clustering solution is achieved, as 

illustrated in Figure 7A (Frey & Dueck, 2007). Affinity propagation takes measures of similarity 

between data points as input and transmits two types of messages between data points which are 

updated during the message-passing procedure. The “responsability” message, defined as r(i,k), 

is sent from data point i to candidate exemplar k and reflects the accumulated evidence for the 

affinity that point i has for choosing k as its exemplar (Figure 7B). The “availability” message, 

defined as a(i,k), is sent from candidate exemplar k to point i and reflects the accumulated 

evidence for how appropriate it would be for point i to choose point k as its exemplar (Figure 

7C). Combining these two messages allows the identification of exemplars. Through this 

dynamic process of exchanging messages, the appropriate number of centers (and thus clusters) 

emerges iteratively without having to specify it beforehand. Besides the similarity matrix, the 

individual tendencies of data points to become exemplars, called input preferences, can be 

specified in the affinity propagation clustering. Input preferences can be chosen individually for 

each data point or can be a shared value among all data points (meaning that all data points are 

equally suitable as exemplars). The value of the input preferences influences the number of 

clusters produced and is usually set to the median of the input similarities (resulting in a 

moderate number of clusters) or to their minimum (resulting in a small number of clusters). 

The affinity propagation clustering was applied to analyse the internal structure of the population 

cohorts and to explore the glyco-phenotype signatures of the observed clusters. 

The apcluster package for R environment implements the affinity propagation clustering 

(Bodenhofer et al., 2011). The apcluster function was employed when the analyses were 

performed without a pre-defined number of clusters. The input preferences were choosen as a 
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common value for all data points and its optimal value for clustering was searched by setting the 

q parameter to 0 and 0.5, corresponding to the minimum and median values of the input 

similarities, respectively. The apclusterK function was used to analyse a specific number of 

clusters. The desired number of clusters was set with the K parameter and the parameter prc 

which controls the percentage that the number of clusters is allowed to deviate was set to 0 to 

have exactly K clusters. In both cases, the measure of similarity between samples was taken as 

the negative Euclidean distance computed based on the glycan or phenotype profiles. 

 

Figure 7. Principles of the affinity propagation algorithm. (A) Gradually emerging clusters during the 

message-passing procedure. (B) The “responsability” message, r(i,k), sent from data point i to candidate 

exemplar point k. (C) The “availability” message, a(i,k), sent from candidate exemplar point k to point i. 

Adapted from Frey & Dueck (2007). 
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2.6.3. Principal component analysis and partial least squares regression 

Multivariate statistical analysis involve modelling data sets often with a large number of 

explanatory variables which do not have equal relevance to the model. Additionally, the 

organization of such high-dimensional data cannot be spatially visualized. Thus, variable 

selection and dimension reduction are important tasks in multivariate analysis. 

Principal Component Analysis (PCA) and Partial Least Squares (PLS) are multivariate 

techniques for dimension reduction and are particularly useful when the explanatory variables 

display a high degree of correlation (Maitra & Yan, 2008). The principle of both methods is to 

convert a set of correlated explanatory variables to a set of independent synthetic variables 

(defined as linear combinations of the initial variables) by transforming the data into a new 

coordinate system. Despite the fact that the basic idea is similar, it should be noted that PCA is a 

type of unsupervised analysis used to explore and visualise a single set of variables 

(explanatory), while PLS is a supervised analysis for correlating two sets of variables 

(explanatory and response). The main characeristics of each method are outlined below. 

PCA determines linear combinations of the explanatory variables, called principal components, 

that explain most of the data variability with the first principal component accounting for as 

much of the variability in the data as possible followed by the other components ordered by the 

amount of variance explained (Mörtsell & Gulliksson, 2001). In this way, PCA projects the data 

into a lower and more tractable dimension without losing too much information. 

PLS decomposes simultaneously explanatory and response variables into linear combinations, 

called latent variables, such that the covariance between them is maximized . In an iterative 

process, PLS seeks for the latent structure in the explanatory variables that best explains the 

latent structure accounting for the maximum variance in the response variables (Tobias, 1995). 

Partial Least Squares Discriminant Analysis (PLS-DA) is a variant of PLS used when there is a 

single response variable. 

The PCA and PLS-DA methods were used in an attempt to differentiate the samples according to 

populations based on plasma profiles, IgG profiles and phenotypes and to summarize the 

differences that most influence the achieved separation. 

The mixOmics package for the R environment, dedicated to the integrative analysis of ‘omics’ 

data, contains an implementation of these two techniques (Le Cao et al., 2009). The functions 

pca and plsda were used to perform the PCA and PLS-DA analyses, respectively. The package 
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also provides several integrative techniques to analyse highly dimensional data sets as well as 

numerous possibilities of graphical representations to help interpret the results. 

2.6.4. Discriminant analysis of principal components 

Multivariate statistical approaches have been applied to investigate the genetic structures of 

biological populations. In such studies, the aim of multivariate methods is to detect a set of 

alleles that best reflects the genetic variation present among the analysed individuals. This 

genetic variability can be decomposed into two components: the between-group variability 

concerning the genetic structure of populations and the within-group variability related to the 

general random genetic diversity existent (Figure 8A). 

Approaches like the previously mentioned PCA seek to describe the overall variability of data 

(including both between and within-group variability) and tend to overlook the divergence 

between groups (Figure 8B). Discriminant Analysis (DA) is an alternative method that has 

almost the opposite rationale in the sense that it tries to model genetic differences by maximizing 

the between-groups variability while minimizing the within-group variability (Figure 8C). The 

linear combinations of explanatory variables resulting from DA are called discriminant 

components or functions. Unlike PCA which does not provide a group assessment measure 

essential to study population structures, DA is used when groups are known a priori and is able 

to predict category membership. However, the performance of DA when applied to genetic data 

is compromised by the inherent characteristics of the data sets such as the larger number of SNPs 

when compared to the number of samples and the high level of correlation present between 

SNPs. 
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Figure 8. Fundamental difference between PCA and DA. (A) The diagram shows the essential difference 

between Principal Component Analysis (PCA) and Discriminant Analysis (DA). Individuals (dots) and groups 

(colours and ellipses) are positioned on the plane using their values for two variables. In this space, PCA 

searches for the direction showing the largest total variance (doted arrow), whereas DA maximizes the 

separation between groups (plain arrow) while minimizing variation within group. As a result, PCA fails to 

discriminate the groups (B), while DA adequately displays group differences (C). Adapted from Jombart et al. 

(2010). 
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Discriminant Analysis of Principal Components (DAPC) is a new multivariate method for the 

analysis of genetically structured populations developed to allow the DA principle to be applied 

in the analysis of large genetic data (Jombart et al., 2010; Rasmussen et al., 2011). DAPC 

combines the capabilities of both PCA and DA for a better discrimination of genetically related 

individuals into pre-defined groups. PCA is initially employed for dimensionality reduction and 

for elimination of correlations between variables, in order to obtain a small number of 

uncorrelated variables which can then be subjected to DA. The DAPC method allows for a 

graphical assessment of between-population differentiation through scatterplots of discriminant 

functions and derives group membership probabilities which can be considered as indicators of 

how clear-cut the population clusters are. Moreover, DAPC provides a measure of allele 

contributions to the structures identified which can be used to fetch the alleles that most differ 

across populations. 

The DAPC technique was applied in an attempt to classify the three population cohorts and to 

investigate the genetic background behind it. 

The dapc function of the adegenet package for the R software implements the DAPC method 

and was used to perform the analyses (Jombart, 2008; Jombart & Ahmed, 2011). The optimal 

number of axes to retain in the PCA step of the DAPC algorithm (defined by the n.pca 

parameter) was estimated using the optimalPC function and the obtained result used in the 

DAPC. In some cases, the analysis was also performed with a different number of principal 

components for comparison purposes. 

2.6.5. Random Forests and Random Jungle 

Random Forests (RF) are an effective machine learning algorithm used for both problems of 

supervised (classification and regression) and unsupervised learning (Shi & Horvath, 2006; 

Svetnik et al., 2003). RF grows an ensembl of classification trees which individual results are 

aggregated to obtain the final predictions. The layer of randomness in the forests is introduced by 

two main aspects in which the RF trees differ from the standard decision trees: random inputs, 

each tree is independently constructed using a bootstrap sample from the data set (know as the 

bagging method); and random features, each node of the tree is split using the best among a 

subset of variables (predictors) randomly chosen at that node. The construction of the individual 

trees in RF is depicted in Figure 9 and summarized below. Considering a data set having N 

samples and M predictor variables: 
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1. Draw with replacement a bootstrap sample consisting of N samples from the original 

data. 

2. At each node in the tree, randomly select m variables from the entire set of M posssible 

variables. 

3. Find the best split at that node among the m randomly selected variables. 

4. Iterate the second and third steps until the tree is fully grown. 

A specific number of trees can be achieved by repeating steps 1 to 4 a desired number of times 

(for the theoretical background behind RF see Breiman (2001)).The number of variables 

randomly sampled as candidates at each node and the number of trees in the forest are the only 

parameters that need to be specified when running the algorithm. The prediction of a new sample 

is done by running down its corresponding vector of variables through each of the grown trees in 

the forest. Each tree will give its own classification for the new sample and the forest will choose 

the classification having more votes. Besides yielding a classsification result, RF additionally 

provides a measure of the importance of each predictor variable; an useful feature to estimate the 

contribution of the variables to the classification. 

 

Figure 9. Diagram of the Random Forest algorithm. The description of each step is described in the main 

text. Adapted from Moore et al. (2010). 
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RF was employed to undertake the classification of distinct populations and the classification of 

diabetes status based on glycan profiles and phenotypic data. Plasma glycans, IgG glycans and 

phenotypes feature data sets were separately used as predictor variables while population and 

diabetes classes were used as response variables. For the classification problem, the samples 

were divided into a training set contaning 70% of the samples and a testing set containing 30% 

of the samples. 

The randomForest package for R environment implements the algorithm described and was used 

to address the two classification problems (Liaw & Wiener, 2002). The number of trees to grow 

was set to 5000 (defined by the ntree option) and the number of variables randomly selected at 

each split was left to default that is sqrt(M) where M is the total number of variables considered 

(defined by the mtry option). 

Random Jungle (RJ) is a recently developed alternative which allows the rapid analysis of large 

scale data present in genome-wide association studies (Schwarz et al., 2010). RJ implements all 

the features available in the original RFs but it is structured and designed to analysed large data 

sets. Additionally, RJ is able to perform on multiple CPUs when available. When applied to 

genome-wide data, the computational performance of RJ in terms of computing time and 

memory usage were shown to be superiror to those of the original RF implementations while still 

yielding valid results. 

RJ was employed in three different scenarios: the classification of distinct populations, the 

classification of diabetes groups and the investigation of possible associations between glycan 

profiles/phenotypes and SNPs. In all cases, genotypes were taken as predictor variables. 

The RandomJungle software implements this improved version of RF and is freely available for 

download (Random Jungle, 2013). In the classification problems the rjunglesparse function was 

used while in the regression problem the rjungle function was applied. The rjunglesparse is the 

same program like rjungle but uses less memory and data values can only be 0, 1, 2 (and 3 as 

missing coding). The RJ parameters defined for each problem are shown in Table 3. 
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Table 3. Random Jungle algorithm parameters. Random Jungle was applied to three case problems: the 

classification of distinct populations, the classification of diabetes groups and the prediction of glycan levels 

based on the genotype. The tree type (or classifier type) and the number of trees in the jungle were set 

according to each problem while the number of predictor variables randomly sampled at each node of the trees 

was left to default in all cases. Below the name of the parameter in parenthesis are the corresponding options 

used when invoking the rjungle or rjunglesparse commands. 

Case problems 
Random Jungle parameters 

Tree typea 
(-y) 

Number of trees b 
(-t) 

Number of sampled variablesc 
(-m) 

Classification of Populations 1 800/1000 default 

Classification of Diabetes 1 800 default 

Regression on glycan levels 3 100 default 

a The tree type was set to y=1 for classification with numeric predictor variables and categorical response variables 
and to y=3 for regression trees with both numeric predictor and response variables. 
b In the classification of populations case, the number of trees was chosen to be t=800 when using all SNPs and to 
be t=1000 was set when using the set of GlycansRelated SNPs. 
c The default is the square root of the number of predictor variables. 

2.6.6. Correlation adjusted scores 

The correlation-adjusted t-score (CAT score for binary responses) and the correlation-adjusted 

marginal correlation (CAR score for quantitative responses) are two multivariate statistics 

recently introduced (Zuber & Strimmer, 2009). These two measures are multivariate 

generalizations of the standard univariate test statistics that explicitly included in their 

formulation the correlation existent among SNPs. Although initially suitable to analyse only 

relatively large data sets, new improvements in the algorithms currently allow their computation 

on large scale data. The variable selection based on these measures is shown to be highly 

efficient and to even outperform both uni- and multivariate competing approaches (Zuber et al., 

2012). Additionally, the squared scores of these statistics can be regarded as natural measures for 

SNP importance and the cumulative sum of SNP importance can be regarded as the coeficient of 

determination (proportion of phenotypic variance explained by SNPs). 

These adjusted scores were applied to the classification of distinct populations, the classification 

of diabetes groups and the investigation of possible associations between glycan 

profiles/phenotypes and SNPs. 

The care package for R software implements the original and improved versions of the measures 

and was used for the above mentioned analyses (Zuber & Strimmer, 2011). 
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2.6.7. Genome-wide efficient mixed model association 

Despite being widely used in genetic analyses with rather overlapping purposes, linear mixed 

models (LMM) and sparse regression models have a quite different rationale. LMM applied to 

polygenic modelling assume that every genetic variant affects the phenotype, whereas sparse 

regression models assume that a relatively small proportion of all variants affect the phenotype. 

These two different assumptions will yield different results depending on the real genetic 

background of the phenotype. 

Bayesian sparse linear mixed model (BSLMM) is a hybrid type of modelling that combines the 

advantages of both LMM and sparse regression models (Zhou et al., 2013). The model behind 

can be interpreted as assuming that all variants have at least a small effect and that a part of the 

variants have an additional effect. BSLMM yields two important estimation measures: the total 

proportion of variance in phenotype explained by both random and sparse effects together, 

denoted as PVE, and the proportion of genetic variance explained by the sparse effects terms (i.e. 

by the additional effects of certain variants), denoted as PGE. Although the PVE estimation can 

also be obtained with LMM and sparse regression models, PGE is a feature specific of BSLMM. 

These estimates can help in the persistent problem of "missing heritability" by unveiling new 

potential effects of variants and, thus, contributing to a better understanding of the underlying 

genetic architecture of complex diseases. 

The univariate linear mixed model and the bayesian sparse linear mixed model were applied to 

explore associations between glycan profiles and SNPs. 

The GEMMA software (GEMMA stands for Genome-wide Efficient Mixed Model Association 

algorithm) implements both algorithms and is freely available for download (GEMMA, 2013; 

Zhou & Stephens, 2012). The main gemma command was run with the -bslmm option to fit a 

BSLMM (with sampling-related parameters set to w=1000 and s=1000) and with the -lmm 

option to perform association tests with a linear mixed model. 

2.7. Statistical Methods 

A quantile-quantile plot (known as Q-Q plot) was used for assessing whether the glycan 

variables were approximately normally distributed (data not shown). Since the majority of 

glycans showed a non-normal distribution, the nonparametric Wilcoxon rank-sum test (also 

called Mann-Whitney U test) was used to assess the statistical significance of pairwise 
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differences between glycan and phenotype levels of the particular groups analysed. The built-in 

functions corresponding to the mentioned tests were used as available in the stats package for R 

environment.  

Bonferroni correction was applied to adjust p-values derived from multiple statistical tests. The 

corrected significance level varied according to the analyses performed and is indicated through 

the text whenever the analyses are described. 
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3. RESULTS 

3.1. Data Preprocessing/Analysis Pipeline 

In order to improve data quality, it is not uncommon to apply certain preprocessing methods to 

the data of interest prior to data analysis. The choice of the preprocessing methods to be used 

depends on the nature of the data and varies with the type of analyses to be performed. The 

feature data sets analysed in the present study – plasma profiles, IgG profiles, phenotypes and 

genotypes – were subjected to a data preprocessing pipeline which included data quality control, 

data integration, data normalization, data correction and data imputation, as described in detail in 

section 2.4. 

Additionally to the above described preprocessing methods, a comparison of the gel and solution 

methods used for IgG glycan quantification was performed. Since the IgG glycan profiles were 

measured with the gel method for Vis and Korčula cohorts and with the solution method for 

Orkney, an evaluation of the agreement between the two methods was necessary to allow a 

proper comparison and interpretation of results from analyses involving the IgG profiles of the 

three populations.  

For the purpose, the IgG glycan levels measured with both methods for a small set of Orkney 

samples were quantitatively compared. Several glycan groups presented a smaller range of 

values with the solution method than with the gel method, such as IGG1, IGG2, IGG16, IGG19, 

IGG20 and IGG21 (Supplementary figure 1). This behaviour was also observed when comparing 

the raw data of the three populations with Orkney samples showing lower glycan levels than Vis 

and Korčula (data not shown). The results are not totally unexpected in the light of the 

differences in methodology (explained in section 2.2.2) and the type of glycan structures present 

in each peak. On the one hand, IGG1 and IGG19 are themselves low intensity peaks and 

minimal integration inaccuracies in both quantification procedures could account for the 

differences observed. On the other hand, the plasma filtration step introduced before the isolation 

of IgG in the solution method reduced the non-specific binding of proteins other than IgG. As a 

consequence, peaks containing glycan structures present in proteins other than IgG would be 

expected to show decreased values in the solution method. This is the case of IGG16 and IGG20 

that include glycan structures present not only in IgG but also in transferrin proteins which were 

likely to be eliminated during plasma filtration. 
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The correlation between the measures obtained with the two methods was further computed and 

correlation coefficients above 0.7 were obtained for the majority of the peaks (represented as red 

lines in Figure 10). Peaks showing a correlation coefficient lower than 0.45 mainly correspond to 

those peaks presenting a lower range of values with the solution method. However, it has been 

argued that the correlation coefficient is a misleading measure of the agreement between two 

clinical measurement methods and that alternative measures and graphical techniques should be 

used instead (Bland & Altman, 2003). A first problem pointed out is the fact that correlation 

depends on the range of the variables, i.e., it will vary if different group of subjects with different 

measures are selected. A second issue is that correlation looks at the degree of association 

between two variables, not the agreement between them. In other words, a good correlation is 

achieved if both measurements lie along any straight line while a good agreement is obtained 

only if data is distributed along the line of equality. In the comparison of the IgG glycan 

quantification measures, the lines of equality are similar to the correlation regression lines for 

peaks with high correlation values except for IGG2 (represented as green lines in Figure 10). The 

lines of equality for IGG2 and peaks with low correlation coefficients show a clear bias of the 

data points to lie on the right of the line of equality which confirms the tendency for the gel 

method to exceed the solution method for these peaks. 

Plotting the difference between the measurements by the two methods against their mean has 

been proposed as a more informative alternative to the simple scatter plot of one method against 

the other in assessing between-method differences (Bland & Altman, 1999). Such a plot allows 

the examination of the relationship between the error measurement (estimated as the difference 

of values) and the true value (estimated as the average of values). An increase in the differences 

of the two IgG quantification methods as the magnitude of the glycan measurement increases is 

noticeable for the IgG peaks where a bias for the gel method to have higher values than the 

solution method was previously observed. A similar behaviour is shown by the IGG11 peak 

which, however, did not display significant differences between the range values of the two 

methods. For the rest of the peaks the differences did not vary in any systematic way over the 

range of measurements. 

A certain lack of agreement between the gel and solution IgG glycan quantification methods is 

inevitable since they differ in the glycan preparation procedures and in some steps of the 

quantification analysis. The comparison analysis carried out suggested that in the majority of 

peaks there is a good agreement between the IgG quantification methods. Nonetheless, some 

peaks show a tendency to have higher measurements with the gel method than with the solution 
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method with these differences increasing with the increase in the magnitude of measurements. 

Such dissimilarities between methods should be taken into account when interpreting results 

derived obtained in the analyses of IgG glycans. In future studies, perhaps it would be advisable 

to seek for a formula that could enable the transformation of values between the two methods 

and allow a more accurate comparison of results. 

 

Figure 10. IgG glycan quantification measurements by solution method versus gel method. The 

correlation regression line is displayed in red and the corresponding correlation coefficient annotated on the 

bottom right corner of each graph. The line of equality is displayed in green. For the peaks having high 

correlation between the two methods, the correlation regression line and the line of equality are close to each 

other and even overlap in some cases. For the remaining peaks, the line of equality indicates a bias for the gel 

method to present higher values than the solution method. 

3.2. Common aberrations from the normal human plasma N-glycan profile 

Glycan profiles are rather similar in the majority of individuals; however, deviations from this 

normal glycan profile might occur due to patho-physiological conditions. Individuals having 

significantly different glycan profiles than the so called “normal profile” were identified while 
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analysing the plasma N-glycan profiles of 1991 individuals from Vis and Korčula cohorts. Six 

major outlying glycan features were observed; an example of the normal glycan profile and five 

of the aberrant profiles are shown in Figure 11. 

 

 

Figure 11. Normal and aberrant plasma N-glycan profiles. Examples of deviations from the normal glycan 

profile: outlier A, individual with elevated A2G2S1 glycans; outlier B, individual with glycan changes that 

mirror premature aging; outlier C, individual with elevated biantennary nongalactosylated glycans; outlier D, 

individual with elevated biantennary monosialylated glycans; outlier E, individual with increased core 

fucosylated glycans. Adapted from Pucic et al. (2010). 

In order to investigate the possible causes leading to these aberrant profiles, limited size groups 

of individuals sharing the same profile characteristics as the outliers were formed and their 

phenotypic characteristics compared. While four of the outliers presented the same profile and 

were treated as a group, the manual inspection and simultaneous comparison of glycan profiles 

for the other outliers would be an impracticable task. In this case, computational methods were 

used to identify the nearest neighbours of these outliers, i.e., the individuals showing the most 
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similar glycan profiles (as previously described in section 2.6.1). The performed analyses were 

published in Pucic et al. (2010). 

Subsequently, each of the six groups was analysed for the presence of common phenotypic 

characteristics among the individuals. In some groups the individuals shared certain clinical 

conditions, like renal problems, whereas in other groups the individuals were apparently healthy, 

demonstrating the existence of specific glyco-phenotypes that in some cases might represent risk 

factors for the development of specific diseases (Pucic et al., 2010). 

These groups were subjected to further analyses intended to explore the contribution of the 

genotype to group structuring. For the purpose, PCA, discriminant analysis of principal 

components and Random Jungle methods were applied to genotype data. The PCA and 

discriminant analysis of principal components did not reveal distinct clusters corresponding to 

the groups (data not shown). This lack of structure was further confirmed by the poor 

classification of groups (error of 84%) achieved with the Random Jungle algorithm. Altogether, 

the genotype data appears not to be able to discriminate the groups. 

3.3. Analysis of clustering patterns inside populations 

The structure of the population cohorts was examined for the existence of clusters of individuals 

based on the glycan profiles and phenotypes. Affinity propagation algorithm was used to 

perform the clustering analysis with plasma and IgG glycan profiles and phenotypes taken 

separately as predictor variables. The clustered data was visually represented in the form of a 

heatmap expressing the feature levels of samples arranged by cluster. This data representation 

was intented to facilitate the comparison of clusters and, consequently, the identification of 

cluster-specific characteristics. 

With the purpose of exploring the internal structure of the populations, affinity propagation 

clustering was applied to each population individually. The number of clusters obtained varied 

between 80 and 100 when input preferences were set to the median of the similarity matrix and 

between 3 and 8 when set to the minimum of the similarity matrix for all feature data sets in the 

three populations. Visual inspection of the similarity matrices used as input in the affinity 

propagation clustering showed that the small number of large clusters better reproduced the data. 

In general, the data patterns displayed by these small cluster structures were similar between 

populations for all feature data sets (Supplementary figure 2 presents the results for the Vis 
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which are illustrative of the results obtained for Korčula and Orkney). In the clusters obtained 

with plasma glycans, GP7, GP9, DG5, DG6, Monosialo and some of the structural glycans 

appeared as the most distinct features among clusters. The cluster division based on IgG profiles 

showed main differences on the level of IGG3, IGG13, IGG43 and IGG55 and also in some of 

the Charged and Neutral Derived features. The cluster structure obtained for phenotypes 

basically divided the individuals according to the levels of BMI and waist-hip-related features.  

In order to verify whether the affinity propagation algorithm would be able to separate the three 

populations into three clusters, the pooled data of all populations was considered for clustering. 

For all feature data sets, the pooled data was divided into several clusters containing a small 

number of samples. The fact that the algorithm failed to discriminate the populations was not 

surprising in the light of the results previously obtained for each population separately which 

showed cluster similarities across populations. Visual inspection of the corresponding similarity 

matrices revealed that a number of clusters between 2 and 4 would better fit the data. Thus, 

affinity propagation was run with the number of clusters set beforehand to 2, 3 and 4 for each 

feature data set. The clusters obtained were formed of approximately the same number of 

individuals from each population and revealed similar tendencies to those observed in the 

individual populations. While the most appropriate structure for phenotypes was composed of 3 

clusters (Figure 12), for plasma and IgG glycans the most correct division of samples was 

difficult to establish (Figure 13, Supplementary figure 3). For instance, in the case of plasma 

glycans, the division into 2 clusters showed opposite levels of several glycan peaks such as GP9, 

Monosialo, BAMS, BADS and C.FUC (Figure 13A), while the division into 3 clusters besides 

these differences also revealed an emerging cluster with high levels of GP7 and G2 (Figure 

13B). The specific data patterns presented by the two cluster structures can be concurrently 

acceptable and equally valid to describe the data. 

Additionally, for each clustering experiment, the heatmaps of the other two feature data sets 

were also displayed so as to verify the existence of associations between the three feature data 

sets. In none of the cases did the other two feature data sets present a cluster specific pattern 

meaning that the division into clusters depends on the type of feature. 
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Figure 12. Affinity propagation clustering results based on phenotype data for the pooled data of 

populations. The structural division into 3 clusters was the one that best fitted the phenotype data. The clusters 

were comprised of approximately the same number of individuals from each population and presented 

differences at the level of uric acid, BMI, waist circumference and hip circumference. The heatmap represents 

the levels of each phenotypic feature (rows) for the samples in each cluster (columns); the key colour of the 

heatmap varies from red to yellow corresponding to low and high values, respectively. The bars above the 

heatmap depict the cluster division in different shades of grey and the population division coloured as gold for 

Vis, green for Korčula and blue for Orkney. 
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Figure 13. Affinity propagation clustering results based on plasma glycan profiles for the pooled data of 

populations. The clustering results of affinity propagation algorithm run with K=2 (A) and K=3 (B) are 

presented to illustrate the difficulty in establishing the most reliable clustering structure. In the case of the 2 

cluster division, opposite levels of glycan features such as GP9, Monosialo, BAMS, BADS and C.FUC are 

clearly observed. These main differences are retained for a part of the samples in the 3 cluster division which 

additionally reveals a cluster with high levels of GP7 and G2. The heatmap represents the levels of each glycan 

(rows) for the samples in each cluster (columns); the key colour of the heatmap varies from red to yellow 

corresponding to low and high values, respectively. The bars above the heatmap depict the cluster division in 

different shades of grey and the population division coloured as gold for Vis, green for Korčula and blue for 

Orkney. The bar on the left side of the heatmap indicates the four groups of plasma glycans: GP (dark blue), 

DG (blue), Sialos (medium blue) and Structural (light blue). 

3.4. Correlation between N-glycome and phenotypic traits 

The correlation between the plasma and IgG glycan profiles and the set of available phenotypes 

was carried out to identify environmental determinants that are likely to affect glycans. The 

analysis aimed to find the extent to which the correlations can be replicated across all population 

cohorts, in order to be able to identify general patterns of association and to provide evidence of 

possible population-specific correlations that could be related to the geographical and lifestyle 

separation of the populations. 

The plasma and IgG data of the analysed populations presented patterns of correlation with age 

which have been previously described such as the decrease of core-fucosylation, galactosylation 

and sialylation and the increase of structures with bisecting GlcNAc (Huhn et al., 2009). 

Additionally, the effect of age on both glycan sets in the populations of Korčula and Orkney 

replicated the findings reported for the Vis population confirming the age-dependency of certain 

glycans structures (Supplementary figure 4 and Supplementary figure 5)(Knezevic et al., 2009; 

Pucic et al., 2011). To remove the effects of aging and gender upon the associations between 

glycans and phenotypes, plasma and IgG data sets were subjected to age and sex correction, as 

described in section 2.4.4. All subsequent analyses were performed on the corrected data. 

The correlation coefficients between glycans and phenotypes were higher for plasma glycans 

ranging from approximately -0.3 to 0.3 than for IgG glycans varying from approximately -0.17 

to 0.17. Overall, the tendency of the glycan-phenotype associations was similar across 

populations for both plasma and IgG glycans although with slightly different magnitudes 

(Supplementary figure 6 and Supplementary figure 7). 
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In plasma glycans, statistically significant correlations present in all three populations were 

mainly found for body fat parameters and lipid-related measures (p<0.000362; Figure 14). DG10 

and BADS peaks were positively correlated with BMI, waist circumference and hip 

circumference, while GP5, GP8 and BAMS were negatively correlated with these same 

phenotypes. DG10 was also positively correlated with cholesterol and LDL and DG8 with 

triglycerides. Particular correlations were observed for Vis between tretraantennary structures 

(TRIA and G3) and cholesterol and for Korčula between GP0, GP14, G1 and G3 and insulin. 

In IgG glycans, despite the fact that the majority of strong correlations were consistent in all 

populations, statistically significant correlations were sparse and mainly shown for Orkney 

(p<0.000216; Figure 15). An interesting association pattern which did not pass the threshold of 

significance is the one displayed by the population of Orkney between the glycan structures of 

the IgG Neutral derived group and calcium (Supplementary figure 7). Positive correlations were 

observed for IgG glycan features containing bisecting N-acetylglucosamine (GlcNAc) whereas 

negative correlations were found for structures without bisecting GlcNAc. Bisecting GlcNAc 

structures are synthesized as a result of a transfer of a GlcNAc residue to the mannose residue at 

the base of the core of the N-glycan and are known to have important effects on the IgG protein 

function. 
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Figure 14. Statistically significant correlations between plasma glycans and phenotypes for all 

populations. The heatmap depicts the level of correlation between each plasma glycan feature (rows) and the 

phenotypes for each population (columns); correlation coefficients range from -0.3 (dark blue) to 0.3 (dark 

red). The bar above the heatmap indicates the population to which the three columns of each phenotype 

correspond to: gold for Vis, green for Korčula and blue for Orkney. The bar on the left side of the heatmap 

indicates the four groups of plasma glycans: GP (dark blue), DG (blue), Sialos (medium blue) and Structural 

(light blue). The significance level was set to 0.000362 to account for the multiple testing (46 plasma features 

and 3 populations). 
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Figure 15. Statistically significant correlations between IgG glycans and phenotypes for all populations. 

The heatmap depicts the level of correlation between each IgG glycan feature (rows) and the phenotypes for 

each population (columns); correlation coefficients range from -0.17 (dark blue) to 0.17 (dark red). The bar 

above the heatmap indicates the population to which the three columns of each phenotype correspond to: gold 

for Vis, green for Korčula and blue for Orkney. The bar on the left side of the heatmap indicates the four 

groups of IgG glycans: Initial (dark blue), Charged (blue), Neutral (medium blue) and Neutral derived (light 

blue). The significance level was set to 0.000216 to account for the multiple testing (77 IgG features and 3 

populations). 

While the ensemble of plasma glycans analysed contains N-glycans attached to a variety of 

proteins, the IgG glycans are a filtered subset containing only N-glycans attached to the IgG 

protein. This fact allows establishing a correspondence between the main IgG peaks and certain 

plasma peaks containing the same N-glycan structures (Supplementary table 5). The existence of 

such correspondence was considered to determine whether the associations with phenotypes 

found in plasma glycans could be captured by the corresponding IgG glycans component. 

The IgG Initial group peaks (GP1-GP24) were combined into 11 plasma peaks (GP1-GP11) for 

the pooled data of all populations. The correlation of these IgG combined peaks with phenotypes 

was computed and compared to the original correlation pattern of plasma peaks (Figure 16). 

Plasma and IgG peaks presented a quite similar pattern of correlation with the strongest and most 

stable correlations being between GP5, GP6 and GP8 peaks and both body fat parameters and 

lipid-related measures. Opposite correlation tendencies were found for GP9 and waist and hip 

circumferences and for GP11 and albumin. In both cases, evident positive correlation was 

observed for plasma data and almost non-existing negative correlation was found for the 

corresponding IgG data. The same analysis preformed on the individual populations produced 

comparable results to those obtained and described above for the pooled data. The agreement 

shown between plasma and IgG peaks can be viewed as a reinforcement of the existence of 

associations between certain glycan structures and phenotypes. 
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Figure 16. Correlation of 11 plasma peaks and their corresponding IgG peaks with phenotypes. The 

heatmap depicts the level of correlation between each of the 11 glycan peaks (rows) and the phenotypes 

(columns) for the pooled data of all populations; correlation coefficients range from -0.2 (dark blue) to 0.2 

(dark red). Each phenotype comprises two columns corresponding to plasma (gold) and IgG (green) peaks as 

indicated by the bar above the heatmap. 
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3.5. Comparison of feature profiles from diabetes groups 

The potential of glycans as a biomarker for diseases was evaluated for the particular case of 

diabetes. For the purpose, several computational methods were applied to a total of 1577 samples 

divided into 3 groups (non-diabetic, pre-diabetic and diabetic) in an attempt to detect possible 

glycan, phenotypic and genotypic features characteristic of each group status. 

Parallel coordinates plot were used to display the glycan and phenotype profiles of the three 

groups in a visually clear manner and, in this way, facilitate the comparison of features across 

groups (Figure 17). The plasma and IgG profiles did not reveal any particular features that were 

clearly distinct across the three groups. On the other hand, the phenotype profiles showed 

marked differences at the level of HbA1c and glucose with the diabetic group having higher 

levels and the non-diabetic having lower levels. Less pronounced differences were found for age, 

systolic blood pressure, BMI, waist-to-hip ratio and waist circumference. 

The nonparametric Wilcoxon sum rank statistical test was employed to further assess pairwise 

differences in levels of glycans and phenotypes between the three groups. The nonexistence of 

differences between groups in the case of plasma and IgG glycans was confirmed by the absence 

of statistically significant hits in these two feature data sets (p<0.00109 for plasma; p<0.00065 

for IgG). Regarding the phenotypes, the majority of statistically significant differences were 

obtained for the pairwise comparisons of the non-diabetic group with the other two groups 

(p<0.00238; Figure 18). Differences in systolic blood pressure, glucose and HbA1c were 

considered statistically significant across the three groups. 
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Figure 17. Parallel coordinates plots of plasma glycan, IgG glycan and phenotype profiles for non-diabetic, pre-diabetic and diabetic groups. The plasma and 

IgG profiles do not show any differences between groups while the phenotype profiles show, among others, high values of HbA1c and glucose for the diabetic group and 

low values for the non-diabetic group. The median values of the features for each group are highlighted. Sex is represented as 0 (males) and 1 (females). Non-diabetic 

group samples are represented by gold lines, pre-diabetic by green lines and diabetic by blue lines.  
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Figure 18. Wilcoxon sum rank test p-values for the pairwise comparison of the diabetes groups with 

regard to phenotype data. Statistically significant hits are highlighted in blue; the significance level was set 

to 0.00238 to account for multiple testing in each pairwise comparison. The names of the groups are 

abbreviated as ND for non-diabetics, PD for pre-diabetics and D for diabetics. 

Following the initial overview of the data, PLS-DA and PCA methods were used to try to 

separate the groups based on the glycan profiles and the phenotypes. The analyses were carried 

out for the entire group of individuals and for the individuals divided by populations with similar 

outcomes produced. The analysis of plasma and IgG glycan profiles using both methods was not 
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able to differentiate the groups whether full glycan profiles or individual glycan groups were 

considered as could be anticipated from the data visualisation (Supplementary figure 8 and 

Supplementary figure 9). PLS-DA applied to the phenotype data set yielded a separation of the 

three groups with HbA1c and glucose emerging as the variables most contributing for the 

division as expected from the role they play in diabetes (Figure 19, left panel). PCA in its turn 

was not able to capture these phenotypic differences (Figure 19, right panel). Instead, PCA 

detected general phenotypic patterns already observed in the clustering analysis evidenced by the 

fact that the 3 features identified as the most contributing for PCA (uric acid, waist and hip 

circumferences) were among the ones being more distinct between clusters. Additionally, the top 

10 contributing features from each data set were selected and jointly used as a new input for both 

PLS-DA and PCA. The results produced were identical to the ones reported for the phenotype 

data set due to the stronger influence of phenotype features over glycan ones. 

Despite the unsatisfactory results obtained with PCA and PLS-DA analyses, the Random Forest 

(RF) method was employed with the purpose of obtaining quantification measures regarding the 

prediction process of the groups. The classification using either plasma or IgG glycan profiles as 

predictor variables (considering all peaks simultaneously or each group of peaks individually) 

was poor and almost all individuals were placed into the non-diabetic group (Table 4A and B). 

The classification using phenotypes as predictor variables had a much better performance 

assigning the majority of the testing samples to the correct group with an estimated error rate of 

4.5% for a 10-fold cross-validation (Figure 20, Table 4C). The classification of groups based on 

the combination of the 10 most important variables from each feature data set (30 features in 

total) had a comparable performance to the classification using phenotypes similarly to what 

occurred in the PLS-DA and PCA analyses (Figure 20, Table 4D). 

The results obtained with PLS-DA, PCA and RF analyses suggest that plasma and IgG glycans 

might not have enough predictive power for this data set while confirming the fact that HbA1c 

and glucose are good indicators of the diabetes status. 
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Figure 19. PLS-DA and PCA analysis of the diabetes groups using phenotype data. Although PLS-DA 

achieved a separation of the groups and HbA1c and glucose were indicated as the most important factors for 

the separation, PCA was not able to distinguish the groups. The score plots representing the data samples by 

the two first principal components (PC1 on the x-axis and PC2 on the y-axis) are shown on the upper panels; 

groups are coloured as gold for non-diabetic, green for pre-diabetic and blue for diabetic. The corresponding 

loading plots establishing the relative contributions of each phenotype feature to the overall variation in the 

groups are shown on the lower panels. 
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Table 4. Random Forest confusion matrices for the classification of the diabetes groups. The confusion 

matrices show the performance of the Random Forest algorithm in classifying testing samples using all plasma 

glycans (A), all IgG glycans (B), phenotypes (C) and the set of 30 most important features of all data sets (D). 

The plasma and IgG glycans have a poor classification performance with almost all testing samples assigned to 

the non-diabetic group. The phenotypes and the set of 30 most important features show similar performance 

with the non-diabetic group having the lower classification error per group. Each row of the matrix represents 

the instances in the actual group, while each column represents the instances in a predicted class (0 for non-

diabetics, 1 for pre-diabetics and 2 for diabetics). The “Error” column indicates the test set errors for the 

classification of each group and for the overall classification of the testing samples. 

A)   Plasma glycans (all) B)   IgG glycans (all) 

 Predicted outcome 
Error (%) 

 0 1 2 
0 391 0 0 0 
1 41 0 0 100 
2 41 0 0 100 
    17.34 

 

 Predicted outcome 
Error (%) 

 0 1 2 
0 393 0 1 0.3 
1 42 0 0 100 
2 37 0 0 100 
    24.12 

 

C)   Phenotypes D)   Set of 30 most important features 

 Predicted outcome 
Error (%) 

 0 1 2 
0 394 0 0 0 
1 9 35 4 27.1 
2 5 0 26 16.1 
    3.81 

 

 Predicted outcome 
Error (%) 

 0 1 2 
0 397 0 1 0.2 
1 11 29 1 29.3 
2 4 4 26 23.5 
    4.44 
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Figure 20. Random Forest variable importance for the classification of the diabetes groups. The variable 

importance plots correspond to the phenotype data (left panel) and to the set of 30 most important features of 

all data sets (right panel). The measure of variable importance presented is the mean decrease in accuracy 

estimated by comparing the accuracy in classification without and with permutation of the values of each 

predictor variable. When a given variable has little predictive power, its permutation will not cause substantial 

difference in accuracies, therefore a higher decrease in accuracy is indicative of a more important variable. 

Variable labels are coloured as gold for plasma glycans, green for IgG glycans and blue for phenotypes. 
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The possibility of classifying the samples according to the three groups based on the genotypic 

information was analysed by employing the Random Jungle (RJ) algorithm. RJ was not able to 

correctly classify the samples with the majority of them being assigned to the non-diabetics 

group both when using the all SNPs and glycan-related SNPs sets. Since the non-diabetic group 

was circa 5 times larger than the other two groups, RJ was performed several times with random 

subsets of 200 samples from the non-diabetics group to verify whether or not the unequal size of 

the groups could be affecting the results. The RJ performance did not improve when using the 

subsets of samples (error rate between 55-60%) indicating that the number of samples is not a 

critical factor for the classification. 

The genetic contribution to disease and the possibility of prioritizing biomarkers in the case of 

diabetes was also explored using the correlation adjusted scores method. Among the top SNPs 

emerging as important with the correlation adjusted scores approach are several SNPs located in 

genes or regions around genes which have been directly related to diabetes or linked to the 

regulation of insulin secretion and retinal degeneration such as NCS1, CDK19, DCLK1, 

GLCCI1, CCR and DCC. The top 30 SNPs potentially associated with diabetes condition are 

listed in Supplementary table 6 and the genetic context of some of these SNPs is represented in 

Figure 21 and in Supplementary figure 10. 
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Figure 21. Genetic context of polymorphisms possibly associated with the diabetes condition. The 

regional association plots show the correlation adjusted scores (CARE scores) for SNPs distributed in a 

genomic region centred on variants rs1292123 on chromosome 6 (A) and rs6563348 on chromosome 13 (B). 

The flanking region extends 0.5Mb both upstream and downstream of the reference SNP which is labelled and 

shown in purple. The colour intensity of the other SNPs within the region represents the extent of their linkage 

disequilibrium (r2) with the reference SNP: red (r2 ≥ 0.8), orange (0.6 ≤ 0.8), green (0.4 ≤ 0.6), light blue (0.2 

≤ 0.4) and dark blue (r2 ≤ 0.2). The locations of known genes in the region are depicted below the association 

plot. 

3.6. Comparison of feature profiles from isolated populations 

Since the population cohorts studied represent isolated populations coming from different 

geographic regions, they are likely to present their own characteristics. In order to seek for 

population-specific patterns capable of differentiating between populations, the glycan and 

phenotype profiles were compared and the genotyped data analysed using diverse computational 

tools and algorithms. 

Parallel coordinates plots were used to display the glycan and phenotype profiles of the three 

populations in concise yet descriptive manner (Figure 22). The plasma profiles do not show 

visible differences between groups, the IgG profiles show slight differences for several of the 

glycans and the phenotype profiles show differences for sex. 

The statistical analysis was performed using the nonparametric Wilcoxon sum rank test which 

assessed the statistical differences in the levels of glycans and phenotypes for each pairwise 

comparison between populations (Figure 23). In the case of plasma glycans, differences in 

BADS between Vis and Orkney and in GP6 between Korčula and Orkney were considered 

significant (p<0.00109). Regarding the IgG glycans, several features emerged as significant in 

the pairwise comparisons of Orkney with either Vis or Korčula, while none of the features 

reached the threshold of significance in the pairwise comparison between Vis and Korčula 

(p<0.00065). As for the phenotypes, statistically significant differences were obtained for gender 

between Korčula and Orkney and for LDL in the pairwise comparisons of Orkney with Vis and 

Korčula (p<0.00238). 
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Figure 22. Parallel coordinates plots of plasma glycan, IgG glycan and phenotype profiles for Vis, Korčula and Orkney populations. The plasma profiles do not 

show visible differences between groups, the IgG profiles show slight differences for several of the glycans and the phenotype profiles show differences for gender 

(‘Sex’). The median values of the features for each group are highlighted. Sex is represented as 0 (males) and 1 (females). Vis samples are represented by gold lines, 

Korčula by green lines and Orkney by blue lines.  
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Figure 23. Wilcoxon sum rank test p-values for the pairwise comparison of the population cohorts with regard to plasma, IgG and phenotype data. Statistically 

significant hits are highlighted in blue; the significance level was set to 0.00109 for plasma glycans, 0.00065 for IgG glycans and 0.00238 for phenotypes to account for 

multiple testing in each pairwise comparison. The names of the groups are abbreviated as Vis for Vis, Kor for Korčula and Ork for Orkney. 
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PLS-DA and PCA methods were applied to each of the three feature profiles to investigate 

whether the patterns of dissimilarity established by the statistical analysis would be able to 

discriminate the populations. Surprisingly, none of the feature data sets, independently of the 

used method, yielded a separation of the populations (Figure 24 for plasma glycans, 

Supplementary figure 11 for IgG glycans and Supplementary figure 12 for phenotypes). The 

patterns of contribution of plasma, IgG and phenotype features to the overall data variation 

shown by the PCA analysis resemble the ones obtained when analysing the diabetes groups 

(Figure 24, lower right panel; see section 3.5 for comparison with diabetes data). 

 

Figure 24. PLS-DA and PCA analysis of the population cohorts using plasma glycans data. None of the 

methods achieved a separation of the populations based on the profiles of all plasma glycans. The score plots 



 

79 
 

representing the data samples by the two first principal components (PC1 on the x-axis and PC2 on the y-axis) 

are shown on the upper panels; the populations are coloured as gold for Vis, green for Korčula and blue for 

Orkney. The corresponding loading plots establishing the relative contributions of each plasma feature to the 

overall variation in the populations are shown on the lower panels; glycans are coloured according to their 

group: GP (dark blue), DG (blue), Sialos (medium blue) and Structural (light blue). 

Random Forest was conducted to investigate the performance of a classifier on the task of 

predicting populations based on glycan profiles (all peaks simultaneously and each group of 

peaks individually), phenotypes and a set of 30 features combining the top 10 contributing 

features from each data set. The best classification was achieved for the set of 30 mixed features 

and the worst for the IgG glycans. The 10-fold cross-validation estimated classification errors 

were 11%, 16%, 19% and 25% for the set of 30 features, phenotypes, plasma and IgG glycans, 

respectively (the confusion matrices for the classification of test set samples are shown in Table 

5). 

In the case of plasma glycans, the entire set of glycans produced the best results having an 

estimated classification error of 19% for a 10-fold cross-validation. The highest measures of 

variable importance belong to two GP glycans (Figure 25) explaining the fact that the GP group 

presented the lowest classification error rate among the individual groups of plasma glycans: a 

27% error for GP compared to more than 40% for the other groups, estimated for a 10-fold 

cross-validation. 

Regarding the classification using IgG glycans, it was also the entire set of glycans that achieved 

the best performance and the Initial group yielded the best classification among the individual 

groups of IgG glycans with estimated errors of 25% and 26% for a 10-fold cross-validation, 

respectively. The similarity in these two classification error values suggests that the Initial group 

of IgG glycans holds the most significant information for the overall classification. In fact, 5 

glycans belonging to the Initial group were among the most important variables when the entire 

set of IgG glycans was used for classification (Figure 25). 

The phenotype data had a similar classification performance as the plasma glycans. 

Combining the top 10 most important features from each data set decreased the estimated error 

rate for a 10-fold cross-validation to 11%. This improvement in the overall classification 

indicates that each feature data set holds different types of information which complement each 

other (Figure 25). 
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Noteworthy that, in all these classification scenarios with different predictor variables, the 

Orkney population had invariably a significantly lower classification error rate when compared 

to Vis and Korčula populations (Table 5). Samples from Vis and Korčula were mostly mistaken 

among these two populations and to a lower extent with Orkney. 

Although statistically significant differences were found in the levels of certain glycans and 

phenotypes across populations, these differences were not captured in the PLS-DA and PCA 

analyses. On the contrary, RF algorithm achieved a satisfactory classification of populations for 

a combined set of glycan and phenotype features and was able to yield a good separation of 

Orkney from the other two populations for all feature data sets. The different results obtained 

might be due to the distinct nature of the algorithms employed. 

Table 5. Random Forest confusion matrices for the classification of the population cohorts. The 

confusion matrices show the performance of Random Forest algorithm in classifying testing samples using all 

plasma glycans (A), all IgG glycans (B), phenotypes (C) and the set of 30 most important features of all data 

sets (D). The set of 30 features yielded the best classification, plasma glycans and phenotypes had a slightly 

worse performance and IgG glycans presented the higher error rate. In all cases, Orkney population showed the 

lowest classification error per group. Each row of the matrix represents the instances in the actual population, 

while each column represents the instances in a predicted population (0 for Vis, 1 for Korčula and 2 for 

Orkney). The “Error” column indicates the test set errors for the classification of each group and for the overall 

classification of the testing samples. 

A) Plasma glycans (all) B) IgG glycans (all) 

 Predicted outcome 
Error (%) 

 0 1 2 
0 163 27 4 16 
1 46 154 5 24.9 
2 9 8 181 8.6 
    16.58 

 

 Predicted outcome 
Error (%) 

 0 1 2 
0 112 54 11 36.7 
1 55 144 9 30.8 
2 9 6 197 7.1 
    24.12 

 

C) Phenotypes D) Set of 30 most important features 

 Predicted outcome 
Error (%) 

 0 1 2 
0 163 18 9 14.2 
1 33 162 21 25 
2 6 12 173 9.4 
    16.58 

 

 Predicted outcome 
Error (%) 

 0 1 2 
0 162 22 5 14.3 
1 28 180 11 17.8 
2 5 7 177 6.3 
    13.07 
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Figure 25. Random Forest variable importance for the classification of the population cohorts. The 

variable importance plots correspond to plasma glycans (upper left panel), IgG glycans (upper right panel), 

phenotypes (lower left panel) and the set of 30 most important features of all data sets (lower right panel). For 

plasma and IgG glycans only the top 30 features are displayed. The measure of variable importance presented 

is the mean decrease in accuracy estimated by comparing the accuracy in classification without and with 

permutation of the values of each predictor variable. When a given variable has little predictive power, its 

permutation will not cause substantial difference in accuracies, therefore a higher decrease in accuracy is 

indicative of a more important variable. Variable labels are coloured as gold for plasma glycans, green for IgG 

glycans and blue for phenotypes. 
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In an attempt to model the genetic structure of the populations, three different approaches – 

Random Jungle (RJ), discriminant analysis of principal component (DAPC) and correlation 

adjusted scores (CARE) – were applied to both sets of SNPs and their results compared. 

RJ showed a better performance for the set of all SNPs with an error rate of 11% and the most 

important SNPs mainly located on chromosome 2. The classification based on the set of glycan-

related SNPs had an error rate of 26% with the chromosome 6 harbouring the most important 

SNPs. In both cases, Vis and Korčula samples tended to be mixed among them whereas Orkney 

samples were better differentiated showing the lowest classification error per group (the 

confusion matrices for the classification are shown in Table 6). 

The DAPC analysis was able to separate the populations using both set of SNPs with the set of 

all SNPs achieving a more defined separation (Figure 26, upper panels). In both cases, the first 

component differentiated Orkney from the other two populations while the second component 

differentiated Vis from Korčula. Since the set of all SNPs yielded better results, the results of its 

analysis will be considered below. SNPs with the largest contributions to the first discriminant 

component were mainly localized on chromosomes 2, 4 and 6, while SNPs contributing to the 

second discriminant component apparently did not share a preferential location. Regarding their 

genotype frequency, the SNPs related to the first component showed similar genotype patterns 

for Vis and Korčula while exhibiting a different genotypic profile for Orkney (Figure 27). The 

SNPs related to the second component showed less pronounced differences in the genotype 

frequencies which were present either for Vis or Korčula (Supplementary figure 13). 

In order to verify the results obtained with RJ and DAPC while accounting for any bias in the 

data and controlling for the possibility of overfitting of the models, the analyses were repeated 

using randomised groups, i.e. randomly assigning each sample to one of the populations. For the 

randomised data in both set of SNPs, the RJ classification error greatly increased and the DAPC 

analysis showed a single cluster as opposed to the cluster arrangements observed for the non-

randomised data (Table 6 and Figure 26, lower panels). This fact indicates that an underlying 

population structure based on genotype data exists and is lost when populations are randomised. 

Moreover, this genetic structure was to some extent captured by SNPs related to glycosylation. 
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Table 6. Random Jungle confusion matrices for the classification of population cohorts based on 

genotype data. The confusion matrices show the performance of Random Jungle algorithm in classifying the 

population cohorts using the set of all SNPs (A) and the set of glycan-related SNPs (B) for both non-

randomised and randomised populations. The set of all SNPs yielded a quite satisfactory classification 

achieving a much smaller error than the set of glycan-related SNPs. In both cases, the Orkney population 

showed the lowest classification error per group. The classification performance was greatly diminished when 

the population classes were randomized suggesting the disruption of a certain population structure. Each row 

of the matrix represents the instances in the actual population, while each column represents the instances in a 

predicted population (0 for Vis, 1 for Korčula and 2 for Orkney). The “Error” column indicates the test set 

errors for the classification of each group and for the overall classification. 

A) Set of all SNPs B) Set of glycans-related SNPs 

True populations 

 Predicted outcome 
Error (%) 

 0 1 2 
0 473 158 6 25.7 
1 41 658 6 6.7 
2 0 7 641 1.1 
    11 

 

True populations 

 Predicted outcome 
Error (%) 

 0 1 2 
0 386 182 69 39.4 
1 88 547 70 22.4 
2 42 72 534 17.6 
    26.3 

 

Randomised populations 

 Predicted outcome 
Error (%) 

 0 1 2 
0 150 311 176 76.5 
1 141 366 198 48.1 
2 143 333 172 73.5 
    65.4 

 

Randomised populations 

 Predicted outcome 
Error (%) 

 0 1 2 
0 142 339 156 77.7 
1 148 366 191 48.1 
2 159 355 134 79.3 
    67.7 
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Figure 26. DAPC analysis of the population cohorts using genotype data. The score plots representing the 

data samples by the two first discriminant components (Comp1 on the x-axis and Comp2 on the y-axis) are 

shown for the set of all SNPs (left panels) and the set of glycan-related SNPs (right panels). In the analysis of 

the non-randomised data, the first discriminant component differentiated Orkney from the other two 

populations, while the second discriminant component differentiated Vis from Korčula (upper panels). The 

observed genetic structure of populations was lost when the population classes were randomised (lower 

panels). Populations are coloured as gold for Vis, green for Korčula and blue for Orkney. 
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Figure 27. Genotype frequencies of the 15 SNPs most contributing to the first discriminant component 

of the DAPC analysis of the population cohorts. SNPs are mainly located on chromosomes 2, 4 and 6 and 

show different genotype patterns for Orkney when compared to Vis and Korčula which exhibit similar 

patterns. Genotypes are coded in grey shades with light grey corresponding to minor-minor allele combination, 

medium grey corresponding to minor-major allele and dark grey corresponding to major-major allele. 

 

A common finding in the SNP selection analyses carried out by all three methods was the fact 

that among the top 100 most important SNPs identified when analysing the set of all SNPs were 

present some of the most important SNPs identified when using the set of glycan-related SNPs 

(Table 7). The rs494620 variant found in the solute carrier family 44 gene (SLC44A4) in 

chromosome 6 was the only SNP assigned as important by all three methods. 
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Table 7. Glycan-related SNPs present among the most contributing SNPs for the genetic structure of 

populations. List of glycan-related SNPs found among the top 100 most important SNPs for the analysis of 

population differentiation based on the set of all SNPs. Information regarding the chromosome harbouring the 

SNP, the SNP alleles, the associated gene and the gene description are displayed. The SNP selection methods 

which detected each of the SNPs are also indicated: RJ stands for Random Jungle, DAPC for discriminant 

analysis of principal components and CARE for correlation adjusted scores. n.a.: description from Ensembl 

database was not available. 

SNP Chr Alleles Gene Gene description Methods  

rs494620 6 G/A SLC44A4 solute carrier family 44, member 4 RJ, DAPC, CARE 

rs644827 6 T/C SLC44A4 solute carrier family 44, member 4 RJ, DAPC 

rs2242665 6 C/T SLC44A4 solute carrier family 44, member 4 RJ, DAPC 

rs660550 6 C/A SLC44A4 solute carrier family 44, member 4 RJ, DAPC 

rs651970 2 A/G MGAT5 
mannosyl (alpha-1,6-)-glycoprotein 
beta-1,6-N-acetyl-
glucosaminyltransferase 

RJ 

rs9267649 6 A/G NEU1 sialidase 1 (lysosomal sialidase) RJ 

rs845739 5 G/T AC012603.1 n.a. RJ 

rs3901856 6 A/G SLC35F1 solute carrier family 35, member F1 RJ 

rs2301010 5 T/C MAN2A1 mannosidase, alpha, class 2A, 
member 1 CARE 

 

The relative performance of the three SNP selection methods and the extent of agreement of their 

results were assessed by selecting the SNPs consistently detected by all methods within the top 

100 and comparing their ranking position with each method. A total of 35 SNPs were found in 

common in the analysis involving the set of all SNPs while 27 SNPs were commonly identified 

in the analysis involving the set of glycan-related SNPs. The comparison of SNP ranks given by 

the three methods revealed a fairly good agreement of results across the methods particularly for 

the best positioned SNPs in the set of all SNPs (Figure 28). The set of 35 SNPs (Supplementary 

table 7) are mainly located on chromosome 2 in a region spanning genes related to mRNA 

processing, protein biosynthesis and trafficking and on chromosome 6 in a region 

comprehending genes involved in the immune system response, cell interactions and 

glycosylation-related processes (Figure 29). 
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Figure 28. Ranking comparison of the most important SNPs consistently identified by the three 

investigated approaches in the analysis of the genetic structure of populations. A total of 35 SNPs were 

commonly detected among the top 100 SNPs by all methods in the analysis performed with the set of all SNPs 

(A) and 27 SNPs in the analysis performed with the set of glycan-related SNPs (B). The plots represent the 

ranks of the selected SNPs according to each method: Random Jungle (RJ; red circles), correlation adjusted 

scores (CARE; blue triangles) and discriminant analysis of principal components (DAPC; green diamonds). 

The first SNPs in the set of all SNPs showed the best ranking agreement between all three methods. The SNPs 

were ordered using the ranking obtained by RJ. 
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Figure 29. Genetic context of the most important SNPs consistently identified by the three investigated 

approaches in the analysis of the genetic structure of populations. In the analysis performed with the set of 

all SNPs, the majority of SNPs detected among the top 100 SNPs by all methods are mainly distributed along 

the chromosomes 2 (A) and 6 (B). The annotation categories for SNPs are: non-synonymous (inverted 

triangle), synonymous or UTR (square), MCS44 Placental (diamond) and no annotation (filled circle). 

3.7. N-glycome association studies 

Possible associations between glycan levels and SNPs were examined to get more insights into 

the genetic background influencing the glycosylation process. 

Since the individuals from the three population cohorts showed similarities of their glycan 

profiles (as previously discussed in section 3.3), glycome-association analyses were performed in 

the pooled data of all populations. In this way, more information is included in the analyses and 

the derived results are not population-specific but can be interpreted in the light of general 

population trends. 

Three methods – Random Jungle (RJ), correlation adjusted scores (CARE) and bayesian sparse 

linear mixed model (GEMMA) – were applied for the selection of SNPs associated with plasma 

glycans, IgG glycans and phenotypes. The SNPs were used as explanatory variables and each 

glycan or phenotype feature was used as a single quantitative response variable in the analysis. 

In order to assess the agreement between methods and obtain a consensus SNP selection, the 

results of the three methods were combined for each feature by selecting the SNPs consistently 

detected by all methods within the top 100 SNPs. 

For plasma, 64 SNPs were found in common by all methods and 4 of them had an association 

with more than one trait. Only five of the glycan traits did not present SNP associations which 

were fetched by all methods. For IgG, 94 SNPs were identified by all methods with 13 of them 

being first-ranked by the three methods. The methods did not present shared associations for 12 

of the glycan traits and 17 SNPs showed an association with two or more glycan traits. For 

phenotypes, the methods detected in common 11 SNPs associated with only 6 of the traits, 

namely systolic pressure, HDL, triglycerides, insulin, calcium and uric acid. The lists of 

associations found together with the annotation relative to the genes overlapping the variation or 

the nearest gene to it, the chromosome where the variation is located as well as the rank position 

of the variation by each method are presented in Supplementary table , Supplementary table 9 

and Supplementary table 10 for plasma, IgG and phenotypes, respectively. Overall, CARE and 
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GEMMA appear to perform better than RJ as evidenced by the higher ranks presented for the 

majority of associations (Figure 30). 

 

 

Figure 30. Histograms of SNPs ranking by method. The histograms represent the ranking by methdod of 

SNPs identified to be in association with the traits from each feature data set by all three methods. For all 

feature data sets, CARE and GEMMA tend to rank the SNPs in higher positions than the RF. 

Additionally, GEMMA algorithm yielded two estimation measures of heritability: PVE and PGE 

representing the proportion of variance in the analysed traits explained by both small and large 

effect size SNPs and by the large effect size SNPs alone, respectively (refer to section 2.6.7 for 

an explanation of the measures). 

In the case of plasma glycans, estimates of PVE indicate that between 20% and 45% of the 

heritability of the majority of glycan traits can be explained by the available SNPs (Figure 31A). 

Estimates of PGE were mainly below 20% and only three plasma traits showed estimates above 

30% (Supplementary figure 14A). Regarding the IgG glycans, almost half of the traits had 

estimates of PVE between 40% and 60% with glycans belonging to the Neutral derived group 

showing the highest estimates (Figure 31B). Similarly to what was observed for plasma glycans, 

only few IgG traits had PGE values above 30% and glycans belonging to the Charged group 

presented the highest values (Supplementary figure 14B). For phenotypes, estimates of PVE 
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were above 40% for albumin, hip circumference and triglycerides (Figure 31C), while estimates 

of PGE were above 40% for HbA1c and insulin with the later having PGE of more than 65% 

(Supplementary figure 14C). As any other measures of heritability, these estimates can be 

influenced by environmental factors and their interpretation should take that fact into 

consideration. 

 

 

Figure 31. Proportion of the variance of all traits of the three feature data sets explained by genotype. 

The estimates of PVE by the Bayesian sparse linear mixed model are represented for each trait of plasma 

glycans (A), IgG glycans (B) and phenotypes (C). For plasma and IgG glycans the colours of the bars 

represent the glycan groups as indicated in the corresponding legend above the barplot.  
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4. DISCUSSION 

4.1. Glyco-phenotypes in the general population 

A rather similar glycan profile with very little changes over time is shown by the majority of 

people and can be referred to as the "normal profile". Due to genetic background and/or 

environmental conditions, deviations from this normal profile might occur and their significance 

should be examined. 

The association of certain glycan alterations with biochemical traits and clinical conditions was 

studied after the identification of several individuals exhibiting a glycan profile that significantly 

differed from the general population. Using computational approaches, a total of six groups were 

formed based on particular glycan aberrations and a comprehensive analysis of several 

biochemical traits and medical data was able to identify some of the shared characteristics within 

each group. While some of the observed glycan aberrations were associated with serious 

conditions, other glycan changes apparently did not reflect any peculiar medical status. 

Although the results only suggest a possible association between plasma glycan patterns and 

(patho)physiological conditions, they revealed the existence in the general population of glyco-

phenotypes which might represent risk factors for the development of specific diseases. 

Moreover, the observed deviations from the normal plasma glycan profiles in the six groups of 

individuals were much more pronounced than changes reported to occur in common diseases and 

the incidence of these deviations in the studied population was much lower than the incidence of 

any common disease (Pucic et al., 2010). Together, these facts indicate that these common 

aberrations from the normal plasma might originate due to rare mutations and/or rare 

combinations of common mutations instead of being a result of altered physiological conditions. 

The genotype influence upon the group structuring and its association with the particular glycan 

aberrations presented by each group were analysed by three methods. On the one hand, the poor 

performance of all employed methods suggests a lack of genetic structure behind the glyco-

phenotype groups. On the other hand, the small number of samples in each group might not be 

sufficient to select representative genotypes containing significant information that would allow 

a proper discrimination of the groups. 
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The validity of these glyco-phenotypes findings and the exploration of a possible genetic 

background effect should involve the examination of a larger number of individuals with the 

identified aberrations. 

4.2. Internal clustering structure of isolated populations 

Finding particular glyco-phenotypes in the general population motivated the examination, at the 

level of single population, of the presence of larger clusters that could be characterised by certain 

glycan or phenotype features. Comparing the characteristics of clusters with similar consensus 

profiles can bring new insights into the causes of glycosylation and phenotypic alterations. 

A first approach in this direction has been described in detail in a previous work investigating the 

clustering structure of individuals based on their plasma and IgG glycan profiles in four isolated 

population cohorts (Klarić, 2012). The study aimed to determine the optimal number of clusters 

for a population and to assess the stability of the constituted clusters. Briefly, the k-means 

algorithm was used to perform the clustering of the samples and the consensus clustering 

approach was applied to obtain a characterization of the clusters robustness. The consensus 

clustering consisted in the repetition of k-means algorithm with different subsets of the data and 

the construction of a summary matrix – consensus matrix – where each element is defined as the 

ratio between the number of times two samples clustered together and the number of times the 

same samples were selected for the k-means clustering (Monti et al., 2003). Despite the fact that 

clustering was performed on glycan raw data (i.e. without age, sex and batch correction), the 

analysis showed a certain level of internal structure of the populations with relatively robust 

clusters varying in number from 3 to 6 according to the population cohort. 

In the present thesis, to further address the subject of glyco-phenotypes, the feature-specific 

profiles of each cluster were inspected and the analyses were extended to the phenotype feature 

data set. However, in the adopted approach the data used was corrected by age, sex and for batch 

effects and the clustering algorithm employed was the novel affinity propagation clustering 

method. 

The affinity propagation algorithm yielded a number of clusters in the same range as the ones 

previously obtained and the inspection of the cluster profiles revealed the existence of similar 

data patterns across populations. Due to these cluster similarities between populations, the 

analysis of the pooled data of all populations did not produce a cluster for each population; 
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however, it did replicate the cluster profiles observed for the individual populations which will 

be discussed below. 

For plasma glycans, two main cluster profiles were observed. In the first profile, GP9, DG5 and 

BADS which mainly refer to biantennary and digalactosylated glycans structures (A2G2) 

showed opposite pattern to DG6, Monosialo, BAMS and C.FUC which mainly represent 

fucosylated biantennary and digalactosylated glycans (FA2G2). In the second profile, peaks 

GP7, DG5, Monosialo, BAMS and G2 which have in common biantennary digalactosylated 

glycans with one sialic acid (A2G2S1) presented a contrary pattern to BADS and C.FUC which 

refer to biantennary digalactosylated glycans with two sialic acids and fucose. 

For IgG glycans, a division into two clusters presented a clustering profile showing opposite 

tendency of structures with core fucose and without galactose (IGG3, IGG43 and IGG55) and of 

structures with core fucose and two galactoses (IGG13, IGG17, IGG56 and IGG57). Increasing 

the number of clusters resulted in the further separation of the above clusters according to the 

level of sialylation (IGG24-IGG27) and the presence of bisecting GlcNAc (IGG62-IGG69). 

The phenotype data produced a cluster structure with samples divided according to three levels 

of BMI, waist circumference and waist-to-hip ratio. In the cluster with the lowest levels of these 

measures, the majority of individuals are female and also present low values of uric acid. 

The fact that groups of individuals from geographically separated populations display similar 

characteristics suggests the presence of an underlying structure based on glycans and phenotypes 

that is shared between populations. Particularly, the presence of groups of samples with different 

combinations of glycan structural features might reflect biological interactions at the level of 

glycosylation. Together, these findings could be used to attempt to identify the SNPs responsible 

for such specific feature signatures by analysing the genotype profiles of each cluster and, in this 

way, address the study of the association between SNPs and glycans and phenotypes from a 

different angle. 

4.3. Association between N-glycans and phenotypes 

Besides the genotype effect, environmental factors also seem to influence glycan structures to a 

certain degree. The changes in glycosylation due to common biochemical and lifestyle 

parameters (herein designated by phenotypes) have been previously analysed for all glycans in 

Vis and for the structural glycosylation features in Korčula (Knezevic et al., 2010; Knezevic et 
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al., 2009). However, such analysis has not yet been conducted regarding the IgG glycans. Here, 

the analysis of the association between plasma glycans and phenotypes was complemented by 

extending it to the Orkney population and a comprehensive analysis of the association between 

IgG glycans and phenotypes was performed for the first time. 

In plasma glycans, statistically significant correlations present in all three populations were 

mainly observed for phenotypic traits linked with obesity and unhealthy lifestyle such as BMI, 

waist and hip circumferences and to lower extent cholesterol, LDL and triglycerides. 

Associations with certain phenotypes were found to be more uneven across populations while 

being exhibited by only some of the populations such as cholesterol in Vis, insulin in Korčula 

and fibrinogen in Vis and Orkney. Although these patterns can be a consequence of population 

predisposition and be regarded as population-specific, it should be taken into consideration the 

fact that these phenotypes have been shown to be subjected to large intra-individual variation 

(Demacker et al., 1982). 

In IgG glycans, only few associations were shown to be statistically significant. This could be 

explained by the strict threshold of significance resulting from the criteria used for the correction 

of multiple testing, a subject where the best approach to follow is still a matter of debate. 

Nonetheless, some patterns of correlation which did not pass the threshold of significance were 

similar in all three populations and shall be briefly commented on. 

Body fat parameters, triglycerides, glucose, insulin, HbA1c, fibrinogen and uric acid were 

directly correlated with agalactosylated structures (IGG55) and inversely correlated with 

digalactosylated structures (IGG57), indicating that galactosylation is decreased in conditions 

where these parameters are elevated. A shared characteristic to these phenotypes is their known 

connection to a certain degree with a pathological status such as obesity, diabetes or 

cardiovascular problems. 

IgG with reduced content of galactose has been reported as a common feature in a number of 

autoimmune diseases which are known to be characterised by inflammatory conditions (Ciric et 

al., 2005; Huhn et al., 2009). Obesity not only presents a chronic low-grade inflammation as it 

has been implicated in the susceptibility to autoimmune diseases such as diabetes (Golay & 

Ybarra, 2005; Kahn et al., 2006; Procaccini et al., 2011). Although the obesity-autoimmune 

relationship is still not thoroughly understood, it appears to be the result of complex interactions 

between several factors and conditions where hormones and neural mediators may have an 

important role (Steinman et al., 2003). 
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Fibrinogen is a protein involved in blood clot formation and elevated levels of fibrinogen have 

been identified as major risk factor for cardiovascular diseases with possible mechanisms 

through which fibrinogen might operate being suggested (Cook & Ubben, 1990; Danesh et al., 

2005; Stec et al., 2000). Besides its clotting factor role, fibrinogen seems to function as a 

signalling molecule in the inflammatory response and has been recently linked with diseases 

presenting an inflammatory component like multiple sclerosis, Alzheimer's disease and 

rheumatoid arthritis (Davalos & Akassoglou, 2012). 

These associations found between IgG glycosylation patterns and phenotypes which are related 

to pathological conditions suggest that glycosylation might be involved in the intricate interplay 

of factors existent in the pathways leading to these disorders. 

Another interesting pattern which was only observed for the Orkney population is the positive 

association between calcium and glycan structures containing bisecting GlcNAc and the negative 

association with glycan structures without bisecting GlcNAc. While the presence of bisecting 

GlcNAc on IgG increases its effector functions (Takahashi et al., 2009), calcium signalling has 

an important role in immune function by participating in diverse mechanisms of the immune 

system (Diamantstein & Odenwald, 1974). Moreover, N-glycans on T-cell glycoproteins are 

found to be involved in triggering T-cell functions (Walzel et al., 2006). 

Due to the fact that the IgG glycans are a filtered set of the plasma N-glycans, the main IgG 

chromatographic peaks can be combined into 11 plasma peaks. The comparison of the 

associations of both plasma peaks and their corresponding IgG peaks with phenotypes revealed a 

good agreement between the majority of peaks. The fact that IgG glycans captured the 

associations from the pool of all plasma N-glycans suggests that these associations might 

actually be connected to IgG protein. The few associations shown to be contradictory between 

peaks might reflect their specificity to a particular protein. 

The ensemble of N-glycans in human plasma originates from a variety of glycoproteins which 

differentially contribute to the general glycan composition observed. Establishing the individual 

glyco-contribution of each protein and exploring the specific association of their glycan 

structures with other features might bring more detailed information about the influence of 

specific glycans in protein function as well as their connection to pathophysiologic states. 
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4.4. Diabetes: a case example 

Diabetes affects a high number of people worldwide and has been the continuous focus of many 

research studies intended to understand the wide range of mechanisms leading to disease. The 

goal of such studies is the discovery of biomarkers that can reliably detect the presence or 

susceptibility to diabetes at an initial stage since an early diagnosis can help in disease 

prevention. 

The diabetes status of a subset of samples from the three population cohorts was available and 

the samples assigned into one of three groups: non-diabetic, pre-diabetic and diabetic. The three 

groups were compared with respect to plasma, IgG, phenotype and genotype profiles using 

graphical, statistical and classification methods. 

Plasma glycan profiles did not present significant differences between the three analysed groups 

and their use as predictor variables did not discriminate between groups. Studies performed to 

examine the alteration of N-glycans in the serum glycoproteins in diabetes are scarce and a first 

finding reports the elevated levels of glycoprotein fucose in diabetes (McMillan, 1972). The 

analysis of the N-glycans in the serum of the model mice of type 2 diabetes with obesity also 

revealed an increased fucosylation of N-glycans but the same modification in human serum was 

found to be small (Itoh et al., 2007). Although pointing to a possible increase of fucose content 

in diabetes and suggesting its association with the pathophysiology of diabetes, these studies 

should be viewed and interpreted with caution since they were based on small sample sizes and 

further studies are necessary to confirm the findings. The apparent absence of significant 

differences between the plasma glycan profiles of the three groups analysed in the present work 

could arise from the fact that the N-glycans analysed originate from an ensemble of proteins 

which might conceal potential differences of specific proteins. 

Analysing the changes in glycosylation patterns of single proteins in diabetes could give precise 

insights about which proteins are more prone to be targets of abnormal glycosylation in the 

disease. The comparison of IgG glycan profiles in the three groups did not reveal statistically 

significant differences and similarly to plasma glycans showed a poor predictive power in 

classifying the samples. The investigation of N-glycan structures of an acute-phase protein 

showed an increase in fucosylated glycans which was significant in individuals with 

inflammation but not in individuals with type 2 diabetes (Higai et al., 2003). Furthermore, 

fucosylation of IgG was found to be significantly increased in patients with rheumatoid arthritis 
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(Gornik et al., 1999). Perhaps the alterations to which IgG is subjected in diabetes differ from 

those presented by chronic inflammatory conditions. 

Non-enzimatic glycosylation or glycation, the addition of glucose to proteins without the 

controlling action of enzymes, has an increased rate of occurrence in diabetics and has been 

indicated to contribute to several long-term complications in diabetes. Many proteins are known 

to be glycated to a much higher degree in diabetics than in normal individuals including the well 

studied case of glycated hemoglobin (HbA1c), lens crystallins, basic myelin protein, collagen 

and also IgG. The levels of glycated IgG were found to be significantly higher in diabetic than in 

normal individuals suggesting that non-enzimatic glycosylation of IgG might be associated with 

changes in its function (Bunn, 1981; Vlassara et al., 1986). The relative impact of structural 

changes in N-glycans and of non-enzimatic glycosylation in the pathophysiology of diabetes and 

their target proteins requires more comprehensive studies concerning single proteins. 

Contrary to plasma and IgG profiles, the phenotype data showed noticeable differences at the 

level of HbA1c and glucose and less marked differences for age, systolic blood pressure, BMI, 

waist-to-hip ratio and waist circumference. In all cases, the diabetic group presented higher 

levels and the non-diabetic lower levels of the features. HbA1c is routinely used for monitoring 

long term glycemic control in people with diabetes and is currently the most commonly used 

marker in the diagnosis of diabetes. High blood glucose is a sign of diabetes or that a person is at 

high risk for developing the disease, although it is considered to be an insufficient indicator of 

diabetes. The other altered phenotypes between groups are more likely to be presented by 

individuals with diabetes than healthy individuals and so are considered either as predisposing 

factors or symptoms of diabetes. Thus, it was not surprising that both HbA1c and glucose were 

found to markedly vary across groups while the remaining phenotypes varied to a lesser extent. 

The association of these phenotypes with diabetes was further verified by their high importance 

and predictive power in the separation and classification of the groups. 

The analysis of the genotype contribution to the diabetes status revealed SNPs harboured in 

genomic regions comprising genes directly or indirectly related to diabetes as briefly described 

below. 

The first most important SNP is located in a region near the neuronal calcium sensor-1 gene 

(NCS1), a calcium binding protein involved in the molecular mechanisms of calcium and 

metabolic signalling by which cells are able to adjust insulin secretion in response to glucose 

stimulation (Gromada et al., 2005). 
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Several SNPs overlap the cyclin-dependent kinase 19 gene (CDK19) whose potential function in 

the nervous system has been suggested upon the results of functional analyses of its closest 

orthologue in Drosophila, CDK8. CDK8 was shown to regulate dendritic development and to 

play a major role in the development of peripheral sensory organs including the eye 

(Mukhopadhyay et al., 2010). Different changes of dendritic structures have been reported in 

glaucoma, a condition that has diabetic retinopathy as a possible cause. 

The initial portion of doublecortin-like kinase 1 gene (DCLK1) harbours four high-ranked SNPs. 

DCLK1, a neuronal function-related gene highly expressed in the ganglion cell layer of retina, is 

shown to be downregulated in rat model of diabetes suggesting its association with reduction of 

synapses observed  in diabetic rat retinas (Brucklacher et al., 2008; Van Kirk et al., 2011). Also, 

DCKL1 regulates microtubule polymerization and stabilization and has been found to be a 

marker for the identification of pancreatic stem cells which could be used in cell replacement 

therapies such as in type 1 diabetes  (Mwangi & Srinivasan, 2010). 

The glucocorticoid induced transcript 1 gene (GLCCI1), located in close proximity to the Islet 

Cell Autoantigen 1 gene (ICA1), also contains important SNPs. A region flanked by these two 

genes has been identified as a glaucoma susceptibility locus due to the presence of a common 

variant associated with elevated intraocular pressure (BMES & WTCCC2, 2013). Both genes 

have been shown to be expressed in the human eye and are plausible candidates in the 

determination of intraocular pressure, a major risk factor for the development and progression of 

glaucoma. On the one hand, ICA1 has been indicated as an auto-antigen in insulin-dependent 

diabetes mellitus and glaucoma is a well known eye problem in people with diabetes. On the 

other hand, since glucocorticoids increase the risk of glaucoma by raising the intraocular 

pressure, GLCCI1 could be implicated in intraocular pressure via its response to endogenous 

cortisol. 

SNPs located in the upstream region and in a non-coding region of the deleted in colorectal 

carcinoma gene (DCC) were also identified among the most important SNPs. The region 

containing the DCC gene was suggested to be associated with autoimmune diseases in a large 

study comprising families with type 1 diabetes, multiple sclerosis and rheumatoid arthritis 

(Merriman et al., 2001). 

The gene cluster of chemokine receptors (CCR) is a highly enriched area for chemokine receptor 

genes and harbours some SNPs of interest. Small signaling proteins secreted by cells called 

chemokines and their corresponding receptor genes induce calcium signaling in cells and are 
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involved in processes of the immune system. Up- or down-regulation of both chemokine and 

chemokine receptor gene expression has been observed in a wide range of inflammatory and 

autoimmune diseases (Navratilova, 2006). Also, functional polymorphisms in chemokine-related 

genes have been implicated in the pathogenesis of type 1 diabetes and its microvascular 

complications (Yang et al., 2004). 

In the upstream region of the cardiac ryanodine receptor calcium release channel gene (RYR2), a 

single SNP isolates itself from all the other neighboring SNPs. RYR2 gene is central to the 

heartbeat cycle while regulating the calcium homeostasis responsible for the heart muscle cell 

contractions. Alteration of calcium signalling was found to be present in diabetic 

cardiomyopathy and to be related with partial loss of RYR2 function (Yaras et al., 2005). 

Furthermore, mutations in this gene have been reported to cause arrhythmias of the right 

ventricle in a condition known as arrhythmogenic right ventricular cardiomyopathy (Milting et 

al., 2006). Other SNPs in the flanking region of RYR2 were linked with heart failure conditions 

in association studies (information retrieved from the NCBI dbSNP database website, see 

http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=4659764). 

The agreement with previous findings in some cases and the suggestive link with diabetes in 

other cases present evidence in favour of the use of alternative methods to univariate regression 

for SNP selection. Nonetheless, a thorough inspection of other high-ranked SNPs and their 

flanking regions should be carried out in order to investigate whether other novel associations 

with diabetes can arise. 

4.5. Population-specific patterns 

Isolated populations derived from factors like geographic or cultural isolation present a level of 

genetic discontinuity. Such differentiated cohorts have shown to be of valuable importance for 

the mapping of rare genetic diseases as well as for unravelling the genetics of common complex 

diseases (Vitart et al., 2006). 

The three studied cohorts are themselves isolated populations and the analysis not only of their 

genetic data but also of biochemical traits might on one side reveal characteristics specific to a 

population, and on the other side give reliable information about conserved associations in the 

general population. 

http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=4659764
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Significant differences were obtained in all feature data sets with all of them being observed 

between Orkney and the other two populations. The IgG glycans set presented the highest 

number of differences compared with plasma glycans and phenotypes where only two traits in 

each data set achieved a statistical significance. The differences seen for IgG glycans could be an 

experimental artifact due to the fact that IgG glycans in Orkney were quantified using a different 

method than in Vis and Korčula. However, it was show in section 3.1 that the measurements of 

most IgG glycans correlated well between methods despite the differences in magnitude. 

Despite their significance, these differences were not powerful enough to yield discrimination 

between populations when performing the PLS-DA and PCA analyses. Nonetheless, it should be 

noted that the importance of the traits for the principal components in the PCA analysis of each 

feature data set reproduced the findings observed in the clustering analysis (see sections 3.3 and 

4.2). For instance, in the case of plasma glycans, GP9, DG5 and BADS show opposite 

contributions to DG6, Monosialo, BAMS and C.FUC, a tendency that was observed to occur 

across clusters. For IgG glycans, the features IGG3, IGG43 and IGG55 (referring to 

agalactosylated glycan structures) are grouped as they have similar contributions and they also 

presented different patterns across clusters. In the case of phenotype data, uric acid, waist and 

hip circumferences have the highest contributions and were also shown to differ between 

clusters. Altogether, these results suggest that a common phenotypic background exists between 

populations which is independent of the geographic location of the individuals and might be 

related with certain shared lifestyle habits. 

The classification of populations by RF based on glycan and phenotype profiles yielded more 

satisfactory results. The best performance in the classification of populations with a relatively 

low error was achieved for a combined set of glycans and phenotypes indicating that the traits 

complement each other by introducing additional information about the populations. For all 

feature data sets, Orkney is always better separated from the other two populations which are 

consistently mistaken. Although considered isolated populations, the fact that Vis and Korčula 

are much closer geographically to each other than to Orkney means that they are under more 

similar biological pressures which might be the cause of the observed results. 

The different results obtained with PLS-DA and PCA analyses and with RF are related with the 

distinct nature of the algorithms. While PLS-DA and PCA search for linear combinations of 

features that can explain the variability of the data, RF method is a more flexible and nonlinear 

approach. The fact that RF achieved better results than PLS-DA and PCA suggests that 
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population-specifc patterns of glycans and phenotypes might arise from nonlinear combinations 

of features. 

Concerning the analysis of the genetic structure of the populations, the ensemble of SNPs was 

able to separate the populations as could be expected from the fact that the populations are 

isolated and hold their own genetic signatures. Moreover, Orkney could be clearly separated 

from the other two populations which partially overlap to a small extent reflecting the 

geographical proximity of Vis and Korčula relative to Orkney. Further investigation of the SNPs 

most contributing for the genetic structure of the populations yielded a set of 35 SNPs 

consistently detected by the three different SNP selection methods employed. These SNPs are 

mainly located in two regions: one on chromosome 2 comprising genes related to mRNA 

processing, protein biosynthesis and trafficking, and another on chromosome 6 comprehending 

genes involved in the immune system response, cell interactions and glycosylation-related 

processes. The population-specific characteristics arising from the differences in these SNPs and 

from possible functional alteration upon genes affected by them is yet to be elucidated and would 

require a throughout examination of patho-physiologic differences present between populations. 

Given the functions of the genes harbouring and flanking these SNPs, a plausible explanation 

would be that these SNPs might reflect a predisposition of a population for certain diseases or 

conditions. 

4.6. Association between N-glycans and genotypes 

Understanding the influence of the genomic background upon a trait or disease is of extreme 

importance to expand the knowledge about the pathways leading to those phenotypes and, 

consequently, help in the development of more accurate diagnostic tests and treatment solutions. 

A first approach to elucidate possible relationship between the glycan and genotype profiles in 

two of the populations included in the present study was the subject of a previous work (Tica, 

2011). In the study, genotypes were used to calculate estimates of pairwise identity-by-descent, a 

measure that is useful for detecting pairs of individuals who look more similar to each other than 

it would be expected by chance in a random sample. As such, the pairwise identity-by-descent 

estimations were taken as a measure of the distance between pairs of individuals and were 

subjected to hierarchical clustering. The clusters obtained based on genotypes were characterised 

regarding their glycan profile. Enrichment of certain glycan features was observed for some 

clusters suggesting the presence of a link between glycans and genotypes. 
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In the present thesis, the association between glycans and genotypes was approached with a 

similar rationale to that of GWAS but using different modeling methods. Three multivariate 

methods which considered the interaction among SNPs in their algorithms were applied to 

address the problem of SNP selection in the glycosylation context. The glycome-wide analysis 

carried out intended to assess whether these methods were responsive to this data as well as to 

attempt to unravel novel associations. 

The principal associations previously reported for both plasma and IgG glycans were captured by 

the used methods (Huffman et al., 2011; Lauc et al., 2010a; Lauc et al., 2013). Additional 

associations for plasma glycans with three glycosyltransferases are implied for DG7 and 

disialylated structures and with two genes from the solute carrier family are implied for GP13, 

G3 and disialylated structures (Table 8). For the disialylated structures, the variation rs9847446 

is flanked by two members of the solute carrier family, namely SLC9C1 and SLC35A5. The 

solute carrier SLC9A9 has been reported before to be associatiated with tetrasialylated structures 

(Huffman et al., 2011). In the case of IgG glycans, several traits were found to be associated with 

the variant rs6764279 in the ST6GAL1 gene and the majority of these associations was ranked in 

the first place by all methods which is strongly suggestive of its influence upon the traits in 

question (Supplementary table 9). A careful examination of the genetic context of SNPs which 

have not yet been reported to be linked with glycosylation should be carried out as they may 

contain additional information. 

  



 

104 
 

Table 8. Genetic variants implied to be associated with plasma glycan traits. List of SNPs consistently 

identified by the three methods to be associated with the presented glycan traits within the top 100 SNPs. 

Genes overlapping with the SNP are annotated without asterisk and neighbour genes of the SNP are annotated 

with asterisk. The variation number in parenthesis following the name of the method indicates the rank 

position achieved by the SNP with that particular method. RJ: Random Jungle; CARE: correlation adjusted 

scores; GEMMA: bayesian sparse linear mixed model. 

Trait SNP Chr Genes Methods (rank) 

GP13 rs13107325 4 SLC39A8 RJ(5); CARE(2); GEMMA(6) 

DG7 rs315081 1 ST6GALNAC3 RJ(17); CARE(2); GEMMA(3) 

DG7 rs4569731 4 GALNTL6 RJ(72); CARE(86); GEMMA(66) 

Disialo rs9847446 3 RP11-231E6.1* RJ(3); CARE(7); GEMMA(3) 

Disialo rs759602 3 ST6GAL1 RJ(38); CARE(46); GEMMA(92) 

G3 rs13107325 4 SLC39A8 RJ(6); CARE(1); GEMMA(1) 

 

The association analysis between phenotypes and genotypes was also performed. Associations 

detected by all methods were achieved for systolic pressure, HDL, triglycerides, insulin, calcium 

and uric acid. While some of the SNPs are located in genomic regions that can be related with 

the corresponding trait, some apparently have no link. 

The variation rs10507382, implied to be associated with systolic blood pressure, is located on 

chromosome 13 overlapping the Fms-Related Tyrosine Kinase 1 gene (FLT1). This gene 

encodes a protein member of the vascular endothelial growth factor receptor family and plays an 

important role in angiogenesis and vasculogenesis. 

The variation rs159382, implied to be associated with triglycerides, is located in a region of 

chromosome 5 close to  the Phosphodiesterase 4D, CAMP-Specific gene (PDE4D) whose 

mutations have been associated with the levels of serum triglyceride (Sinha et al., 2013). 

Moreover, neighbouring SNPs are implicated in other GWAS studies analysing cholesterol and 

triglycerides (information retrieved from the NCBI dbSNP database website, see 

http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=159382). 

The variation rs6679047, implied to be associated with insulin levels is located on chromosome 

1 upstream the Nuclear Receptor Subfamily 5, Group A, Member 2 gene (NR5A2) which is 

involved in the pancreatic function. 

http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=159382
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The variation rs7914270, implied to be associated with uric acid, is harboured in the Solute 

Carrier Family 2 (Facilitated Glucose Transporter), Member 9 gene (SLC2A9 or GLUT9) 

located on chromosome 10. This gene has been reported before as a modulator of uric acid levels 

and the results were replicate in several populations (Le et al., 2008; Vitart et al., 2008; Zemunik 

et al., 2009). 

The small number of associations found for phenotypes are a consensus of those associations 

consistently identified by all methods and thus should not be regarded as a result of the poor 

performance of the methods. The individual results of each method might possibly reveal other 

findings as well as confirming previous ones. 

The results achieved demonstrate the ability of the employed SNP selection methods to 

reproduce recent results of GWAS applied to glycosylation traits and to suggest other potential 

associations. Despite the large number of GWAS conducted nowadays and their success in 

revealing important genetic factors underlying human diseases and traits, GWAS still faces 

challenges not only at the level of the rationale behind the analysis but also at the computational 

level. Most GWAS approaches test one SNP at a time and overlook potential multiple causal 

variants by disregarding the interdependencies between SNPs which occur in complex diseases 

and traits. Additionally, genome wide studies are usually computationally demanding and the 

traditional methods are becoming obsolete with the increasing in size of the data sets available 

for such type of analysis. Recently developed polygenic modelling methods implement more 

efficient algorithms capable of analysing a large number of SNPs while simultaneously 

incorporating dependencies among SNPs. This increase in efficiency is reflected in less 

computationally exhaustive algorithms which have the advantage of a reduction in the 

computational time required to perform the analysis, thus contributing to gains in terms of speed, 

time and also knowledge. 

Heritability represents the proportion of the phenotype variance that can be attributed to genetic 

factors and is a recurrent analysis in any genetic study. GEMMA algorithm provides two such 

measures: PVE which estimates the proportion of variance in the analysed traits explained by 

both small and large effect size SNPs and PGE which is the proportion of variance in the trait 

explained by the large effect size SNPs alone. 

Estimates of PVE were up to around 45%, 60% and 50% for plasma glycan, IgG glycan and 

phenotype traits, respectively, while estimates of PGE were above 30% only for few traits in all 

cases. Overall, the fact that estimates of PVE were higher than PGE suggests that small 
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polygenic effects might have a stronger contribution for most of the analysed traits, whereas a 

limited number of traits are influenced by large effect size SNPs. However, these estimates of 

heritability should be interpreted with caution since the presence of unmeasured environmental 

factors that influence the phenotype and are correlated with genotype can affect the estimates 

(Zhou et al., 2013). Particular care should therefore be taken in the present case where the 

obtained estimates are based on a pooled data set of three populations subjected to different 

environments which can compromise the results. Further analysis considering each population 

separately should be performed in order to verify whether the different relative contributions of 

small and large effect size SNPs to glycan traits and phenotypes are conserved across 

populations or indeed vary according to the population. 
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SAŽETAK 

Glikozilacija je jedna od najopsežnijih modifikacija proteina. Glikani utječu na strukturu i 

funkciju proteina na koje su vezani, a poznato je i da imaju važne uloge u fiziološkim i 

patološkim procesima. Sinteza glikana ne odvija se prema kalupu, kao što je to slučaj kod 

proteina, nego u njoj sudjeluje kompleksna mreža interakcija stotina različitih enzima i 

transkripcijskih faktora. Nedostatak univerzalnog koda za sintezu glikana zajedno sa 

tehnološkim poteškoćama kvantifikacije glikana razlozi su ograničenom razumijevanju procesa 

koji reguliraju njihovu sintezu. Značajni napretci u analitičkim postupcima omogućili su razvoj 

pouzdanih visoko-protočnih metoda za kvantifikaciju glikana, a time i prve studije plazmatskog 

N-glikoma velikog broja ljudi, što je glikomiku postavilo  uz bok ostalim visokoprotočnim  

metodama. Ove cjelovite studije otkrile su različite oblike povezanosti  genetske predispozicije i 

okolišnih faktora u glikozilaciji proteina.  

Kako bi se istražila genomska i i okolišna regulacija glikozilacije, u ovom su radu glikanski, 

fiziološki i biokemijski podaci, uz genotipove tri različite izolirane ljudske populacije analizirani 

serijom  računalnih metodam. Također, predložen je općeniti obrazac za pripremu i obradu  

glikomskih podataka za daljnje analize. U općoj populaciji su identificirani specifični glikanski 

profili potencijalno povezani sa određenim patologijama  i evaluiran je potencijal glikana kao 

biomarkera dijabetesa. Analizom unutarnjih struktura populacija pronađene su skupine čiji su 

profili slični među različitim populacijama. Osim toga, unatoč geografskoj i okolišnoj 

razdvojenosti populacija, otkriveno je nekoliko obrazaca povezanosti glikana i fenotipskih 

značajki koji se pojavljuju u svim populacijama. Genski polimorfizmi koji utječu na glikozilaciju 

su analizirani metodama više varijabli, zasnovanih na poligenskom modeliranju. Potvrda 

prethodnih otkrića i pronalazak novih potencijalnih poveznica sugeriraju da bi ove metode mogle 

postati alternativa tradicionalnim cjelogenomskim studijama zasnovanim na jednoj istraživanoj 

varijabli. 
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ABSTRACT 

Glycosylation is one of the most extensive protein modifications. Glycans influence both 

structure and function of the proteins and they are known to have important roles in 

physiological and pathological processes. Glycan synthesis is not template driven but encoded 

within a complex network involving the interaction of hundreds of enzymes and transcriptional 

factors. The inexistence of a universal glycan structure code and technological restrictions in 

glycan quantification analysis have hindered the knowledge about the processes involved in the 

regulation of glycan assembly. Major breakthroughs in analytical procedures have allowed the 

quantification of glycans in a high-throughput manner and motivated the first large-scale studies 

on human plasma N-glycome which put glycomics on the same par as other omics approaches. 

These first comprehensive studies reported a diverse contribution of genetic background and 

environmental factors to glycosylation. 

In order to explore the genomic and environmental regulation of glycosylation, different 

computational methods were employed to the integrated analysis of glycan, 

physiological/biochemical and genotype data in three isolated population cohorts. A general data 

processing pipeline to treat and pre-process glyco-related data prior to analysis was established. 

Specific glyco-phenotypes possibly related to pathologies were identified in the general 

population and the potential use of glycan modifications as biomarkers was evaluated for the 

particular case of diabetes.  The analysis of the internal structure of populations revealed the 

presence of cluster profiles similar between populations. Additionally, several patterns of 

associations between glycans and phenotypes were shared across populations despite their 

geographical and environmental separation. Multivariate methods based on a polygenic 

modelling were used to investigate genetic polymorphisms affecting glycosylation. Confirmation 

of previous findings and the identification of possible novel links suggest that these efficient 

methods could provide an alternative to traditional univariate genome-wide association studies. 
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APPENDIX A. Supplementary Figures 

 

 

Supplementary figure 1. Differences between gel and solution methods for IgG glycan quantification. 

Scatterplots showing the IgG values for each sample as measured with the gel (golden points) and the solution 

methods (green points). 
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Supplementary figure 2. Affinity propagation clustering results for Vis cohort. Clustering results of 

affinity propagation algorithm for the Vis population based on plasma glycans (A), IgG glycans (B) and 

phenotypes (C). The results obtained for Korčula and Orkney population are similar to the ones obtained for 

Vis and, thus, were not presented. The heatmap represents the levels of each feature (rows) for the samples in 

each cluster (columns); the key colour of the heatmap varies from red to yellow corresponding to low and high 

values, respectively. The bar above the heatmap depicts the cluster division in different shades of grey. The bar 

on the left side of the heatmaps of plasma and IgG glycans represents the corresponding glycan groups as 

indicated in the legend. 
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Supplementary figure 3. Affinity propagation clustering results based on IgG glycan profiles for the 

pooled data of populations. The clustering results of affinity propagation algorithm run with K=2 (A) and 

K=4 (B) are presented to illustrate the difficulty in establishing the most reliable clustering structure. In the 

case of the 2 cluster division, opposite levels of glycan features such as IGG3, IGG17, IGG43, IGG55 and 

IGG57 among others are clearly observed. In the case of the 4 cluster division, additional differences in 

IGG24-IGG27 and IGG62-IGG69 glycan features are revealed. The heatmap represents the levels of each 

glycan (rows) for the samples in each cluster (columns); the key colour of the heatmap varies from red to 
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yellow corresponding to low and high values, respectively. The bars above the heatmap depict the cluster 

division in different shades of grey and the population division coloured as gold for Vis, green for Korčula and 

blue for Orkney. The bar on the left side of the heatmap indicates the four groups of IgG glycans: Initial (dark 

blue), Charged (blue), Neutral (medium blue) and Neutral derived (light blue). 
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Supplementary figure 4. Correlation of plasma glycans with age and gender. The heatmap depicts the 

level of correlation between each plasma glycan feature (rows) and age and gender for each population 

(columns); correlation coefficients range from -0.65 (dark blue) to 0.65 (dark red). The bar above the heatmap 

indicates the population to which the three columns of each phenotype correspond to: gold for Vis, green for 

Korčula and blue for Orkney. The bar on the left side of the heatmap indicates the four groups of plasma 

glycans: GP (dark blue), DG (blue), Sialos (medium blue) and Structural (light blue).  



 

128 
 

 



 

129 
 

Supplementary figure 5. Correlation of IgG glycans with age and gender. The heatmap depicts the level of 

correlation between each IgG glycan feature (rows) and age and gender for each population (columns); 

correlation coefficients range from -0.65 (dark blue) to 0.65 (dark red). The bar above the heatmap indicates 

the population to which the three columns of each phenotype correspond to: gold for Vis, green for Korčula 

and blue for Orkney. The bar on the left side of the heatmap indicates the four groups of IgG glycans: Initial 

(dark blue), Charged (blue), Neutral (medium blue) and Neutral Derived (light blue). 
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Supplementary figure 6. Correlation between plasma glycans and phenotypes for all populations. The 

heatmap depicts the level of correlation between each plasma glycan feature (rows) and the phenotypes for 

each population (columns); correlation coefficients range from -0.3 (dark blue) to 0.3 (dark red). The bar 

above the heatmap indicates the population to which the three columns of each phenotype correspond to: gold 

for Vis, green for Korčula and blue for Orkney. The bar on the left side of the heatmap indicates the four 

groups of plasma glycans: GP (dark blue), DG (blue), Sialos (medium blue) and Structural (light blue). 
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Supplementary figure 7. Correlation between IgG glycans and phenotypes for all populations. The 

heatmap depicts the level of correlation between each IgG glycan feature (rows) and the phenotypes for each 

population (columns); correlation coefficients range from -0.15 (dark blue) to 0.15 (dark red). The bar above 

the heatmap indicates the population to which the three columns of each phenotype correspond to: gold for 

Vis, green for Korčula and blue for Orkney. The bar on the left side of the heatmap indicates the four groups of 

IgG glycans: Initial (dark blue), Charged (blue), Neutral (medium blue) and Neutral derived (light blue).  
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Supplementary figure 8. PLS-DA and PCA analysis of the diabetes groups using plasma glycans data. 

The score plots representing the data samples by the two first principal components (PC1 on the x-axis and 

PC2 on the y-axis) are shown on the upper panels; groups are coloured as gold for non-diabetic, green for pre-

diabetic and blue for diabetic. The corresponding loading plots establishing the relative contributions of each 

plasma glycan feature to the overall variation in the groups are shown on the lower panels; glycans are 

coloured according to their group: GP (dark blue), DG (blue), Sialos (medium blue) and Structural (light blue). 
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Supplementary figure 9. PLS-DA and PCA analysis of the diabetes groups using IgG glycans data. The 

score plots representing the data samples by the two first principal components (PC1 on the x-axis and PC2 on 

the y-axis) are shown on the upper panels; groups are coloured as gold for non-diabetic, green for pre-diabetic 

and blue for diabetic. The corresponding loading plots establishing the relative contributions of each IgG 

glycan feature to the overall variation in the groups are shown on the lower panels; glycans are coloured 

according to their group: Initial (dark blue), Charged (blue), Neutral (medium blue) and Neutral derived (light 

blue). 
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Supplementary figure 10. Genetic context of several polymorphisms possibly associated with the 

diabetes condition. The regional association plots show the correlation adjusted scores (CARE scores) for 

SNPs distributed in five genomic regions centred on variants rs6563348 (chromosome 13), rs37984 

(chromosome 7), rs7631551 (chromosome 3), rs12605728 (chromosome 18) and rs4659764 (chromosome 1). 

The flanking region extends 0.5Mb both upstream and downstream of the reference SNP which is labelled and 

shown in purple. The colour intensity of the other SNPs within the region represents the extent of their linkage 

disequilibrium (r2) with the reference SNP: red (r2 ≥ 0.8), orange (0.6 ≤ 0.8), green (0.4 ≤ 0.6), light blue (0.2 

≤ 0.4) and dark blue (r2 ≤ 0.2). The locations of known genes in the region are depicted below the association 

plot. 
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Supplementary figure 11. PLS-DA and PCA analysis of the population cohorts using IgG glycans data. 

The score plots representing the data samples by the two first principal components (PC1 on the x-axis and 

PC2 on the y-axis) are shown on the upper panels; the populations are coloured as gold for Vis, green for 

Korčula and blue for Orkney. The corresponding loading plots establishing the relative contributions of each 

IgG glycan feature to the overall variation in the populations are shown on the lower panels; glycans are 

coloured according to their group: Initial (dark blue), Charged (blue), Neutral (medium blue) and Neutral 

derived (light blue). 
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Supplementary figure 12. PLS-DA and PCA analysis of the population cohorts using phenotypes data. 

The score plots representing the data samples by the two first principal components (PC1 on the x-axis and 

PC2 on the y-axis) are shown on the upper panels; the populations are coloured as gold for Vis, green for 

Korčula and blue for Orkney. The corresponding loading plots establishing the relative contributions of each 

phenotype feature to the overall variation in the populations are shown on the lower panels. 
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Supplementary figure 13. Genotype frequencies of the 15 SNPs most contributing to the second 

discriminant component of the DAPC analysis of the population cohorts. SNPs are located along various 

chromosomes and either Vis or Korčula show slightly differences in genotype profiles. Genotypes are coded in 

grey shades with light grey corresponding to minor-minor allele combination, medium grey corresponding to 

minor-major allele and dark grey corresponding to major-major allele. 
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Supplementary figure 14. PGE estimates for all traits of the three feature data sets. The estimates of PGE 

by the Bayesian sparse linear mixed model are represented for each trait of plasma glycans (A), IgG glycans 

(B) and phenotypes (C). For plasma and IgG glycans the colours of the bars represent the glycan groups as 

indicated in the corresponding legend above the barplot. 

  



 

142 
 

APPENDIX B. Supplementary Tables 

Supplementary table 1. Glycan structures present in different HPLC peaks. Chromatographic peaks 

obtained with HILIC analysis (GP1-GP16, left) and with HILIC after sialidase treatment (DG1-DG13, right) 

and the individual glycan structures present in each peak. 

PEAK STRUCTURE PEAK STRUCTURE PEAK STRUCTURE  PEAK STRUCTURE 
GP1 A2 

GP7 

FA2BG2 
M7D3 
A2G2S(3)1 
A2G2S(6)1 
M7D1 

GP12 

A2F1G2S2 
A3G3S(3,3)2 
A3G3S(3,6)2 
A3G3S(6,6)2 
A3BG3S(3,3)2 
A3BG3S(3,6)2 
A3BG3S(6,6)2 

 DG1 A2 

GP2 
A2B 
A1G1 
FA2 

 
DG2 

A2B 
A1G1 
FA2 

GP3 

M5 
FA2B 
A2[6]G1 
A2[6]BG1 

 

DG3 

M5 
FA2B 
A2[6]G1 
A2[6]BG1 

GP8 

A2BG2S(3)1 
A2BG2S(6)1 
M5A1G1S1 
FA2G2S(3)1 
FA2G2S(6)1 
A3G3 
FA2BG2S(3)1 
FA2BG2S(6)1 

 

GP13 

A3G3F1S2 
FA3G3S(3,3)2 
FA3G3S(3,6)2 
FA3G3S(6,6)2 
FA3BG3S(3,3)2 
FA3BG3S(3,6)2 
FA3BG3S(6,6)2 
A3G3S(3,3,6)3 
A3G3S(3,6,6)3 
A3G3S(6,6,6)3 

 

GP4 

A2[3]G1 
A2[3]BG1 
M4A1G1 
FA2[6]G1 
FA2[6]BG1 
A1[6]G1S(3)1 
A1[6]G1S(6)1 
FA2[3]G1 
FA2[3]BG1 
M6D1, D2 
A1[3]G1S(3)1 
A1[3]G1S(6)1 

 

DG4 

M4A1G1 
A2[3]G1 
A2[3]BG1 
FA2[6]BG1 
FA2[3]G1 
FA2[3]BG1 

GP9 

A2F1G2S(3)1 
A2F1G2S(6)1 
M8D2, D3 
A2G2S(3,3)2 
A2G2S(3,6)2 
A2G2S(6,6)2 
M8D1,D3 

 
 

DG5 

M6D1, D2 
M6D3 
A2G2 
A2BG2 

GP14 

A3F1G3S(3,3,6)3 
FA3F1G3S(6,6,6)3 
A4G4S(6,6)2 
A3F1G3S(3,6,6)3 
A3F1G3S(6,6,6)3 
A4G4S(6,6,6)3 
A4F1G4S2 
A4G4S3 

 

 

DG6 
FA2G2 
M5A1G1 
FA2BG2 

GP5 

M6D3 
A2[6]G1S(3)1 
A2[6]G1S(6)1 
A2G2 
A2[3]G1S(3)1 
A2[3]G1S(6)1 
A2BG2 

GP10 

A2BG2S(3,3)2 
A2BG2S(3,6)2 
A2BG2S(6,6)2 
A3BG3S(3)1 
A3BG3S(6)1 
FA2G2S(3,3)2 
FA2G2S(3,6)2 
FA2G2S(6,6)2 

 
 

DG7 
M7D3 
A2F1G2 
M7D1 

 

DG8 

A3G3 
A2F2G2 
FA3G3 
M8D2, D3 
M8D1,D3 

GP15 A4G4S4 
A4F1G4S3 

 

GP6 

FA2[6]G1S(3)1 
FA2[6]G1S(6)1 
FA2[6]BG1S(3)1 
FA2[6]BG1S(6)1 
M4A1G1S1 
FA2G2 
FA2[3]G1S(3)1 
FA2[3]G1S(6)1 
A2BG1S1 
FA2[3]BG1S(3)1 
FA2[3]BG1S(6)1 

GP16 

A4G4S(6,6,6,6)4 
A4G4S(3,6,6,6)4 
A4BG4S4 
FA4G4S4 
A4F1G4S4 
A4G4LacS4 
A4F2G4S4 
FA4F1G4S4 

 

GP11 

FA2BG2S(3,3)2 
FA2BG2S(3,6)2 
FA2BG2S(6,6)2 
M9 

 
 DG9 FA3BG3 

A3F1G3 
 DG10 M9 

FA3F1G3 
 

DG11 

A4G4 
A4BG4 
A3F2G3 
FA4G4 

 DG12 A4F1G4 
 

DG13 
A4G4Lac 
A4F2G4 
FA4F1G4 
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Structure abbreviations: all N-glycans have two core GlcNAcs; F at the start of the abbreviation indicates a core fucose 
α1-6 linked to the inner GlcNAc; Mx, number (x) of mannose on core GlcNAcs; D1 indicates that the α1-2 mannose is on 
the Manα1-6Manα1-6 arm, D2 on the Manα1-3Manα1-6 arm, D3 on the Manα1-3 arm of M6 and on the Manα1-
2Manα1-3 arm of M7 and M8; Ax, number of antenna (GlcNAc) on trimannosyl core; A2, biantennary with both 
GlcNAcs as β1-2 linked; A3, triantennary with a GlcNAc linked β1-2 to both mannose and the third GlcNAc linked β1-4 
to the α1-3 linked mannose; A4, GlcNAcs linked as A3 with additional GlcNAc β1-6 linked to α1-6 mannose; B, 
bisecting GlcNAc linked β1-4 to β1-3 mannose; Gx, number (x) of β1-4 linked galactose on antenna; [3]G1 and [6]G1 
indicates that the galactose is on the antenna of the α1-3 or α1-6 mannose; F(x), number (x) of fucose linked α1-3 to 
antenna GlcNAc; Lac(x), number (x) of lactosamine (Galβ1-4GlcNAc) extensions; Sx, number (x) of sialic acids linked to 
galactose; the numbers 3 or 6 or in parentheses after S indicate whether the sialic acid is in an α2-3 or α2-6 linkage. If 
there is no linkage number, the exact link is unknown.  
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Supplementary table 2. Glycan structural features derived from the plasma glycome peaks. Derived 

plasma glycosylation traits were approximated by adding the chromatographic peaks from either HILIC or 

HILIC after sialidase treatment sharing the same structural characteristics. 

GLYCAN 
STRUCTURAL 

FEATURE 

TRAIT 
CODE 

DESCRIPTION FORMULA 

Fucosylation 
(position of fucose) 

FUC-C Core fucosylated DG6/(DG5+DG6)*100 

FUC-A Antennary fucosylated DG7/(DG5+DG7)*100 

Degree of 
branching 

BA Biantennary DG1+DG2+DG3+DG4+DG5+DG6+DG7 

TRIA Triantennary DG8+DG9+DG10 

TA Tetraantennary DG11+DG12+DG13 

Sialylation of 
biantennary 
structures 

BAMS Monosialylated biantennary (GP7+GP8)/(DG5+DG6+DG7)*100 

BADS Disialylated biantennary (GP9+GP10+GP11)/(DG5+DG6+DG7)*100 

Galactosylation 

G0 Nongalactosylated DG1+DG2 

G1 Monogalactosylated DG3+DG4 

G2 Digalactosylated DG5+DG6+DG7 

G3 Trigalactosylated GP12+GP13+GP14 

G4 Tetragalactosylated GP15+GP16 

A2 Biantennary nongalactosylated (GP1+DG1)/2 
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Supplementary table 3. Composition of the IgG glycome. The IgG glycome was separated into 24 

chromatographic peaks by HILIC-UPLC and the individual glycan structures each peak were determined by 

mass spectrometry. The peaks are named IGG1-IGG23 along the thesis, with the peak GP3 excluded from the 

analyis as explained in the main text. 

Glycan 
peak 

Peak 
composition Structure % 

GP1 F(6)A1 

 

100 

GP2 A2  100 

GP3 A2B  100 

GP4 F(6)A2  100 

GP5 

M5  63 

F(6)A2  37 

GP6 

F(6)A2B  97 

A2[6]G1  3 

GP7 

A2[3]G1  75 

F(6)A2B  25 

GP8a 

A2BG1  93 

F(6)A2[6]G1  7 

GP8b F(6)A2[6]G1  100 

GP9 F(6)A2[3]G1  100 

GP10 F(6)A2[6]BG1  100 

GP11 F(6)A2[3]BG1  100 

GP12 

A2G2  91 

F(6)A2[3]BG1  9 

GP13 A2BG2  87 

Glycan 
peak Peak composition Structure % 

GP15 

F(6)A2BG2 

 

83 

F(6)A1G1S1  8 

A2G1S1  5 

F(6)A2G2  4 

GP16a 

F(6)A2[6]G1S1  63 

M4A1G1S1  25 

A2BG1S1  13 

GP16b 

F(6)A2[3]G1S1  91 

F(6)A2[6]BG1S1  9 

GP17 

A2G2S1  89 

F(6)A2[3]BG1S1  11 

GP18a 

A2BG2S1  91 

F(6)A2G2S1  9 

GP18b F(6)A2G2S1  100 

GP19 F(6)A2BG2S1  100 

GP20 n.d.  / 

GP21 A2G2S2  100 

GP22 A2BG2S2  100 

GP23 F(6)A2G2S2  100 
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F(6)A2G2  13 

GP14 F(6)A2G2  100 

 

GP24 F(6)A2BG2S2  100 

 

 

Structure abbreviations: all N-glycans have core sugar sequence consisting of two N-acetylglucosamines (GlcNAc) and 
three mannose residues; F indicates a core fucose α1–6 linked to the inner GlcNAc; Mx, number (×) of mannose on core 
GlcNAcs; Ax, number of antenna (GlcNAc) on trimannosyl core; A2, biantennary glycan with both GlcNAcs as β1–2 
linked; B, bisecting GlcNAc linked β1–4 to β1–3 mannose; Gx, number of β1–4 linked galactose (G) on antenna; [3]G1 
and [6]G1 indicates that the galactose is on the antenna of the α1–3 or α1–6 mannose; Sx, number (×) of sialic acids linked 
to galactose. Structural schemes are given in terms of N-acetylglucosamine (square), mannose (circle), fucose (rhomb with 
a dot), galactose (rhomb) and sialic acid (star). 
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Supplementary table 4. Glycan structural features derived from the IgG glycome peaks. Derived IgG glycosylation traits were approximated from the ratios of 

original IgG glycan peaks (GP1-GP24, excluding GP3) sharing the same structural characteristics as indicate by the formulas. 

GLYCOSYLATION 
FEATURE GROUPS LABEL 

STRUCTURAL FEATURE 
CODE 

STRUCTURAL FEATURE DESCRIPTION FORMULA 

IgG CHARGED glycans 
(derived parameters) 

 

IGG24 FGS/(FG+FGS) The percentage of sialylation of fucosylated galactosylated structures 
without bisecting GlcNAc in total IgG glycans 

SUM(GP16 + GP18 + GP23) / SUM(GP16 + GP18 + 
GP23 + GP8 + GP9 + GP14) * 100 

IGG25 FBGS/(FBG+FBGS) The percentage of sialylation of fucosylated galactosylated structures 
with bisecting GlcNAc in total IgG glycans 

SUM(GP19 + GP24) / SUM(GP19 + GP24 + GP10 + 
GP11 + GP15) * 100 

IGG26 FGS/(F+FG+FGS) The percentage of sialylation of all fucosylated structures without 
bisecting GlcNAc in total IgG glycans 

SUM(GP16 + GP18 + GP23) / SUM(GP16 + GP18 + 
GP23 + GP4 +  GP8 + GP9 + GP14) * 100 

IGG27 FBGS/(FB+FBG+FBGS) The percentage of sialylation of all fucosylated structures with 
bisecting GlcNAc in total IgG glycans 

SUM(GP19 + GP24) / SUM(GP19 + GP24 + GP6 + 
GP10 + GP11 + GP15) * 100 

IGG28 FG1S1/(FG1+FG1S1) The percentage of monosialylation of fucosylated 
monogalactosylated structures in total IgG glycans GP16 / SUM(GP16 + GP8 + GP9) * 100 

IGG29 FG2S1/(FG2+FG2S1+FG2S2) The percentage of monosialylation of fucosylated digalactosylated 
structures in total IgG glycans GP18 / SUM(GP18 + GP14 + GP23) * 100 

IGG30 FG2S2/(FG2+FG2S1+FG2S2) The percentage of disialylation of fucosylated digalactosylated 
structures in total IgG glycans GP23 / SUM(GP23 + GP14 + GP18) * 100 

IGG31 FBG2S1/(FBG2+FBG2S1+FBG2S2) The percentage of monosialylation of fucosylated digalactosylated 
structures with bisecting GlcNAc in total IgG glycans GP19 / SUM(GP19 + GP15 + GP24) * 100 

IGG32 FBG2S2/(FBG2+FBG2S1+FBG2S2) The percentage of disialylation of fucosylated digalactosylated 
structures with bisecting GlcNAc in total IgG glycans GP24 / SUM(GP24 + GP15 + GP19) * 100 

IGG33 FtotalS1/FtotalS2 Ratio of all fucosylated (+/- bisecting GlyNAc) monosyalilated and 
disialylated structures in total IgG glycans SUM(GP16 + GP18 + GP19) / SUM(GP23 + GP24) 

IGG34 FS1/FS2 Ratio of fucosylated (without bisecting GlcNAc) monosialylated  and 
disialylated structures in total IgG glycans SUM(GP16 + GP18) / GP23 

IGG35 FBS1/FBS2 Ratio of fucosylated (with bisecting GlcNAc) monosialylated  and 
disialylated structures in total IgG glycans GP19 / GP24 

IGG36 FBStotal/FStotal Ratio of all fucosylated sialylated structures with and without 
bisecting GlcNAc SUM(GP19 + GP24) / SUM(GP16 + GP18 + GP23) 

IGG37 FBS1/FS1 Ratio of  fucosylated monosialylated structures with and without 
bisecting GlcNAc GP19 / SUM(GP16 + GP18) 

IGG38 FBS1/(FS1+FBS1) The incidence of bisecting GlcNAc in all fucosylated monosialylated 
structures in total IgG glycans GP19 / SUM(GP16 + GP18 + GP19) 

IGG39 FBS2/FS2 Ratio of fucosylated disialylated structures with and without 
bisecting GlcNAc GP24 / GP23 

IGG40 FBS2/(FS2+FBS2) The incidence of bisecting GlcNAc in all fucosylated disialylated 
structures in total IgG glycans  GP24 / SUM(GP23 + GP24) 
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GLYCOSYLATION 
FEATURE GROUPS LABEL 

STRUCTURAL FEATURE 
CODE 

STRUCTURAL FEATURE DESCRIPTION FORMULA 

IgG NEUTRAL glycans 

IGG41 GP1n The percentage of GP1 glycan in total neutral IgG glycans (GPn) GP1 / GPn* 100 

IGG42 GP2n The percentage of GP2 glycan in total neutral IgG glycans (GPn) GP2 / GPn* 100 

IGG43 GP4n The percentage of GP4 glycan in total neutral IgG glycans (GPn)  GP4 / GPn* 100 

IGG44 GP5n The percentage of GP5 glycan in total neutral IgG glycans (GPn) GP5 / GPn* 100 

IGG45 GP6n The percentage of GP6 glycan in total neutral IgG glycans (GPn) GP6 / GPn* 100 

IGG46 GP7n The percentage of GP7 glycan in total neutral IgG glycans (GPn) GP7 / GPn* 100 

IGG47 GP8n The percentage of GP8 glycan in total neutral IgG glycans (GPn) GP8 / GPn* 100 

IGG48 GP9n The percentage of GP9 glycan in total neutral IgG glycans (GPn) GP9 / GPn* 100 

IGG49 GP10n The percentage of GP10 glycan in total neutral IgG glycans (GPn) GP10 / GPn* 100 

IGG50 GP11n The percentage of GP11 glycan in total neutral IgG glycans (GPn) GP11 / GPn* 100 

IGG51 GP12n The percentage of GP12 glycan in total neutral IgG glycans (GPn) GP12 / GPn* 100 

IGG52 GP13n The percentage of GP13 glycan in total neutral IgG glycans (GPn) GP13 / GPn* 100 

IGG53 GP14n The percentage of GP14 glycan in total neutral IgG glycans (GPn) GP14 / GPn* 100 

IGG54 GP15n The percentage of GP15 glycan in total neutral IgG glycans (GPn) GP15 / GPn* 100 

IgG NEUTRAL glycans 
(derived parameters) 

IGG55 G0n The percentage of agalactosylated structures in total neutral IgG 
glycans  SUM(GP1n: GP6n) 

IGG56 G1n The percentage of monogalactosylated structures in total neutral  
IgG glycans  SUM(GP7n: GP11n) 

IGG57 G2n The percentage of digalactosylated structures in total neutral IgG 
glycans  SUM(GP12n: GP15n) 

IGG58 Fn total The percentage of all fucosylated (+/- bisecting GlcNAc) structures 
in total neutral IgG glycans  

SUM(GP1n+ GP4n+ GP5n+ GP6n+ GP8n+ GP9n+ 
GP10n+ GP11n+ GP14n+ GP15n) 

IGG59 FG0n total/G0n The percentage of fucosylation of agalactosylated structures  SUM(GP1n+ GP4n+ GP5n+ GP6n) / G0n * 100 

IGG60 FG1n total/G1n The percentage of fucosylation of monogalactosylated structures  SUM(GP8n+ GP9n+ GP10n+ GP11n) / G1n * 100 

IGG61 FG2n total /G2n The percentage of fucosylation of digalactosylated structures  SUM(GP14n+ GP15) / G2n * 100 

IGG62 Fn The percentage of fucosylated (without bisecting GlcNAc) structures 
in total neutral IgG glycans  SUM(GP1n+ GP4n+ GP5n+ GP8n+ GP9n+ GP14n) 

IGG63 FG0n/G0n The percentage of fucosylation (without bisecting GlcNAc) of 
agalactosylated structures  SUM(GP1n+ GP4n+ GP5n) / G0n * 100 

IGG64 FG1n/G1n The percentage of fucosylation (without bisecting GlcNAc) of 
monogalactosylated structures  SUM(GP8n+ GP9n) / G1n * 100 
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GLYCOSYLATION 
FEATURE GROUPS LABEL 

STRUCTURAL FEATURE 
CODE 

STRUCTURAL FEATURE DESCRIPTION FORMULA 

IGG65 FG2n/G2n The percentage of fucosylation (without bisecting GlcNAc) of 
digalactosylated structures  GP14n/ G2n * 100 

IGG66 FBn The percentage of fucosylated (with bisecting GlcNAc) structures in 
total neutral IgG glycans  SUM(GP6n + GP10n + GP11n + GP15n) 

IGG67 FBG0n/G0n The percentage of fucosylation (with bisecting GlcNAc) of 
agalactosylated structures  GP6n/ G0n * 100 

IGG68 FBG1n/G1n The percentage of fucosylation (with bisecting GlcNAc) of 
monogalactosylated structures  SUM(GP10n + GP11n) / G1n * 100 

IGG69 FBG2n/G2n The percentage of fucosylation (with bisecting GlcNAc) of 
digalactosylated structures  GP15) / G2n * 100 

IGG70 FBn/Fn   Ratio of fucosylated structures with and without bisecting GlcNAc FBn/ Fn * 100  

IGG71 FBn/Fn total  The incidence of bisecting GlcNAc in all fucosylated structures in 
total neutral IgG glycans  FBn/ Fn total * 100 

IGG72 Fn/(Bn + FBn) Ratio of fucosylated non-bisecting GlcNAc structures and all 
structures with bisecting GlcNAc Fn/(GP13n + FBn ) 

IGG73 Bn/(Fn + FBn)  Ratio of structures with bisecting GlcNAc and all fucosylated 
structures (+/- bisecting GlcNAc) GP13n/ (Fn+ FBn ) * 1000 

IGG74 FBG2n/FG2n  Ratio of fucosylated digalactosylated structures with and without 
bisecting GlcNAc GP15n/GP14n  

IGG75 FBG2n /(FG2n + FBG2n ) The incidence of bisecting GlcNAc in all fucosylated digalactosylated 
structures in total neutral IgG glycans  GP15n/(GP14n + GP15n) * 100 

IGG76 FG2n/(BG2n + FBG2n) Ratio of fucosylated digalactosylated non-bisecting GlcNAc 
structures and all digalactosylated structures with bisecting GlcNAc GP14n/(GP13n + GP15n) 

IGG77 BG2n/(FG2n + FBG2n)  Ratio of digalactosylated structures with bisecting GlcNAc and all 
fucosylated digalactosylated structures (+/- bisecting GlcNAc) GP15n/(GP14n + GP15n) * 1000 
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Supplementary table 5. Correspondence between IgG and plasma glycan peaks. The IgG glycan peaks 

(GP1-GP24) are combined into 11 plasma glycan peaks (GP1-GP11). Notes about IgG glycan peaks: GP1 has 

no correspondence in plasma peaks, GP3 was excluded from all analyses as explained in the section 2.2.2, 

GP20 glycan structures were not determined (n.d.) and minor peaks designated with letters a and b sum up to a 

major peak (for instance, GP8a+GP8b=GP8). 

IgG glycan peaks Plasma glycans peaks 

GP1 - 

GP2 GP1 

GP3 
GP2 

GP4 

GP5 
GP3 

GP6 

GP7 

GP4 

GP8a 

GP8b 

GP9 

GP10 

GP11 

GP12 
GP5 

GP13 

GP14 

GP6 
GP15 

GP16a 

GP16b 

GP17 GP7 

GP18a 

GP8 GP18b 

GP19 

GP20 
GP9 

GP21 

GP22 
GP10 

GP23 
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GP24 GP11 
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Supplementary table 6. Genetic variants potentially associated with the diabetes condition. List of the top 

30 SNPs identified by the correlation adjusted scores method as the most important for the diabetes data group 

division. Genes overlapping with the SNP are annotated without asterisk and neighbour genes of the SNP are 

annotated with asterisk. 

SNP Chr Genes 

rs7865906 9 NCS1* 

rs1292123 6 CDK19* 

rs9578030 13 LINC00398* 

rs6563348 13 DCLK1 

rs7865279 9 IDNK* 

rs37984 7 AC006042.8; AC006465.3; GLCCI1 

rs7232159 18 RP11-25O3.1* 

rs2203586 2 AC092684.1 

rs2150228 13 RNY4P29* 

rs1373762 18 RP11-25O3.1* 

rs12492596 3 AC104637.1* 

rs7631551 3 FLT1P1 

rs1328650 13 DCLK1* 

rs7163551 15 RGMA 

rs1926317 13 DCLK1 

rs12605728 18 DCC 

rs5961574 X AC074035.1* 

rs4659764 1 MT1HL1 

rs802684 6 CDK19 

rs1910780 12 RP11-955H22.2* 

rs3924384 2 AC116609.1 

rs3795366 1 SIPA1L2 

rs1358725 6 RP1-60O19.1* 

rs10897193 11 AP003733.1* 

rs2691185 6 CDK19 

rs1217770 5 MAP1B* 

rs7202468 16 AC009158.1* 

rs9954050 18 RP11-25O3.1* 

rs7334245 13 DCLK1 

rs11653470 17 AC005863.1 
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Supplementary table 7. Genetic variants most contributing to the genetic structure of populations. List 

of 35 SNPs consistently identified by the three SNP selection methods to be the most important for population 

discrimination within the top 100 SNPs. Genes overlapping with the SNP are annotated without asterisk and 

neighbour genes of the SNP are annotated with asterisk. The number in parenthesis following the name of the 

method indicates the rank position achieved by the SNP with that particular method. RJ: Random Jungle; 

CARE: correlation adjusted scores; DAPC: discriminat analysis of principal components. 

SNP Chr Genes Methods (rank) 

rs1446585 2 R3HDM1 RJ(1); CARE(2); DAPC(1) 

rs6730157 2 RAB3GAP1; ZRANB3 RJ(2); CARE(1); DAPC(2) 

rs309160 2 DARS RJ(3); CARE(8); DAPC(6) 

rs313519 2 R3HDM1 RJ(4); CARE(14); DAPC(9) 

rs313528 2 R3HDM1 RJ(5); CARE(13); DAPC(8) 

rs932206 2 AC068492.1* RJ(6); CARE(4); DAPC(4) 

rs1561277 2 ZRANB3 RJ(7); CARE(3); DAPC(3) 

rs621341 2 TMEM163 RJ(8); CARE(11); DAPC(15) 

rs2011946 2 AC068492.1* RJ(9); CARE(6); DAPC(7) 

rs6739713 2 R3HDM1* RJ(10); CARE(9); DAPC(11) 

rs1469996 2 LCT; UBXN4 RJ(11); CARE(39); DAPC(17) 

rs2071556 6 

AL645941.1; AL662845.1; AL935042.1; 
BX088556.1; BX927138.1; CR752645.1; 
CR759798.1; CR936913.1; HLA-DMB; 
XXbac-BPG181M17.5 

RJ(12); CARE(22); DAPC(21) 

rs309137 2 AC093391.2 RJ(13); CARE(7); DAPC(5) 

rs2322659 2 LCT RJ(14); CARE(57); DAPC(12) 

rs1869829 2 RAB3GAP1 RJ(15); CARE(20); DAPC(10) 

rs3213943 2 R3HDM1 RJ(18); CARE(66); DAPC(20) 

rs1042337 6 

AL645941.1; AL662845.1; AL935042.1; 
BX088556.1; BX927138.1; CR752645.1; 
CR759798.1; CR936913.1; HLA-DMB; 
XXbac-BPG181M17.5 

RJ(20); CARE(26); DAPC(33) 

rs7950019 11 ST13P5 RJ(21); CARE(5); DAPC(28) 

rs1035798 6 AGER; PBX2; RNF5 RJ(24); CARE(18); DAPC(26) 

rs6430585 2 UBXN4 RJ(28); CARE(45); DAPC(18) 

rs659445 6 C2; CYP21A2; EHMT2; ZBTB12 RJ(29); CARE(65); DAPC(45) 

rs10008492 4 RNA5SP158* RJ(30); CARE(15); DAPC(14) 
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SNP Chr Genes Methods (rank) 

rs494620 6 CYP21A2; SLC44A4 RJ(31); CARE(58); DAPC(30) 

rs382259 6 XXbac-BPG154L12.4* RJ(32); CARE(12); DAPC(13) 

rs4331786 4 TLR10 RJ(37); CARE(33); DAPC(27) 

rs9267833 6 NOTCH4 RJ(41); CARE(24); DAPC(63) 

rs1123848 2 HNRNPKP2* RJ(43); CARE(80); DAPC(19) 

rs10024216 4 RNA5SP158 RJ(46); CARE(34); DAPC(22) 

rs535586 6 CYP21A2; EHMT2 RJ(51); CARE(67); DAPC(46) 

rs13296013 9 RPS10P3 RJ(59); CARE(32); DAPC(58) 

rs1319281 13 RN7SKP2* RJ(61); CARE(64); DAPC(84) 

rs10496746 2 RN7SKP141* RJ(62); CARE(99); DAPC(24) 

rs2045272 11 ST13P5* RJ(75); CARE(17); DAPC(49) 

rs185819 6 5S_rRNA; RNA5SP206; TNXB RJ(82); CARE(60); DAPC(44) 

rs13149231 4 KLF3* RJ(84); CARE(10); DAPC(35) 
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Supplementary table . Genetic variants associated with plasma N-glycan traits. List of SNPs consistently 

identified by the three SNP selection methods to be associated with each glycan trait within the top 100 SNPs. 

SNPs which were first-ranked by two of the methods are highlighted in bold. Genes overlapping with the SNP 

are annotated without asterisk and neighbour genes of the SNP are annotated with asterisk; n.d. means that the 

annotation for that SNP could not be fetched from Ensembl database. The number in parenthesis following the 

name of the method indicates the rank position achieved by the SNP with that particular method. RJ: Random 

Jungle; CARE: correlation adjusted scores; GEMMA: bayesian sparse linear mixed model. 

Trait SNP Chr Genes Methods (rank) 

GP1 rs6573604 14 CTD-2509G16.5 RJ(46); CARE(1); GEMMA(1) 

GP3 rs946808 9 RP11-375O18.2 RJ(6); CARE(23); GEMMA(2) 

GP5 rs1530057 3 RBMS3 RJ(78); CARE(7); GEMMA(75) 

GP6 rs9901675 17 
SNORD10; AC113189.5; 
SNORA67; MPDU1;CD68; 
EIF4A1; SENP3-EIF4A1 

RJ(17); CARE(1); GEMMA(1) 

GP7 rs12362065 11 OR10W1* RJ(74); CARE(87); GEMMA(5) 

GP8 rs6725841 2 LINC00299;AC007464.1 RJ(4); CARE(1); GEMMA(5) 

GP8 rs10484427 6 RP11-254A17.1* RJ(10); CARE(2); GEMMA(2) 

GP9 rs4487196 3 RPL21P41* RJ(65); CARE(2); GEMMA(97) 

GP9 rs3734087 5 NUDT12 RJ(74); CARE(44); GEMMA(84) 

GP10 rs10483776 14 FUT8 RJ(3); CARE(1); GEMMA(3) 

GP10 rs4756899 11 USH1C;OTOG RJ(9); CARE(3); GEMMA(1) 

GP10 rs174627 11 FADS3;FADS2 RJ(71); CARE(2); GEMMA(2) 

GP11 rs7137203 12 AC139931.1* RJ(2); CARE(1); GEMMA(1) 

GP11 rs4414724 2 LDHAP3* RJ(85); CARE(29); GEMMA(15) 

GP12 rs1281121 4 SH3TC1 RJ(61); CARE(24); GEMMA(4) 

GP13 rs13107325 4 SLC39A8 RJ(5); CARE(2); GEMMA(6) 

GP14 rs3760776 19 FUT6;FUT3 RJ(1); CARE(1); GEMMA(2) 

GP14 rs1974491 17 BRIP1* RJ(17); CARE(2); GEMMA(1) 

GP15 rs10812830 9 LINGO2 RJ(27); CARE(8); GEMMA(27) 

GP15 rs10743152 11 TH;MIR4686 RJ(79); CARE(1); GEMMA(3) 

GP16 rs1569785 22 RP1-293L6.1* RJ(24); CARE(3); GEMMA(59) 

DG1 rs11621121 14 MIR4708* RJ(2); CARE(5); GEMMA(1) 

DG1 rs10132229 14 CTD-2509G16.5 RJ(7); CARE(4); GEMMA(2) 

DG2 rs1412990 9 PIP5K1B RJ(56); CARE(61); GEMMA(13) 

DG3 rs4567889 2 ALK RJ(57); CARE(5); GEMMA(2) 



 

156 
 

Trait SNP Chr Genes Methods (rank) 

DG4 rs2980542 8 RGS22 RJ(31); CARE(2); GEMMA(3) 

DG4 rs1995536 8 CSMD1 RJ(93); CARE(77); GEMMA(80) 

DG5 rs1506869 8 DOCK5 RJ(89); CARE(25); GEMMA(69) 

DG7 rs315081 1 ST6GALNAC3 RJ(17); CARE(2); GEMMA(3) 

DG7 rs3760776 19 FUT6;FUT3 RJ(52); CARE(1); GEMMA(2) 

DG7 rs4569731 4 GALNTL6 RJ(72); CARE(86); GEMMA(66) 

DG8 rs2446440 8 LINC00967* RJ(4); CARE(3); GEMMA(1) 

DG8 rs1328514 9 AL353707.1* RJ(29); CARE(6); GEMMA(37) 

DG8 rs2472867 6 FARS2 RJ(51); CARE(2); GEMMA(2) 

DG8 rs12926250 16 PMFBP1 RJ(54); CARE(13); GEMMA(16) 

DG9 rs3760776 19 FUT6;FUT3 RJ(1); CARE(1); GEMMA(2) 

DG9 rs1150975 12 RP11-428G5.1 RJ(38); CARE(7); GEMMA(3) 

DG9 rs2650000 12 HNF1A-AS1* RJ(45); CARE(6); GEMMA(1) 

DG10 rs3135363 6 BTNL2* RJ(3); CARE(3); GEMMA(1) 

DG11 rs13203024 6 NUS1* RJ(1); CARE(1); GEMMA(3) 

DG11 rs729724 10 WARS2P1* RJ(11); CARE(7); GEMMA(5) 

DG12 rs3760776 19 FUT6;FUT3 RJ(16); CARE(1); GEMMA(1) 

Monosialo rs10514990 17 CA10 RJ(37); CARE(73); GEMMA(4) 

Disialo rs9847446 3 RP11-231E6.1* RJ(3); CARE(7); GEMMA(3) 

Disialo rs759602 3 ST6GAL1 RJ(38); CARE(46); GEMMA(92) 

Trisialo rs248230 5 RNF130 RJ(19); CARE(49); GEMMA(34) 

Trisialo rs10211505 2 AC012671.2* RJ(33); CARE(51); GEMMA(24) 

BAMS rs718858 3 AGTR1 RJ(46); CARE(3); GEMMA(53) 

BADS rs9808120 2 RP11-111J6.2* RJ(6); CARE(49); GEMMA(71) 

BADS rs11701048 21 CBS RJ(66); CARE(26); GEMMA(3) 

BA rs1486536 11 RP11-179A10.1* RJ(83); CARE(95); GEMMA(64) 

TRIA rs2235959 14 FLRT2 RJ(52); CARE(3); GEMMA(1) 

C.FUC rs12702696 7 ICA1;AC006042.6 RJ(41); CARE(52); GEMMA(33) 

A.FUC rs3760776 19 FUT6;FUT3 RJ(1); CARE(1); GEMMA(2) 

A.FUC rs17078797 13 RP11-531P20.1* RJ(2); CARE(91); GEMMA(71) 

A.FUC rs4899579 14 IFT43* RJ(13); CARE(31); GEMMA(98) 

A.FUC rs4807826 19 RANBP3 RJ(39); CARE(40); GEMMA(51) 

A.FUC rs10795250 10 AKR1C5P RJ(85); CARE(27); GEMMA(41) 
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Trait SNP Chr Genes Methods (rank) 

A2 rs10132229 14 CTD-2509G16.5 RJ(7); CARE(3); GEMMA(66) 

A2 rs7159888 14 CTD-2509G16.5 RJ(8); CARE(2); GEMMA(1) 

A2 rs2305480 17 GSDMB RJ(96); CARE(15); GEMMA(2) 

G0 rs6782811 3 ITPR1 RJ(52); CARE(30); GEMMA(79) 

G1 rs1045873 10 PRTFDC1 RJ(11); CARE(4); GEMMA(1) 

G1 rs3133679 8 RGS22 RJ(12); CARE(1); GEMMA(2) 

G1 rs7789699 7 PRKAG2 RJ(21); CARE(6); GEMMA(24) 

G2 rs17735715 3 RP11-23D24.2; RNU6-901P RJ(67); CARE(61); GEMMA(10) 

G3 rs13107325 4 SLC39A8 RJ(6); CARE(1); GEMMA(1) 

G3 rs469523 5 DCP2* RJ(32); CARE(6); GEMMA(65) 

G3 rs4827341 X SRPX; RP13-43E11.1; TM4SF2 RJ(39); CARE(30); GEMMA(63) 

G4 rs10743152 11 TH;MIR4686 RJ(10); CARE(1); GEMMA(1) 

G4 rs228376 X DMD RJ(77); CARE(30); GEMMA(4) 
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Supplementary table 9. Genetic variants associated with IgG N-glycan traits. List of SNPs consistently 

identified by the three SNP selection methods to be associated with each glycan trait within the top 100 SNPs. 

SNPs which were first-ranked by all methods are highlighted in bold. Genes overlapping with the SNP are 

annotated without asterisk and neighbour genes of the SNP are annotated with an asterisk. The number in 

parenthesis following the name of the method indicates the rank position achieved by the SNP with that 

particular method. RJ: Random Jungle; CARE: correlation adjusted scores; GEMMA: bayesian sparse linear 

mixed model. 

Trait SNP Chr Genes Methods (rank) 

IGG2 rs1269068 14 CTD-2509G16.5 RJ(3); CARE(4); GEMMA(1) 

IGG3 rs3818593 9 B4GALT1 RJ(5); CARE(1); GEMMA(1) 

IGG3 rs13121519 4 GRID2 RJ(42); CARE(9); GEMMA(85) 

IGG4 rs6100044 20 VAPB RJ(55); CARE(37); GEMMA(79) 

IGG5 rs909674 22 MGAT3 RJ(2); CARE(1); GEMMA(2) 

IGG6 rs1556463 9 PTPRD RJ(69); CARE(45); GEMMA(68) 

IGG7 rs4908037 1 AGL* RJ(61); CARE(1); GEMMA(33) 

IGG8 rs7570009 2 TMEM131 RJ(42); CARE(65); GEMMA(16) 

IGG8 rs1218577 1 KCNN3 RJ(43); CARE(32); GEMMA(52) 

IGG9 rs9620326 22 SMARCB1 RJ(1); CARE(1); GEMMA(2) 

IGG9 rs2292298 4 RELL1 RJ(6); CARE(3); GEMMA(1) 

IGG10 rs9620326 22 SMARCB1 RJ(1); CARE(1); GEMMA(5) 

IGG10 rs4731214 7 POT1* RJ(57); CARE(15); GEMMA(2) 

IGG10 rs3136706 1 CD2 RJ(61); CARE(37); GEMMA(85) 

IGG10 rs7232036 18 LINC00908* RJ(93); CARE(21); GEMMA(54) 

IGG11 rs7159888 14 CTD-2509G16.5 RJ(69); CARE(2); GEMMA(1) 

IGG12 rs7146952 14 RP11-326E7.1* RJ(38); CARE(16); GEMMA(46) 

IGG13 rs3818593 9 B4GALT1 RJ(1); CARE(1); GEMMA(2) 

IGG13 rs6764279 3 ST6GAL1 RJ(11); CARE(2); GEMMA(1) 

IGG13 rs7897452 10 CACNB2* RJ(18); CARE(30); GEMMA(10) 

IGG13 rs2142661 22 RIBC2 RJ(22); CARE(23); GEMMA(74) 

IGG14 rs9620326 22 SMARCB1 RJ(1); CARE(4); GEMMA(3) 

IGG14 rs1539604 6 RP11-278J20.2* RJ(33); CARE(31); GEMMA(5) 

IGG14 rs6444193 3 ST6GAL1 RJ(52); CARE(2); GEMMA(15) 

IGG15 rs6764279 3 ST6GAL1 RJ(1); CARE(1); GEMMA(1) 

IGG15 rs6444193 3 ST6GAL1 RJ(2); CARE(2); GEMMA(3) 
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Trait SNP Chr Genes Methods (rank) 

IGG15 rs154452 5 AC008592.5 RJ(47); CARE(31); GEMMA(14) 

IGG17 rs2363447 4 SLC4A4* RJ(3); CARE(4); GEMMA(2) 

IGG17 rs6764279 3 ST6GAL1 RJ(5); CARE(2); GEMMA(1) 

IGG17 rs1368304 5 HMGN1P16 RJ(13); CARE(5); GEMMA(18) 

IGG17 rs16939284 8 RP11-706J10.1; ZFHX4-AS1 RJ(25); CARE(10); GEMMA(5) 

IGG17 rs3818593 9 B4GALT1 RJ(30); CARE(1); GEMMA(3) 

IGG20 rs7201219 16 GSG1L RJ(94); CARE(5); GEMMA(5) 

IGG22 rs6764279 3 ST6GAL1 RJ(47); CARE(1); GEMMA(1) 

IGG22 rs4830793 X FRMPD4 RJ(65); CARE(29); GEMMA(48) 

IGG23 rs6764279 3 ST6GAL1 RJ(1); CARE(1); GEMMA(1) 

IGG23 rs1174864 7 POM121L12* RJ(11); CARE(91); GEMMA(59) 

IGG24 rs6764279 3 ST6GAL1 RJ(1); CARE(1); GEMMA(1) 

IGG24 rs1358295 2 RNU6-187P RJ(36); CARE(81); GEMMA(99) 

IGG25 rs4677611 3 FOXP1 RJ(2); CARE(38); GEMMA(32) 

IGG25 rs6734537 2 KLF7* RJ(77); CARE(25); GEMMA(1) 

IGG26 rs6764279 3 ST6GAL1 RJ(1); CARE(1); GEMMA(1) 

IGG26 rs3818593 9 B4GALT1 RJ(2); CARE(2); GEMMA(2) 

IGG26 rs9405681 6 EXOC2* RJ(12); CARE(32); GEMMA(73) 

IGG27 rs2154637 8 KB-1615E4.2 RJ(22); CARE(2); GEMMA(1) 

IGG28 rs6764279 3 ST6GAL1 RJ(1); CARE(1); GEMMA(1) 

IGG28 rs6444193 3 ST6GAL1 RJ(2); CARE(2); GEMMA(2) 

IGG28 rs935653 2 PRKCE RJ(30); CARE(12); GEMMA(7) 

IGG28 rs4940206 18 DCC RJ(73); CARE(11); GEMMA(14) 

IGG29 rs6764279 3 ST6GAL1 RJ(1); CARE(1); GEMMA(1) 

IGG29 rs6444193 3 ST6GAL1 RJ(2); CARE(2); GEMMA(2) 

IGG29 rs2725391 17 AZI1 RJ(5); CARE(6); GEMMA(3) 

IGG29 rs8104096 19 CTC-265F19.2;GNG7 RJ(54); CARE(55); GEMMA(71) 

IGG31 rs6764279 3 ST6GAL1 RJ(1); CARE(1); GEMMA(2) 

IGG31 rs6687262 1 PSAT1P3* RJ(2); CARE(2); GEMMA(1) 

IGG31 rs4887970 16 WWOX RJ(4); CARE(5); GEMMA(27) 

IGG31 rs378268 5 RP11-158J3.2* RJ(9); CARE(24); GEMMA(65) 

IGG31 rs2279913 17 RP11-455O6.2; AZI1 RJ(22); CARE(3); GEMMA(3) 

IGG32 rs6764279 3 ST6GAL1 RJ(1); CARE(1); GEMMA(1) 
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Trait SNP Chr Genes Methods (rank) 

IGG32 rs6444193 3 ST6GAL1 RJ(2); CARE(2); GEMMA(2) 

IGG33 rs1036585 3 BCHE* RJ(22); CARE(3); GEMMA(1) 

IGG33 rs1816658 8 LINC00966* RJ(56); CARE(5); GEMMA(7) 

IGG33 rs13266168 8 RP11-705O24.1* RJ(91); CARE(4); GEMMA(2) 

IGG34 rs1036585 3 BCHE* RJ(11); CARE(7); GEMMA(38) 

IGG34 rs13083341 3 BCHE* RJ(51); CARE(8); GEMMA(93) 

IGG35 rs6764279 3 ST6GAL1 RJ(1); CARE(1); GEMMA(1) 

IGG35 rs3777179 5 ELL2 RJ(28); CARE(11); GEMMA(3) 

IGG35 rs2149436 13 HTR2A* RJ(85); CARE(10); GEMMA(8) 

IGG36 rs10758192 9 B4GALT1 RJ(4); CARE(2); GEMMA(1) 

IGG37 rs6764279 3 ST6GAL1 RJ(1); CARE(1); GEMMA(1) 

IGG37 rs10758192 9 B4GALT1 RJ(10); CARE(3); GEMMA(2) 

IGG38 rs3818593 9 B4GALT1 RJ(2); CARE(2); GEMMA(2) 

IGG38 rs6764279 3 ST6GAL1 RJ(3); CARE(1); GEMMA(1) 

IGG38 rs302740 1 RP5-896L10.1 RJ(92); CARE(7); GEMMA(4) 

IGG39 rs909674 22 MGAT3 RJ(1); CARE(1); GEMMA(4) 

IGG39 rs9620326 22 SMARCB1 RJ(7); CARE(8); GEMMA(3) 

IGG39 rs3818593 9 B4GALT1 RJ(34); CARE(9); GEMMA(2) 

IGG40 rs9620326 22 SMARCB1 RJ(2); CARE(7); GEMMA(2) 

IGG40 rs5757659 22 TAB1 RJ(5); CARE(2); GEMMA(3) 

IGG40 rs3818593 9 B4GALT1 RJ(10); CARE(9); GEMMA(1) 

IGG42 rs10132229 14 CTD-2509G16.5 RJ(2); CARE(2); GEMMA(2) 

IGG42 rs7159888 14 CTD-2509G16.5 RJ(7); CARE(3); GEMMA(1) 

IGG43 rs1445779 5 FTH1P9 RJ(69); CARE(3); GEMMA(2) 

IGG45 rs9620326 22 SMARCB1 RJ(5); CARE(6); GEMMA(3) 

IGG45 rs5757659 22 TAB1 RJ(6); CARE(3); GEMMA(1) 

IGG45 rs7573966 2 STRN RJ(53); CARE(13); GEMMA(2) 

IGG45 rs5757721 22 RPS19BP1* RJ(83); CARE(11); GEMMA(37) 

IGG46 rs3798174 6 SLC22A1 RJ(1); CARE(7); GEMMA(66) 

IGG46 rs6573604 14 CTD-2509G16.5 RJ(9); CARE(2); GEMMA(1) 

IGG46 rs11650354 17 TBX21 RJ(14); CARE(5); GEMMA(2) 

IGG46 rs7789913 7 IKZF1 RJ(35); CARE(6); GEMMA(6) 

IGG46 rs9285339 13 SLITRK6* RJ(52); CARE(24); GEMMA(3) 
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Trait SNP Chr Genes Methods (rank) 

IGG48 rs10151805 14 C14orf80* RJ(66); CARE(1); GEMMA(49) 

IGG49 rs9620326 22 SMARCB1 RJ(1); CARE(1); GEMMA(3) 

IGG49 rs909674 22 MGAT3 RJ(16); CARE(2); GEMMA(4) 

IGG49 rs2185781 1 ADIPOR1 RJ(50); CARE(38); GEMMA(46) 

IGG50 rs9620326 22 SMARCB1 RJ(1); CARE(1); GEMMA(3) 

IGG50 rs7232036 18 LINC00908* RJ(86); CARE(8); GEMMA(7) 

IGG50 rs7563350 2 PROM2* RJ(90); CARE(69); GEMMA(45) 

IGG51 rs11650354 17 TBX21 RJ(10); CARE(1); GEMMA(2) 

IGG51 rs1341138 13 HSPD1P8 RJ(54); CARE(57); GEMMA(7) 

IGG52 rs12256995 10 PPIAP31* RJ(20); CARE(27); GEMMA(64) 

IGG52 rs1028531 14 RP11-816J8.1* RJ(79); CARE(1); GEMMA(1) 

IGG53 rs10758192 9 B4GALT1 RJ(21); CARE(4); GEMMA(1) 

IGG53 rs1998930 6 RP11-230C9.1* RJ(58); CARE(5); GEMMA(8) 

IGG53 rs10057083 5 CSNK1A1; CTB-89H12.4 RJ(97); CARE(28); GEMMA(73) 

IGG54 rs10517927 4 SPOCK3 RJ(6); CARE(1); GEMMA(5) 

IGG54 rs7857028 9 RNU6-996P* RJ(62); CARE(17); GEMMA(61) 

IGG56 rs441233 9 LINC00094* RJ(18); CARE(1); GEMMA(13) 

IGG56 rs5905956 X RP11-342D14.1 RJ(93); CARE(3); GEMMA(6) 

IGG57 rs3818593 9 B4GALT1 RJ(1); CARE(1); GEMMA(1) 

IGG57 rs2861806 5 CTB-63M22.1* RJ(84); CARE(11); GEMMA(30) 

IGG58 rs7789913 7 IKZF1 RJ(13); CARE(20); GEMMA(11) 

IGG58 rs7159888 14 CTD-2509G16.5 RJ(18); CARE(2); GEMMA(1) 

IGG58 rs7079570 10 VSTM4 RJ(40); CARE(35); GEMMA(28) 

IGG59 rs6573604 14 CTD-2509G16.5 RJ(1); CARE(1); GEMMA(1) 

IGG59 rs8074094 17 ITGB3; ITGB3 RJ(9); CARE(17); GEMMA(2) 

IGG59 rs7453920 6 HLA-DQB2 RJ(79); CARE(73); GEMMA(9) 

IGG61 rs6573604 14 CTD-2509G16.5 RJ(11); CARE(2); GEMMA(1) 

IGG61 rs11643717 16 LINC00311; CTC-786C10.2 RJ(44); CARE(53); GEMMA(14) 

IGG62 rs9620326 22 SMARCB1 RJ(1); CARE(1); GEMMA(2) 

IGG62 rs909674 22 MGAT3 RJ(3); CARE(2); GEMMA(3) 

IGG62 rs7789913 7 IKZF1 RJ(11); CARE(3); GEMMA(1) 

IGG62 rs8102799 19 ZNF160 RJ(50); CARE(20); GEMMA(5) 

IGG62 rs1859425 7 ZNF804B RJ(78); CARE(47); GEMMA(55) 
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IGG63 rs9620326 22 SMARCB1 RJ(1); CARE(4); GEMMA(3) 

IGG63 rs909674 22 MGAT3 RJ(3); CARE(1); GEMMA(4) 

IGG63 rs7781977 7 IKZF1 RJ(7); CARE(6); GEMMA(1) 

IGG63 rs1041350 9 SUMO2P2* RJ(15); CARE(9); GEMMA(2) 

IGG63 rs10483766 14 RHOJ RJ(54); CARE(14); GEMMA(38) 

IGG64 rs9620326 22 SMARCB1 RJ(1); CARE(1); GEMMA(3) 

IGG64 rs7781977 7 IKZF1 RJ(46); CARE(3); GEMMA(2) 

IGG64 rs6570330 6 TXLNB* RJ(56); CARE(11); GEMMA(1) 

IGG65 rs2427032 20 CDH4 RJ(1); CARE(4); GEMMA(2) 

IGG65 rs11643717 16 LINC00311; CTC-786C10.2 RJ(28); CARE(19); GEMMA(29) 

IGG65 rs7159888 14 CTD-2509G16.5 RJ(93); CARE(6); GEMMA(1) 

IGG66 rs9620326 22 SMARCB1 RJ(1); CARE(1); GEMMA(1) 

IGG66 rs909674 22 MGAT3 RJ(2); CARE(2); GEMMA(2) 

IGG66 rs5750811 22 TAB1 RJ(6); CARE(6); GEMMA(6) 

IGG67 rs909674 22 MGAT3 RJ(2); CARE(1); GEMMA(4) 

IGG67 rs9620326 22 SMARCB1 RJ(3); CARE(5); GEMMA(3) 

IGG67 rs1041350 9 SUMO2P2* RJ(9); CARE(8); GEMMA(2) 

IGG68 rs9620326 22 SMARCB1 RJ(1); CARE(1); GEMMA(1) 

IGG68 rs10506022 12 RP11-709A23.1; PPFIBP1 RJ(3); CARE(7); GEMMA(3) 

IGG68 rs909674 22 MGAT3 RJ(6); CARE(2); GEMMA(2) 

IGG68 rs7475361 10 SEPHS1 RJ(10); CARE(5); GEMMA(6) 

IGG68 rs3802586 10 PHYH RJ(95); CARE(18); GEMMA(45) 

IGG69 rs9620326 22 SMARCB1 RJ(1); CARE(2); GEMMA(3) 

IGG69 rs1159709 2 ERBB4 RJ(29); CARE(20); GEMMA(88) 

IGG69 rs3818593 9 B4GALT1 RJ(49); CARE(3); GEMMA(2) 

IGG70 rs9620326 22 SMARCB1 RJ(1); CARE(1); GEMMA(2) 

IGG70 rs909674 22 MGAT3 RJ(3); CARE(2); GEMMA(3) 

IGG70 rs7789913 7 IKZF1 RJ(50); CARE(9); GEMMA(1) 

IGG71 rs9620326 22 SMARCB1 RJ(1); CARE(1); GEMMA(2) 

IGG71 rs909674 22 MGAT3 RJ(2); CARE(2); GEMMA(3) 

IGG71 rs1390156 13 TDRD3* RJ(12); CARE(64); GEMMA(55) 

IGG71 rs10139559 14 RP11-353P15.1* RJ(17); CARE(33); GEMMA(72) 

IGG71 rs31340 5 FSTL4 RJ(20); CARE(23); GEMMA(25) 
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IGG71 rs7789913 7 IKZF1 RJ(67); CARE(9); GEMMA(1) 

IGG72 rs9620326 22 SMARCB1 RJ(1); CARE(1); GEMMA(2) 

IGG72 rs909674 22 MGAT3 RJ(2); CARE(2); GEMMA(3) 

IGG72 rs7781977 7 IKZF1 RJ(14); CARE(7); GEMMA(1) 

IGG72 rs1355925 
 

n.d. RJ(32); CARE(16); GEMMA(4) 

IGG73 rs11954386 5 PARP8 RJ(71); CARE(58); GEMMA(20) 

IGG74 rs9620326 22 SMARCB1 RJ(3); CARE(1); GEMMA(4) 

IGG74 rs10758192 9 B4GALT1 RJ(8); CARE(2); GEMMA(3) 

IGG75 rs9620326 22 SMARCB1 RJ(1); CARE(1); GEMMA(2) 

IGG75 rs10758192 9 B4GALT1 RJ(2); CARE(2); GEMMA(1) 

IGG75 rs31340 5 FSTL4 RJ(36); CARE(4); GEMMA(5) 

IGG75 rs2092168 22 RPS19BP1* RJ(70); CARE(5); GEMMA(3) 

IGG76 rs9620326 22 SMARCB1 RJ(3); CARE(1); GEMMA(3) 

IGG76 rs31340 5 FSTL4 RJ(11); CARE(3); GEMMA(2) 

IGG76 rs7789913 7 IKZF1 RJ(54); CARE(21); GEMMA(8) 

IGG76 rs3818593 9 B4GALT1 RJ(69); CARE(6); GEMMA(5) 
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Supplementary table 10. Genetic variants associated with phenotypes. List of SNPs consistently identified 

by the three SNP selection methods to be associated with each phenotype within the top 100 SNPs. Genes 

overlapping with the SNP are annotated without asterisk and neighbour genes of the SNP are annotated with 

asterisk. The number in parenthesis following the name of the method indicates the rank position achieved by 

the SNP with that particular method. RJ: Random Jungle; CARE: correlation adjusted scores; GEMMA: 

bayesian sparse linear mixed model. 

Trait SNP Chr Genes Methods (rank) 

Sys rs10485097 6 PPIL4 RJ(9); CARE(51); GEMMA(22) 

Sys rs7001273 8 RP11-628E19.4* RJ(56); CARE(24); GEMMA(46) 

Sys rs10507382 13 PAN3;FLT1 RJ(65); CARE(3); GEMMA(7) 

HDL rs995538 3 CPNE4 RJ(7); CARE(42); GEMMA(21) 

Trigy rs2131905 1 AKNAD1 RJ(2); CARE(46); GEMMA(59) 

Trigy rs159382 5 CTD-2176I21.2* RJ(45); CARE(1); GEMMA(3) 

Insulin rs10026220 4 PI4K2B RJ(2); CARE(4); GEMMA(64) 

Insulin rs965972 1 RP11-452J13.1* RJ(16); CARE(2); GEMMA(3) 

Insulin rs6679047 1 AL450244.1* RJ(49); CARE(12); GEMMA(5) 

Calcium rs7914270 10 WAPAL;RP11-77P6.2 RJ(16); CARE(3); GEMMA(4) 

UricAcid rs1014290 4 SLC2A9 RJ(35); CARE(1); GEMMA(1) 
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