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Chapter 1

Introduction

The topic of this thesis is exploration of properties of certain one-dimensional systems obeying
Bose statistics. We touch upon many concepts of interest in condensed matter and ultra-cold gas
physics, such as superfluidity, Bose-Einstein condensation and the Tomonaga-Luttinger theory
of one-dimensional systems.

One-dimensional systems are not necessarily only toy models, and they can be fundamentally
different from, and no less difficult to understand than higher-dimensional systems, as theories
highly successful in three dimensions tend to fail in one [9]. The difference is clearly visible
from the fact that perturbations can only give rise to collective excitations since there is no
way for particles to move around each other. The Tomonaga-Luttinger liquid theory is a low-
energy one-dimensional theory that successfully describes the physics of various simple one-
dimensional systems [9]. It has been experimentally realised in cold atomic and other systems
[25].

Aside from purely theoretical interest, the motivation for studying low-dimensional systems
stems from the possibility of their realization in various conditions. An example of this is the
design of materials in such manner that movement of electrons becomes restricted in one or
more directions, which can result in quantization effects that preclude motion in the restricted
dimensions [25]. In fact, most of the early research of one-dimensional systems was concerned
with electrons, since the study of electronic properties of quasi one-dimensional materials has
a clear potential for application. However, the distinction between Bose and Fermi systems
is not always clear cut. Cooper pairs behave to an extent as bosons [19], and the nature of
one-dimensional systems prevents the exchange of particles without collision, which reduces
the distinction between Bose and Fermi statistics [11]. The considerable overlap between re-
sults on Bose and Fermi systems is part of the motivation for studying one-dimensional Bose
systems, and the relatively recent experimental developments have encouraged more theoretical
activity in this field. These developments include confinement of cold atoms in essentially one-
dimensional anisotropic traps, optical lattices, and elongated pores [19]. The properties of these
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systems can be modified by changing experimental conditions. For example, a uniform mag-
netic field can be applied to control interactions via Feshbach resonances and optical lattices
can be used to test theories of condensed matter physics [7].

Disordered systems are a topic of much interest in condensed matter physics, since lattice
imperfections and impurities are almost inescapable, and give rise to phenomena such as resis-
tivity. It has been shown that disorder can have a profound effect on conductive or superfluid
properties of one-dimensional systems. It causes localization of eigenstates in noninteracting
systems and the competition between superfluidity and localization in normally superfluid sys-
tems [18, 19, 25]. Localization in presence of disorder has been confirmed numerically and
experimentally [25], but details are still a topic of research. The results on the effect of disorder
on superfluidity of a recent numerical study of 4He atoms in narrow pores [17] show signs of lo-
calization, but only when extrapolated to system sizes larger than those simulated, and apparent
disagreement with the prediction on the domain of validity of the Tomonaga-Luttinger liquid
regime (see [19, 22]). It is our primary aim to further research this aspect, and we present here
the results and discussion of a similar study on disorder and superfluidity, the main difference
being that simulations are performed in pure one-dimensional instead of quasi one-dimensional
geometry.

This thesis is organized as follows. In chapter 2 we give a brief and cursory overview of the
relevant physical theory. First we discuss topics of quantum statistical mechanics, Bose-Einstein
condensation, and superfluidity. Then we present the path integral formalism in quantum me-
chanics, and its application to quantum statistical mechanics, along with derivation of the rela-
tion between superfluidity and imaginary-time path winding around the periodic boundaries of
the system. We conclude this chapter with discussion of one-dimensional quantum systems. In
chapter 3 we present the specifics of the simulated systems and outline the procedure followed,
after which we discuss some of the general aspects of the path integral Monte Carlo method,
and some of the more specific aspects of the worm algorithm implementation that we have used.
Following this, in chapter 4 we present the obtained results on correlation functions and frac-
tions of superfluid in systems with and without disorder. The results are further discussed in
chapter 5, and final summary of conclusions is given in chapter 6.
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Chapter 2

Theory

In this chapter we present the theory behind the studied phenomena and methods used in the
study. We begin by covering some theory in the background of the more directly relevant
one-dimensional theory. This includes the Bose-Einstein condensation and superfluidity, phe-
nomena of interest to both physics of ultra-cold gases, and condensed matter physics. The path
integral formalism, which is of interest to many branches of physics, is also introduced. We will
assume particles are spinless throughout this chapter, and the remainder of this thesis.

2.1 Theoretical background

2.1.1 Density matrix and quantum statistical mechanics

Suppose a system is in a pure quantum state |φ〉. The projection operator is defined as |φ〉〈φ|,
and its expectation value in the state |ψ〉 is the probability of a measurement yielding the state
|ψ〉. This probability depends on the overlap of the two states, hence the projection of one onto
another. Suppose now our system is a statistical mixture of states (a mixed state), that is, it can
occupy any of the states |φi〉 with probabilities given by pi.1 We may generalize the projection
operator in the following manner.Let the set of |φi〉 be a complete set of orthonormal vectors.
We define the density matrix as [1]

ρ̂ =
∑
i

pi |φi〉〈φi| . (2.1)

1This is different from quantum superposition. A pure state can be a superposition of multiple states, but a
mixed state is not a superposition of pure states. Mixed states arise as a consequence of the uncertainty due to
interaction with the environment.

3
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If all probabilities are zero except for pj = 1, the pure state and the simple projection operator
are recovered. 2

If 〈φi|Ô|φi〉 is the expectation value of the operator Ô in the state φi, the mixed state expec-
tation value is given by

〈Ô〉 =
∑
i

pi 〈φi|Ô|φi〉 . (2.2)

It can be shown by inserting the unit operator
∑

j |φj〉〈φj| to the right of Ô in (2.2) and using
commutative and distributive properties that

〈Ô〉 =
∑
j

〈φj|ρ̂Ô|φj〉 ≡ Tr ρ̂Ô. (2.3)

Let the system be composed of N particles, and let R = {r1, r2, ..., rN} represent a config-
uration of the system’s coordinates. The density matrix elements in coordinate representation
are given as

ρ(R,R′) = 〈R|ρ̂|R′〉 =
∑
i

pi φi(R)φ∗i (R
′), (2.4)

where |R〉 and |R′〉 are states of different definite configurations of coordinates, and
〈R|φi〉 = φi(R). The diagonal element ρ(R,R) ≡ ρ(R) is the probability of finding the
system in the configurationR. The expectation value in the coordinate representation is

〈Ô〉 = Tr ρ̂Ô =

∫
dR 〈R|ρ̂Ô|R〉 . (2.5)

By inserting the unit operator
∫

dR′ |R′〉〈R′| between the two operators on the right hand side
of (2.5) we obtain the expression [1, 3]

〈Ô〉 =

∫
dR dR′ ρ(R,R′) 〈R′|Ô|R〉 (2.6)

We can now introduce the reduced p-body density matrices by integrating out coordinates
ri>p and multiplying with the normalization factor N !

(N−p)! .
3 The reduced density matrices can

be used to calculate expectation values of p-body operators (e.g. the two body potential) in a
manner analogous to (2.6). The one-body density matrix (OBDM)

ρ(r, r′) = N

∫
dr2 · · · drN ρ({r1, r2, ..., rN}, {r′1, r2, ..., rN}) (2.7)

is of the most interest for this thesis. By setting r = r′, we obtain the particle density

2It can be shown that the necessary and sufficient condition for a pure state is that the density matrix is idem-
potent, meaning ρ2 = ρ.

3The particular normalization is convenient in the second quantization framework, but there are multiple nor-
malization conventions as laid out in [4].

4
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n(r) ≡ ρ(r, r) .

Suppose the system of interest is in equilibrium with a heat bath, kept at a fixed temperature,
volume and number of particles (the canonical ensemble), and let Ĥ be the Hamiltonian of the
system. The probability of a microstate |φi〉 associated with the energy eigenvalue Ei is

pi =
e−βEi

Z
, (2.8)

Z being the partition function

Z =
∑
i

e−βEi = Tr e−βĤ . (2.9)

Now the density matrix takes the form

ρ̂ =
1

Z

∑
i

e−βEi |φi〉〈φi| =
e−βĤ

Z

∑
i

|φi〉〈φi| , (2.10)

and finally [1, 3]

ρ̂ =
e−βĤ

Z
. (2.11)

In this case, it is useful to denote the density matrix with β, as in ρ(R,R′; β).

It can be shown by differentiating an element ρij = δije
−βEi of the density matrix (2.11) that

ρ̂(β) satisfies the equation

− ∂ρ̂(β)

∂β
= Ĥρ̂. (2.12)

In case of a one-dimensional particle, (2.12) is a simple diffusion equation

− ∂ρ(x, x′; β)

∂β
= −λ ∂

2

∂x2
ρ(x, x′; β), (2.13)

where λ = ~2
2m

. The initial condition can be chosen as ρ(x, x′; 0) = δ(x−x′) 4, and the solution
is given by

ρ(x, x′; β) = (4πλβ)−1/2 exp

[
−(x− x′)2

4λβ

]
(2.14)

Generalizing to N three-dimensional particles, we have

ρ(R,R′; β) = (4πλβ)−3N/2 exp

[
−(R−R′)2

4λβ

]
. (2.15)

This equation can be applied to the case of particles in a box, as long as thermal wavelength

4This corresponds to perfect localization of the particle at infinite kinetic energy, and therefore, zero de Broglie
wavelength.
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ΛT =
√

2βλ is much less than the size of the box [3].

Symmetrized density matrix

So far, we have dealt only with distinguishable particles. More realistic systems of indistin-
guishable particles can only occupy states that are either symmetric or antisymmetric with re-
spect to the exchange of particles.

Let P be a permutation of particle labels, so that PR = {rP1 , rP2 , . . . , rPN}. We have
φ±(PR) = (±1)sgnPφ(R), where the index + denotes the symmetric, and - antisymmetric
state. Let us define symmetrization and antisymmetrization operators by

P̂± φ(R) =
1

N !

∑
P

(±1)sgnPφ(PR). (2.16)

It can be shown from group theory that when the operators act on an arbitrary state they project
out (anti)symmetric states [1, 3]. This allows us to construct Bose or Fermi density matrix from
the density matrix of distinguishable particles (2.4),

ρ±(R,R′; β) ≡ P̂± ρD(R,R′; β)) =
1

N !

∑
P

(±1)sgnPρD(R,PR′; β). (2.17)

Since we are interested in Bose systems, we will denote P̂ ≡ P̂+, and write the Bose density
matix

ρB(R,R′; β) =
1

N !

∑
P

ρD(R,PR′; β). (2.18)

2.1.2 Bose-Einstein condensation

Bose-Einstein condensate is a state of matter in which the lowest energy level is macroscopically
occupied, meaning the number of particles in the lowest level is of the order of the total number
of particles N . This phenomenon does not occur in fermionic systems due to Pauli exclusion
principle. We will show how this occurs in a uniform gas of non-interacting bosons.

The total number of particles must equal the sum of average occupation numbers of single-
particle states, given by the Bose-Einstein (BE) distribution

N =
∑
i

n̄i =
∑
i

1

eβ(εi−µ) − 1
, (2.19)

εi being the energy of the state i, and µ the chemical potential. Normally, if N is large, and kBT
is much greater than the difference in energy between levels, one can replace the sum in (2.19)

6
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by an integral

N ≈ NT =

∫
dε g(ε)

1

eβ(εi−µ) − 1
, (2.20)

where g(ε) is the density of states, and NT is the number of excited particles, the thermal com-
ponent of the system. We can equate the thermal component with the total number of particles
because each state, including the ground state, is only microscopically occupied. However, if
the ground state becomes macroscopically occupied it will not be accounted for in (2.20).

Due to the subtraction in the denominator of the BE distribution, and the fact that occupancy
numbers can not be less than zero, there is a constraint on the chemical potential, namely µ ≤ ε0.
It’s value is fixed by the normalization condition

N = N0 +NT . (2.21)

Bose-Einstein condensation (BEC) occurs in the limit µ→ ε0, as the number of particles in the
ground state N0 ≡ n̄0 = {exp[β(ε0 − µ)]− 1}−1 diverges. Certain conditions must be met in
order for the transition to occur. The thermal component NT is an increasing function of µ at a
constant temperature. If its peak Nc(T ) = NT (T, µ = ε) is greater than N , the system can not
condense at that temperature. However, Nc(T ) decreases as temperature is lowered, and there
may exist a temperature Tc at which it becomes equal to N . Below Tc, N0 = N −NT is of the
order of N , and µ → ε0 in the thermodynamic limit. To determine the critical temperature, we
find the highest temperature at which N0 is macroscopic by setting

NT (Tc, µ = ε0) = N (2.22)

The density of states for a variety of systems is of the form [7]

g(ε) = Cpε
p−1. (2.23)

In case of a gas of free particles, p = d/2, where d is the dimensionality of the system. In a
three dimensional system, we have a square-root dependence on energy, and C3/2 = V m3/2

21/2π2~3 .
The ground-state has zero energy, so µ is always negative. Inserting (2.23) into (2.20)

NT = Cp(kBT )p Γ(p) gp
(
eβµ
)
, (2.24)

where

gp(z) =
1

Γ(p)

∞∫
0

dx
xp−1

z−1ex − 1
=
∞∑
l=1

zl

lp
. (2.25)

7
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Now we set µ = 1, and insert (2.24) into (2.22) and obtain

kBTc =

[
N

CpΓ(p)gp(1)

]1/p

. (2.26)

Inserting g3/2(1) = 2.612 for three-dimensional ideal gas, we have kBT ≈ 3.31~2n2/3

m
, where

n = N/V is the number density. On the other hand, for p ≤ 1, gp(1) is divergent. It turns out
that for p = 1 the equation (2.26) holds for Tc = 0, so in two dimensions, BEC occurs at zero
temperature5, but for p < 1, BEC does not occur at all.

Next we demonstrate the existence of off-diagonal long-range in the OBDM of a Bose-
condensed system. We may write the momentum distribution as

n(p) =
〈
Ψ̂†(p)Ψ̂(p)

〉
. (2.27)

Since Ψ̂(p) = (2π~)−3/2 ∫ dr exp(ip · r/~)Ψ̂(r), we have

n(p) =
1

(2π~)3

∫
dr dr′ n(r, r′)eip·(r−r

′)/~ (2.28)

Assuming a uniform and isotropic system in a volume V, n(r, r′) = n(s = |r − r′|), and we
can write

n(s) =
1

V

∫
dpn(p)e−ip·s/~. (2.29)

If n(p) is a smooth function, the rapid oscillation of the exponential factor for large s will bring
the OBDM to zero when s → ∞. However, in presence of BEC, the momentum distribution
has an N0δ(p) term, and this causes the OBDM to approach a finite value n0 = N/V for large
s. This is referred to as the off-diagonal long-range order.

We will now identify the order parameter of the BEC transition starting with the field operator
written in the form

Ψ̂(r) = φ0(r)â0 +
∑
i 6=0

φi(r)âi, (2.30)

φi(r) and âi being respectively the one-particle wave function and the annihilation operator
corresponding to the i-th eigenstate of the OBDM. Since 〈â†0â0〉 = N0 � [â0, â

†
0] = 1, we may

replace the ladder operator in the first term on the right-hand side of (2.30) with
√
N0. This way

we treat the first, macroscopic term as a classical field Ψ0(r), referred to as the wave function,
and serving as the order parameter. This is called the Bogoliubov approximation. We may write
Ψ0 in terms of its modulus and phase

Ψ0(r) = |Ψ0(r))| eiS(r). (2.31)

5Note that this result is not valid for two-dimensional systems in general. For example, p = 2 in a harmonic
trap, and Tc is finite.

8
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The time dependent order parameter can be defined as

Ψ0(r, t) = Ψ0(r)e−iµt/~. (2.32)

The time dependence is governed by the chemical potential because Ψ0 can be thought of as
the matrix element of Ψ̂ between the ground states with N and N + 1 particles, giving rise to
the EN+1 − EN ≈ ∂E

∂N
= µ in the exponent [6, 7].

2.1.3 Superfluidity

Here we will describe the Landau’s criterion for superfluidity. Essentially, the criterion is based
on the possibility of energy dissipation through creation of energetically favourable elementary
excitations in a fluid moving through a capillary.

First, we write the transformation laws of energy and momentum under Galilean transforma-
tions [6]

E ′ = E − P · V +
1

2
MV 2, (2.33)

P ′ = P −MV , (2.34)

whereM is the total mass of the fluid, E andP are the energy and the momentum of the fluid in
a reference frame K, and their primed counterparts are the energy and momentum in a different
frame K ′, moving with velocity V relative to K.

Suppose an excitation with momentum p appears in a zero temperature uniform fluid flowing
through a capillary at a constant velocity v. The energy in the reference frame moving with
the fluid is raised from ground state E0 to E0 + ε(p), ε(p) being the energy of the excitation,
while the momentum becomes p. According to (2.33) and (2.34), in the reference frame of the
capillary, the energy and momentum are given by

E ′ = E0 + ε(p) + p · v +
1

2
Mv2 (2.35)

P ′ = p+Mv. (2.36)

The energy of the elementary excitation of momentum p in the frame moving with the capillary
is given by ε(p) + p · v. In order for excitations to spontaneously arise on account of relative
motion, they have to reduce the total energy of the fluid from the perspective of the capillary,
and therefore

ε(p) + p · v < 0 (2.37)

must hold. For momentum p, this is possible if v > ε(p)/p. We define the critical velocity vc
as the smallest velocity such that (2.37) can hold for any p. Below vc, the fluid is stable against
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dissipation of its kinetic energy. Thus, the Landau’s criterion for superfluidity is

v < vc = min
p

ε(p)

p
. (2.38)

It depends on the shape of the excitation spectrum whether a system can achieve superfluidity,
e.g. for the ideal Bose gas ε(p) = p2

2m
leads to vc = 0, while the weakly-interacting Bose gas,

and even strongly-interacting 4He have a finite vc [6].

At a finite temperature, small compared to the critical temperature for superfluidity, we may
assume that our system is a gas of non-interacting quasiparticles corresponding to elementary
excitations6. These quasiparticles can collide with the walls and exchange energy and momen-
tum, but they only transport a part of the total mass, and the rest of the mass behaves like a
superfluid. Therefore the system has superfluid and normal fluid components, and each has its
own velocity, vs and vn respectively. In order for superfluidity to be possible, |vs − vn| < vc

must hold. In equilibrium, the normal component must be at rest with respect to the capillary,
therefore vn = 0 in the frame of the capillary, and the relative velocity between the superfluid
component, and the capillary is vs − vn. Now, we can use the energy of the excitation in the
capillary frame to write the BE distribution function of quasiparticles

Np =
1

exp{β [ε(p) + p · (vs − vn)]} − 1
. (2.39)

It is of interest to determine the fraction of the system belonging to the superfluid component.
As is shown in [6], the mass density of the normal component is given to the first order in vs−vn
by the Landau formula

ρn = −1

3

∫
dNp

dε

∣∣∣∣
vs−vn=0

(ε) p2 dp

(2π~)3
. (2.40)

The superfluid fraction can then be obtained from ρs
ρ

= 1 − ρn
ρ

. However, this theory is of
limited applicability, since we have assumed, as mentioned, a uniform fluid at a low enough
temperature, and well-defined, non-interacting elementary excitations.

A connection can be established between BEC and superfluidity by identifying the current
density of the condensate with n0vs, where n0 = |Ψ0|2 is the number density of the conden-
sate7[6, 8]. The system is assumed here to be uniform, and vs to be constant (or varying slowly
enough). The current density is given by

j =
i~
2m

(Ψ0∇Ψ∗0 −Ψ∗0∇Ψ0) =
~
m
n0∇S. (2.41)

6This assumption is not always valid, e.g. in presence of disorder, elementary excitations are not well defined
[6].

7However, it would be erroneous to assume that the density of the condensate is equal to the density of the
superfluid.
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Therefore,

vs =
~
m
∇S. (2.42)

The phase S is the velocity potential, and it follows that the flow of superfluid is irrotational.

It should be noted that the connection we have established does not apply in the most general
sense. Most notably, it breaks down in low dimensions. In two dimensions, irrotational super-
flow can exist in absence of off-diagonal long-range order at temperatures above absolute zero
[6]. However the decay of the OBDM is algebraic instead of exponential in this case, indicat-
ing the existence of a quasi long-range order. Aside from this, superflow may be observed in
systems of finite size, and as we will see, may be entirely a finite-size effect.

2.2 Path integral formalism

The path integral formalism, originating in the work of Richard P. Feynman, is a method that
can be applied to study quantum systems. It is based on associating a probability amplitude
with a completely specified motion of the system, its path. The integral over all possible paths
within a region of space-time leads to the probability amplitude of the system occupying this
region.

The formalism can be applied in slightly different manners to formulation of either quantum
mechanics or quantum statistical mechanics. We will first briefly present the path integral for-
mulation of quantum mechanics along the lines of Feynman’s 1948. aritcle [2]. We will then
turn to the path integral formulation of quantum statistical mechanics, which lays the theoretical
foundation of the path integral Monte Carlo method.

2.2.1 Path integral formulation of quantum mechanics

This formulation of quantum mechanics rests on two postulates which we quote directly from
[2]:

1. If an ideal measurement is performed to determine whether a particle has a path lying

in a region of space-time, then the probability that the result will be affirmative is the

absolute square of a sum of complex contributions, one from each path in the region.

2. The paths contribute equally in magnitude, but the phase of their contribution is the clas-

sical action (in units of ~) ; i.e., the time integral of the Lagrangian taken along the path.

We denote the space-time region of interest R. To understand what is meant by path lying in
this region, we can imagine splitting the motion of a particle moving in the direction x in a
large number of time slices ti, separated by a time interval ε. The positions of the particle at
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times ti are denoted xi. Letting ε → 0, the (xi, ti) pairs define the path x(t). Region R can
now be defined as a set of (ai, bi) pairs, and the paths lying in R satisfy ai < xi < bi. We
can now understand the concept of "ideal measurement" as a hypothetical measurement such
that no further information may be extracted from it without disturbing the system beyond the
disturbance of measuring weather the path lies in R. If a system was further disturbed, e.g. if
one of the xi’s was collapsed into a specific value, the calculation of probability would have to
change, since we would be dealing with classical probabilities instead of probability amplitudes.

The first postulate leads to the expression for probability amplitude of the path of the particle
lying in a region R of space-time

ϕ(R) = lim
ε→0

∫
R

Φ(..., xi, xi+1, ...) · · · dxi dxi+1 · · · , (2.43)

where the notation
∫
R

stands for · · ·
∫ bi
ai

∫ bi+1

ai+1
· · · , and Φ(..., xi, xi+1, ...) is the complex contri-

bution to the probability amplitude of a path defined by sequence of xi’s. As ε approaches zero,
this essentially becomes a functional of path Φ[x(t)]. The second postulate implies

Φ[x(t)] ∝ e
i
~S[x(t)], (2.44)

S being the action, defined as the time integral of the classical Lagrangian along the path x(t)

S[x(t)] =
∫
L(ẋ(t), x(t))dt. In order to pass (2.44) to (2.43), x(t) has to be defined in the

interval between ti and ti+1. This is done by assuming that the particle follows the classical
path between ti and ti+1, that is the path of minimal action. We may write

S =
∑
i

S(xi+1, xi), (2.45)

and

S(xi+1, xi) = min

ti+1∫
ti

L(ẋ(t), x(t)) dt . (2.46)

Finally, we arrive at

ϕ(R) = lim
ε→0

∫
R

exp

[
i

~
∑
i

S(xi+1, xi)

]∏
i

dxi
A
, (2.47)

where
∏

i 1/A is the normalization factor. This completes the path integral formulation of
quantum mechanics.

In order to prove the equivalence of this formulation with ordinary quantum mechanics, we
should be able to define the wave function, and show it obeys the Schrödinger’s equation (this
proof still neglects spin, however). We will cover this in a brief and somewhat crude manner,
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and the reader may wish to see the full derivations in [2], or skip to the next section.

First we divide R into regions R′ lying in the past, i.e. before some time t′ < t (t being the
present), and R′′ in the future, i.e. after some time t′′ > t. The remaining region between t′ and
t′′ can be arbitrarily narrow, and the values of the x coordinates are not restricted in this region.
The value |ϕ(R′, R′′)|2, if normalized by |ϕ(R′)|, can be interpreted as the probability that if
the system was in region R′ it will later be found in region R′′. We assign the index i = 0 to the
present. The amplitude is given by

ϕ(R′, R′′) =

∫
dx0

∫
R′′

1

A

∞∏
i=0

{
exp

[
i

~
S(xi+1, xi)

]
dxi+1

A

}∫
R′

−1∏
i=−∞

{
exp

[
i

~
S(xi+1, xi)

]
dxi
A

}
(2.48)

Integration over the past and future regions R′ and R′′ in (2.48) produces functions ψ(x0, t) and
χ∗(x0, t) respectively

ϕ(R′, R′′) =

∫
χ∗(x, t)ψ(x, t)dx. (2.49)

The function ψ(x, t) is dependent only on the past history of the system, and vice versa for
χ∗(x, t). At time t, the entire information about the system is contained in ψ(x, t). Future
experiments can not distinguish between different histories, as long as they result in the same
wave function. Similar remarks apply to χ∗(x, t) so it represents the complex conjugate of
the wave function of a possible future state. We can interpret the right-hand side of (2.49)
as the transition amplitude between the two states, i.e. the probability amplitude of a future
measurement yielding the state χ if the system was prepared in state ψ.

A recursive relation, exact in the limit ε→ 0, follows from the definition of ψ(x, t)

ψ(x1, t+ ε) =

∫
R

exp

[
i

~
S(x1, x0)

]
ψ(x0, t)

dx0

A
. (2.50)

If we assume the relation is exact to the first order in ε, the accumulated error over a finite
interval of time T will be of the order of Tε, since the number of factors is T/ε, each carrying at
most an error of order ε2. Therefore the error will vanish in the limit ε→ 0. We limit ourselves
to a case of the Lagrangian being a quadratic function of velocities, without terms linear in
velocity (i.e. the vector potential). The action can now be approximated as an integral over the
path of a free particle8

S(x, x− ξ) =
mε

2

(
ξ

ε

)2

− εV (x), (2.51)

8This is limited to rectangular coordinates
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where x = x1, ξ = x1 − x0, and V (x) is the potential. Inserting this into (2.50), expanding the
left-hand side to first order in ε, and ψ(x− ξ) to second order of ξ we obtain

ψ(x, t) + ε
∂ψ

∂t
(x, t) + ... =

= exp

[
−iεV (x)

~

] ∫
exp

(
imξ2

2~ε

)[
ψ(x, t)− ξ ∂ψ(x, t)

∂x
+
ξ2

2

∂2ψ(x, t)

∂x2
− ...

]
dξ

A
.

(2.52)

The only significant contribution to the right-hand side comes from region near ξ = 0, since
otherwise the exponential due to kinetic action oscillates rapidly compared to variation in ψ
when ε is small, and thus ensures cancellation. Upon integration, we find that agreement to
zero order sets the value of A, and expanding the exponential due to potential action, we finally
obtain the Schrödinger’s equation for a particle in one dimension, accurate to the first order in ε

i~
∂ψ

∂t
= − ~2

2m

∂2ψ

∂x2
+ V (x)ψ. (2.53)

2.2.2 Path integrals in quantum statistical mechanics

If we rewrite the inverse temperature β = u/~, the new variable u has the dimension of time,
and will be referred to as "time" for reasons we hope will become clear soon. The density
matrix now takes the form

ρ̂(u) = exp
(
−u
~
Ĥ
)
. (2.54)

We note that we have switched to using an unnormalized form of the density matrix. We may
break time up into M intervals of duration ε, and write

ρ̂(u = Mε) =
[
exp
(
− ε
~
Ĥ
)]M

. (2.55)

If we write each of the factors i in (2.55) in the position representation ρ(Ri,Ri−1), integrate
overRi for all i 6= 0,M we come to the rule of convolution

ρ(RM ,R0;u) =

∫
ρ(RM ,RM−1; ε)ρ(RM−1,RM−2; ε) · · · ρ(R1,R0; ε) dR1 · · · dRM−1 .

(2.56)
Once again, when ε→ 0, we have a path integral [1]

ρ(RM ,R0;u) =

∫
Φ[R(s)] DR(s), (2.57)

where DR(u) = lim
M→∞

∏M−1
i=1

dRi

A
.

In case of free particles, we simply insert (2.15) on the right-hand side of (2.56), and let
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DR(u) absorb the normalization constant9 to find

Φ[R(s)] = lim
ε→0

exp

{
− ~

4λ

M−1∑
i=0

ε

(
Ri+1 −Ri

ε

)2
}

= exp

−1

~

u∫
0

m

2

[
Ṙ(s)

]2

ds

, (2.58)

where we can recognize the kinetic energy term in the integral.

Since particles in a potential V (R) become asymptotically free when ε is very small com-
pared to the scale of significant variation of V , we can still use the density matrix of free
particles (denoted ρ0) for perturbation expansion of ρ

ρ(R,R′; ε) = ρ0(R,R′; ε) + δρ(R,R′; ε), (2.59)

where [1]

δρ(R,R′; ε) ≈ −
∫

dR′′
ε∫

0

ρ0(R,R′′; ε− u)V (R′′)ρ0(R′′,R′;u)
du

~
. (2.60)

Due to small ε, the free density matrices are very localized, so the majority of contribution to
the integral comes from the region in the vicinity of both R, and R′ (the R and R′ have to be
close in order for the integral to have a significant value). V (R′′) can be taken to be constant in
this region, and now theR′′ integral is simply a convolution of density matrices, so we find

δρ(R,R′; ε) ≈ −
∫

du

~
V (R)ρ0(R,R′; ε) = − ε

~
V (R)ρ0(R,R′; ε). (2.61)

When dealing with larger ε the more accurate [1, 3] symmetrized form ε
2~ [V (R) + V (R′)] will

be used. Equation (2.59) now becomes

ρ(R,R′; ε) ≈ ρ0(R,R′; ε)

[
1− V (R)

~
ε

]
≈
(

4πλε

~

)−3N/2

exp

{
−ε

[
~
4λ

(
R−R′

ε

)2

+
V (R)

~

]}. (2.62)

This amounts to the primitive approximation in which the commutator terms of the order higher
than ε are ignored in the Baker-Campbell-Hausdorff formula

exp

[
− ε
~

(T̂ + V̂) +
ε2

2~2
[T̂ , V̂ ] + . . .

]
= exp

(
− ε
~
T̂
)

exp
(
− ε
~
V̂
)
. (2.63)

The primitive approximation becomes exact in the sense that the error does not accumulate

9This is done for mathematical convenience, and we will reintroduce the normalization when dealing with
discrete paths.
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when ε→ 0[3]. Finally,

ρ(RM ,R0;u) =

∫
exp

−1

~

u∫
0

[m
2
Ṙ(s)

2
+ V (R(s))

]
ds

DR(s) (2.64)

Note the similarity between equations (2.62) and (2.51). If we define

Si ≡ S(Ri,Ri−1; ε) ≡ −~ ln[ρ(Ri,Ri−1; ε)], (2.65)

then Si = Ki + U i, where the kinetic action is

Ki =
3N~

2
ln

(
4πλε

~

)
+

~2

4λ

(Ri −Ri−1)2

ε
, (2.66)

and the potential action is simply the difference between the total and kinetic action. In primitive
approximation, the potential action is written

U i
1 =

ε

2
[V (Ri) + V (Ri−1)] , (2.67)

where we have used the more precise symmetrized form as noted earlier, and the index rep-
resents the order of approximation in ε. We return now to the equation (2.56) and rewrite it
as

ρ(RM ,R0;u) =

∫
exp

[
−1

~

M∑
i=1

S(Ri,Ri−1; ε)

]
M−1∏
i=1

dRi (2.68)

Again, we see a striking similarity to an earlier result from path integral quantum mechanics,
the probability amplitude of a path lying in space-time region R (2.47), and we can see how
the variable u ∝ T−1 plays a role similar to conventional time. However, the imaginary unit is
lacking in the exponent of (2.68). We can introduce it by switching to imaginary time t = u

i

and ε → iε [5]. For the sake of argument, we ignore the constant term on the right-hand side
of (2.66), letting it be absorbed by DR(s) as before. Then the two equations are identical in
form, and it can readily be shown that the kinetic and potential parts of action have different
signs, as it should be the case, since the action is conventionally defined as the time integral of
the Lagrangian. Now the density matrix element in coordinate representation can be interpreted
as the probability amplitude for a system of N particles to travel from R0 to RM in duration
t = β

i~ of imaginary time [1]. The amplitude is obtained by summing up contributions from all
possible paths. This interpretation implies the possibility of numerical calculation of the density
matrix by sampling random walks.

16
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Classical isomorphism

We will now discuss the isomorphism between quantum and certain classical statistical systems
[3], and use this opportunity to introduce some terminology along the way. Expression (2.68) is
also equivalent in form to a configuration integral of a classical system at an inverse temperature
of τ = ε/~ = β/M , as can be seen by extracting ε from the action. It is important not to
confuse the temperature of the classical system with the temperature of the quantum system
defined by β10. The system in question is composed of N chains of particles, referred to as
beads to avoid confusion with the physical particles. These chains are called polymers, and
each represents a path of a particle in imaginary time, or its world line. The m-th bead in
each polymer corresponds to one of the N particles at the discrete point in time um = mε. A
vector Rm = {r1,m, ..., rN,m} will be referred to as the m-th time slice, since it contains the
configuration of the system at the time um. A pair of successive time slices (Rm−1,Rm) is the
link m, and the action Sm, as defined in (2.65), is the action of the link m.

The action divided by ε plays the role of the potential energy. Examining this potential energy
function, we see that the kinetic part of the action gives rise to the spring potential between the
successive beads of the same polymer, and the potential action plays the same role of potential
between different particles. Note that this results in a rather peculiar classical system in which
the beads belonging to different polymers only interact if they are at the same time slice.

We are especially interested in diagonal elements of the density matrix ρ(R0,RM = R0). In
fact, it makes sense to view the time u as periodic with period β~. Now the polymers become
ring polymers. Due to quantum-classical isomorphism, any property that can be written in terms
of the partition function, or even the density matrix elements, has an analogue in the statistical
mechanics of classical ring polymers [3]. Two ring polymers are schematically presented in
Figure 2.1

Of course, the picture we have just presented only applies to distinguishable particles. As we
have seen earlier, the Bose density matrix and partition function must include a sum over all
possible permutations

ZB =
1

N !

∑
P

∫
ρ(R0,PRM = R0; β) dR0 =

1

N !

∫
exp

[
−1

~

M∑
m=1

Sm

]
M−1∏
m=0

dRm (2.69)

The boundary condition PRM = R0 implies that the polymers can become "cross-linked",
since the polymer that contains the ri,0 bead can close onto rj,0, where j = Pi, after one time
period β. Since any permutation is a product of cyclic permutations, the chain will eventually
close onto ri,0 again. Multiple ring polymers are thus connected into one, and in presence of
non-identity permutations, the number of rings is reduced by n − 1 for every n-cycle. The

10In fact, it makes sense in application to keep the time interval constant as quantum temperature is changed
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Figure 2.1: The figure is a schematic representation of two ring polymers. The successive beads in the
same polymer are connected by "springs", and the beads belonging to the same time slice by dashed
lines. The image is reproduced with permission from [29].

relative probabilities of various permutations are controlled by action in the same manner as
before. In absence of interactions, the size of a polymer is of the order of thermal wavelength.
Therefore, at high temperatures, distance between polymers will tend to be much larger than
their size, and the dominant permutation will be the identity, since any exchange would require
large lengthening of the springs. On the other hand, thermal wavelength is infinite at zero
temperature, and space is completely filled with beads, so every permutation is equally likely.
We may define the degeneracy temperature, at which the exchange effects become important,
by setting the thermal wavelength equal to the typical interparticle spacing ρ−1/3

kBTD =
~2ρ2/3

m
. (2.70)

When enough polymers become connected, the resulting polymer may become macroscopic.
It is the appearance of macroscopic polymers that indicates the superfluid transition [3]. In
finite-size systems with periodic boundary conditions, the paths may wind around the container
by crossing the boundary, and eventually reconnecting with a periodic image of its initial point.
This is analogous in nature to formation of macroscopic polymers, and we explain the relation
of winding to superfluidity in the next section.

2.2.3 Path winding and superfluidity

The fraction of superfluid can be determined by examining the response of the free energy of
a system to the movement of the boundary [14]. A usual example is a system between by two
cylinders of radii R and R + δ, rotating with angular frequency ω. For δ/R � 1, the system
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Frane Lunić: Luttinger liquid properties of 1D Bose system and impurity effects

becomes essentially equivalent to a 2πR-periodic system enclosed by two planes moving with
velocity v = Rω. Here we study a more general system enclosed in a d-dimensional box,
periodic in at least one direction, in a manner similar to [14].

Let ρ̂v be the density matrix of a system with walls moving with an arbitrary velocity v.
Since the distribution is identical in the lab and moving frame, we have ρ̂v = ρ̂′ = e−βĤ

′ , where
primed frame is at rest with the boundary, and

Ĥ ′ =
N∑
i=1

(−i~∇i −mv)2

2m
+ V (R). (2.71)

We can define the normal component as the part which responds to the boundary motion. This
implies

ρn
ρ
Nmv = 〈P̂ 〉v =

Tr ρ̂vP̂

Tr ρ̂v
, (2.72)

which we may rewrite as

ρn
ρ
Nmv =

1

β
∇v ln(Tr ρ̂v) +Nmv. (2.73)

Since e−βFv = Tr ρ̂v, and ρS
ρ

= 1− ρN
ρ

, by applying the chain rule we obtain

ρS
ρ

=
∂Fv

∂(1
2
mv2)

. (2.74)

Integrating form zero velocity to v, and expanding around constant fraction, we obtain the con-
nection between the free energy response due to boundary motion and the fraction of superfluid

∆Fv

N
=

1

2
mv2 ρS

ρ
+O(v4). (2.75)

As expected, due to dissipation, there is little impact of boundary motion on the bulk of the
normal fluid. However, the free energy response is proportional to the superfluid fraction.

From (2.12), we know that

− ∂ρv(R,R∗; β)

∂β
= Ĥ ′ρv(R,R∗; β), (2.76)

with boundary condition

ρv(R, {r∗1, . . . , r∗j +L, . . . , r∗n}; β) = ρv(R,R∗; β). (2.77)

We can write

e−β∆Fv =

∫
ρv(R,R; β) dR∫
ρv=0(R,R; β) dR

, (2.78)
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where ρv=0 is the solution of the equation of motion for stationary walls. It can be shown by
inserting in (2.76) that this equation is satisfied by ρ̃, defined by

ρv(R,R∗; β) = exp

[
i
m

~
v ·
∑
i

(ri − r∗i )

]
ρ̃(R,R∗; β). (2.79)

Obviously, we have e−βFv=0 = Tr ρ̃, which is precisely the denominator of (2.78), but one thing
remains to be clarified. SettingR∗ = R, the sum in the exponent of (2.79) takes the form∑

i

(rPi − ri) ≡W , (2.80)

where the winding vector W counts the number of times the paths wind around the box in
each direction. Its components Wα are quantized in units of Lα, the length of the box in the α
direction. If the path closes onto the k-th periodic image of the initial bead, then Wα = kLα.
Now we may write

e−β∆Fv =

∫
ei
m
~ v·W ρ̃(R,R; β) dR∫
ρ̃(R,R; β) dR

=
〈
ei
m
~ v·W 〉 . (2.81)

Since velocity is arbitrary, we may take it to be small. All of the odd terms in the expansion of
ei

~
2λ

v·W average to zero, and we have

β∆Fv =
m2

2~2
〈(v ·W )2〉+O(v4) =

m2v2

2~2
〈W 2〉+O(v4), (2.82)

where W = v
|v| ·W is the winding number in the direction of v. If we take v = vxêx for exam-

ple, it is the x component of the winding vector, and if our box is a d-dimensional hypercube, it
becomes obvious due to symmetry that 〈W 2〉 = 1

d
〈W 2〉. By comparing (2.82) with (2.75), we

finally arrive at the expression for the superfluid fraction in terms of the mean square winding
number, which can be calculated from the flux of paths across any plane

ρS
ρ

=
〈W 2〉
2λβN

. (2.83)

2.3 One-dimensional systems

Next, we turn to the theory of quantum one-dimensional systems. 1D systems are fundamen-
tally different from their higher-dimensional counterparts which causes many of the methods
developed for studying 3D systems to fail. Before moving on to the Luttinger liquid theory that
is of particular interest for this thesis, we will briefly mention some of the important results.
Recall that BEC does not exist in 1D. This is due to the fact that fluctuations of the phase de-
stroy long-range order. Even algebraic order is only present at zero temperature [6]. We will see
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that superflow can exist in 1D, but only in systems confined to small size, since imaginary-time
paths are still able to wind around the system in presence of periodic boundary conditions.

2.3.1 Theory of Luttinger liquids

The Tomonaga-Luttinger model is a theory developed for studying the low energy properties of
1D systems of interacting fermions. We will use the term Luttinger liquid (LL) to refer to either
this model or any systems that share its low energy characteristics, which includes a variety of
1D systems, not necessarily fermionic. The LL model is an analogue of the Fermi liquid model
which fails in 1D. The Fermi liquid is a generalization of the Fermi gas to systems of interacting
fermions, and it preserves a lot of the properties of the Fermi gas, notably the discontinuity of
the zero-temperature fermion distribution at the Fermi surface11, and the excitations that have a
one-to-one correspondence to the free system. Near the Fermi surface, the excitations resemble
particle-hole pairs, but have a finite lifetime, which can nevertheless be considered infinitely
long for most practical purposes [9, 10].

The LL model describes the low lying excitations around the two Fermi points12. As long
as we stay in the vicinity of Fermi points, the dispersion relation can be linearized, leading to
Hamiltonian [10]

Ĥ =
∑
α=±1

vF

∫
dx Ψ̂†α(i~α∂x − ~kF )Ψ̂α −

1

2

∫
dx dx′ ρ(x)V (x− x′)ρ(x′), (2.84)

where α labels the Fermi points, and vF and ~kF are Fermi velocity and momentum. The
± fields correspond to excitations moving in opposite directions, and the density is given by
ρ̂ = Ψ̂†+Ψ̂+ + Ψ̂†−Ψ̂−. Various methods can be applied to this model, including perturbation
theory, renormalization groups, and bosonization. The last is of most interest to us since it is
specific to 1D, and makes obvious the connection to Bose systems in 1D.

Let us start from a Bose fluid of average density ρ0 = N0/L, and let Ψ̂(x) be an L-periodic
field satisfying the commutation relation

[Ψ̂(x), Ψ̂†(x′)] = δ(x− x′). (2.85)

The Hamiltonian of the fluid is given by

Ĥ =
~2

2m

∫
dx |∇Ψ̂|

2
+

1

2

∫
dx dx′ Ψ̂†(x)Ψ̂†(x′)V (x− x′)Ψ̂(x)Ψ̂(x′). (2.86)

11Note that the magnitude of the jump is decreased since the distribution is no longer a step function.
12The analogue of the Fermi surface in 1D.
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We proceed by introducing the phase-density representation

Ψ̂†(x) =
√
ρ̂(x)eiϕ̂(x), (2.87)

where

ρ̂(x) =
N∑
n=1

δ(x− xn) (2.88)

is the density operator, and ϕ̂ the phase operator. Then, assuming eiϕ̂ commutes with itself for
x 6= x′, it follows from commutator (2.85) that

[ρ̂(x), eiϕ̂(x′)] = eiϕ̂(x)δ(x− x′), (2.89)

By averaging the density over lengths much larger than ρ−1
0 we obtain the smeared density

ρ̂s(x) = ρ0 + Π̂(x), (2.90)

where Π̂(x) is a local fluctuation field representing the long-wavelength zero-point fluctua-
tions which dominate low-energy properties[11]. We may treat Π̂(x) and ϕ̂(x) as conjugate
variables, so that

[ϕ̂(x), ρ̂s(x
′)] = [ϕ̂(x), Π̂(x′)] = iδ(x− x′), (2.91)

since this is compatible with (2.89), but we stress that it is not compatible with the definition
(2.88) of the density operator. (2.91) only holds for the smeared density which ignores (i.e.
averages over) all the physics below the ρ−1

0 length scale.

From here, we may construct a representation of the unsmeared density operator that pre-
serves its discreteness. We introduce a new field θ̂(x) that satisfies ∇θ̂(x) = π[ρ0 + Π̂(x)], and
the boundary condition θ̂(x+ L) = θ̂(x) + πN . The boundary condition is consistent with the
periodicity of density, and implies that the field increases by πN when moving right from 0 to L.
It is natural to take the field as monotonically increasing, and to identify the positions xi, where
θ̂(x) is a multiple of π, with the positions of particles. It is worth mentioning that a similar
boundary condition has to apply to the phase field ϕ̂(x + L) = ϕ̂(x) + πJ , where J is an even
integer. Non-zero J implies a topologically excited state of the phase field corresponding to
total current [10]. The two fields satisfy a commutation relation [ϕ̂(x), θ̂(x′)] = iπ

2
sgn (x− x′)

Finally, using the composition property of the Dirac delta function δ(f(x)) =
∑

i
δ(x−xi)
|f ′(xi)|

13, we
rewrite (2.88) as14

ρ̂(x) = ∇θ̂(x)
N∑
i=1

δ(θ̂(x)− nπ) = [ρ0 + Π̂(x)]
+∞∑

m=−∞

ei2mθ̂(x). (2.92)

13The summation goes over roots of f(x), and it is assumed all roots are simple.
14The last equality is obtained by using the Poisson summation formula.
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This is the Haldane’s ansatz. The last expression is an expansion, and it is often enough to keep
only a few terms, since high order terms oscillate rapidly and disappear when averaging over
progressively shorter distances. Keeping only the m = 0 term, we would arrive back at the
smeared density.

We may now rewrite the field creation operator for bosons by inserting (2.92) in (2.87)

Ψ̂†B(x) = A

√
ρ0 + Π̂(x)

∑
m

ei2mθ̂(x)eiϕ̂(x), (2.93)

where A is an undetermined normalization constant, dependent on the high energy properties,
that stems from the fact that the square root of a delta function is also a delta function up to
a normalization factor. We may have done a similar procedure for a Fermi field. The crucial
difference is that the Fermi field operators satisfy an anticommutator equation analogous to
(2.85). We can immediately derive the expression for such Fermi field by simply multiplying
the Bose field by factor eiθ̂(x) , which amounts to shifting 2m→ 2m+1 in the exponent15. Note
that this modifies the selection rule on the topological quantum number J , so that J + N must
be even for fermions. The difference reflects the fact that a particle can be added to a k = 0

state in a Bose system without creating any current, while this is impossible in a Fermi system.

Having introduced the θ̂ and ϕ̂, we can write the Hamiltonian in terms of these fields. By
expanding (2.86) to second order around constant density and zero current we obtain a harmonic
form as in [11]

Ĥ =
~
2π

∫
dx
[
vJ(∇ϕ̂)2 + vN(∇θ̂ − πρ0)

2
]
, (2.94)

where in a Galilean invariant system

vJ = v0
J =

π~ρ0

m
, (2.95)

and vN = (π~ρ2
0)−1κ depends on compressibility (κ) which includes the effects of short-

wavelength physics. These two parameters determine the low-energy properties of the system.

It is of interest for this thesis to find the asymptotic x� ρ−1
0 behaviour of certain correlation

functions for systems in LL regime, namely the density-density function and the boson OBDM.
The results derived in [11] at zero temperature using the model presented above are

ρ2
0g(x) = 〈ρ̂(x)ρ̂(0)〉 = ρ2

0

[
1− 2K

(2πρ0x)2
+
∞∑
m=1

Am(ρ0x)−2m2K cos(2πmρ0x)

]
, (2.96)

ρ(x, 0) =
〈
Ψ̂†B(x)Ψ̂B(0)

〉
= ρ0(ρ0x)−

1
2K

∞∑
m=0

Bm(ρ0x)−2m2K cos(2πmρ0x). (2.97)

15The (anti)commutator equations are not perfectly satisfied in this representation, but the additional terms come
with oscillating factors which can be ignored for the purpose of a low-energy description[10].
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Frane Lunić: Luttinger liquid properties of 1D Bose system and impurity effects

The Am and Bm are parameters depending on the short-wavelength structure, and K =
√

vJ
vN

is the so-called Luttinger parameter.

Winding paths essentially represent imaginary time currents and the LL model makes a pre-
diction about the distribution of the winding number [15]

P (W ) =
e
− πL

2~βvJ
W 2

+∞∑
W ′=−∞

e
− πL

2~βvJ
W ′2

=
e
− πL

2~βvJ
W 2

ϑ3

(
0, e
− πL

2~βvJ

) , (2.98)

where the winding number can take values W = 0,±1, . . . 16, and ϑ3(z, q) =
+∞∑

n=−∞
qn

2
e2niz is

the Jacobi Theta function of the third kind. Knowing the distribution of the winding paths, it is
possible to evaluate its mean square, and by (2.83), the LL prediction for the superfluid fraction
[17]

ρS
ρ

=
mL2

~2βN

+∞∑
W=−∞

W 2 e
− πL

2~βvJ
W 2

ϑ3

(
0, e
− πL

2~βvJ

) =
πL

4~βv0
J

∣∣∣∣∣ϑ′′3(0, e
− πL

2~βvJ )

ϑ3(0, e
− πL

2~βvJ )

∣∣∣∣∣. (2.99)

We see that the superfluid density can be expressed as a function of a single scaling variable
u = L

~βvJ
,

ρS
ρ

=
π

4
u0

∣∣∣∣ϑ′′3(0, e−
π
2
u)

ϑ3(0, e−
π
2
u)

∣∣∣∣, (2.100)

where u0 = L
~βv0J

. We stress the fact that the only temperature or L dependence of ρS/ρ is
through u ∝ LT , and not individually. At finite temperature, ρS/ρ invariably goes to zero in
the thermodynamic limit, in accordance with the expected absence of phase transition at finite
temperature in 1D. In a Galilean invariant system, one can equivalently write

ρS
ρ

= 1− π

u

∣∣∣∣∣ϑ′′3(0, e−
2π
u )

ϑ3(0, e−
2π
u )

∣∣∣∣∣, (2.101)

with u = u0. We will use (2.100) and (2.101) to test the applicability of the LL results to 1D
systems under various conditions.

16Note that the winding number is no longer defined as quantized in units of L,
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Chapter 3

Methods

We have used the tool of computational simulation to obtain predictions about the behaviour of
physical systems differing in characteristics such as temperature and density. The simulation
approach allows us to set up a system and derive predictions by observing its simulated be-
haviour, which reduces the need for ever more simplified theoretical models and assumptions.
In this way, the computational method complements purely theoretical methods, allowing us to
compare results, and test the limits of applicability of theoretical models. However, the simula-
tion method introduces its own challenges and uncertainties. Since approximations have to be
made, there is a question of precision of results. The appropriate numerical methods have to be
chosen so that the resulting distributions converge towards the desired ones, or that the system
trajectories do not accumulate error and diverge from exact solutions of the equations of mo-
tion, etc. Care should be taken to allow large systems to achieve equilibrium before collecting
results if there is possibility that initial configurations will significantly affect results.

In this chapter, we provide insight into the methods that were used. First, we describe the
basic process and its intended results. Then we lay out the most important aspects of the com-
putational method used to perform simulations.

3.1 Physical model and the basic simulation procedure

The method behind our simulations is called Path integral Monte Carlo (PIMC). It is a stochastic
method that uses the ideas presented in section 2.2.2. The systems we investigate are composed
of a relatively small predefined number of bosons, between 3 and 20 contained in a 1D box
with periodic boundary condition. The length of the box L is also predefined, along with the
temperature, so our systems are described by the canonical ensemble. Even though periodic
images of particles make the system infinite in a sense, it is still necessary in theory to take the
thermodynamic limit to eliminate finite-size effects, since phenomena on large scales cannot be
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accounted for, and wave-like phenomena become quantized. The size of our simulated systems
was not nearly enough to eliminate all finite-size effects, and in fact, they play a central role in
the matter studied in this thesis, namely, superflow in 1D systems is a finite-size effect.

The bosons in our simulations, which we refer to as atoms, are defined by their mass, initial
position, and mutual interaction. The mass corresponds to the mass of 4He (λ ≈ 6.06 Å2 K),
or in some cases 3He (λ = 8.08 Å2 K). We use these to refer to the species of the atoms, but
note that it is not our aim here to study any specific system, but obtain some general predictions
that can either be applied to some specific systems or motivate and direct further research. This
explains why we may take atoms of mass equal to that of 3He to be bosons – our system need
not be realistic. The interaction potential used is the Lennard-Jones (LJ) potential

V (r) = 4ε

[(σ
r

)12

−
(σ
r

)6
]
, (3.1)

with values of parameters ε = 10.22 K, and σ = 2.556 Å. The precise potential used is probably
not very important, since low-energy properties of dilute systems1 are mostly dependent on the
scattering length of the potential [6]. We did not concern ourselves with the specific potential,
or even the scattering length, for the same reason as stated above. The only issue was finding the
value of the Luttinger parameter of our systems. The initial positions of atoms in the simulations
were points in 1D crystal lattice. It would make sense, and is often the practice, to generate
positions randomly, but this introduces complications since sampling positions from a uniform
distribution can lead to atoms starting with extremely high energies due to being very close, so
the distribution has to be modified. For the sake of simplicity, we have chosen to start from a
lattice, since it does not appear it should affect the results after an initial equilibration phase,
and since some of the systems studied here behave as liquids with a degree of structure, it is not
even clear the random approach would be superior.

Certain simulation parameters had to be specified before running the simulations. Most no-
tably, the time-step analysis was performed to find a suitable value of time step τ . This entailed
a convergence study of total energy, and step τ = 0.04 K−1 was chosen since the fitted value of
energy at this step was within one standard error from the estimated τ → 0 limit. This study
was only performed at one (largest) density, and the results may vary. However, we expect
this value to only become more conservative at other simulated densities for which interactions
play less of a role2. There are other potential problems that were not addressed in this study
of time-step dependence, namely, the convergence of different quantities may also vary and the
polymers were not allowed to cross-link to reduce the run time of simulations.

The first set of results comes from PIMC simulations carried out as described. We have
1The diluteness of the systems presented here may be brought into question though, especially the densest one

with ρ−1
0 ≈ 2σ.

2See the following sections for a sense of how system evolution is simulated.
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attempted to determine the Luttinger parameter by fitting the laws (2.96) and (2.97) to the
resulting data on pair correlation functions and OBDMs. The goal was to classify systems
of different densities and define our predictions for their behaviour in presence of disorder.
Since PIMC can only simulate finite temperatures, several of lowest-temperature data sets were
chosen, so that the zero-temperature limit may be assessed. The results were not always reliable,
and in some cases we have used the data obtained from zero-temperature diffusion Monte Carlo
(DMC) simulations to compare and supplement results. The results on the square of absolute
value of winding number were used to determine the superfluid fractions, and we have tested if
our systems were in the LL regime by fitting the Galilean-invariant scaling relation (2.101) to
PIMC data.

The second set of results were obtained from simulations of systems with disorder, i.e. a
randomly perturbed external potential. The perturbation was achieved by introducing a single
immovable (infinitely massive) impurity particle at a random position, and specifying its in-
teraction with regular atoms. Each simulation was repeated several times, with the disorder
particle at a different position. The interaction potential was chosen to be of a Gaussian shape3,
centred on the position of the impurity

Vimp = ε exp

(
− r2

2σ2

)
, (3.2)

with σ = 0.25 Å. Different normalization constants were used to modify the strength of the
interaction. The reason LJ potential was not used is that in pure 1D, any infinite repulsive
potential will render winding impossible, thus completely destroying superflow. By fitting the
expression (2.100) to superfluid fraction data we have tested robustness of superfluidity in LL
systems of different Luttinger parameters.

3.2 Path integral Monte Carlo

3.2.1 Metropolis algorithm and path integral Monte Carlo

Path integral Monte Carlo method is a subclass of Monte Carlo methods that exploits the path
integral formalism and quantum-classical isomorphism discussed in the previous chapter. The
Monte Carlo class of numerical methods is characterised by the usage of random sampling to
obtain results. PIMC calculations usually employ generalizations of the Metropolis algorithm
[3], introduced by Metropolis et al. [27]. The Metropolis algorithm is a method that uses
Markov-Chain-based sampling. This means that the sampling is achieved by means of an iter-
ative procedure such that the next distribution of a sample (state) depends only on the current

3The exception were a set of test simulations that used LJ potential.
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Frane Lunić: Luttinger liquid properties of 1D Bose system and impurity effects

state and a probabilistic rule that governs transitions between states. Under certain conditions,
the distribution will asymptotically approach the desired distribution. The Metropolis algorithm
is suitable for computation of averages of the form [26]

〈f〉 =

∫
f(R)p(R) dR∫
p(R) dR

. (3.3)

Expression (2.6) is essentially of the same form with R → {R,R′}, and p(R) → ρ(R,R′).
The convolution of this path (see subsection 2.2.2) adds further coordinates, but the substance
is unchanged, and therefore this method may be used with path integrals.

Let s and s′ be two possible states of a system, and suppose the system currently occu-
pies state s. The transition probability between the states is P (s→ s′) = T (s→ s′)A(s→ s′),
where T (s → s′) is an a priori sampling distribution, i.e. the probability of proposing a tran-
sition from s to s′, and A(s → s′) is the probability of acceptance. The original, and most
simple choice of a sampling distribution is a uniform distribution inside a range varied so that
the most efficient rate of acceptance is maintained. PIMC usually requires use of different sam-
pling probabilities. If the transition probability is ergodic, there is a unique equilibrium state
that will be sampled in the long run. It is the solution of [3]∑

s

p(s)P (s→ s′) = p(s′). (3.4)

In practice, the desired probability distribution p(s) is known, and the transition probability is
chosen to solve the equation (3.4). This is usually achieved by choosing the transition probabil-
ity that satisfies detailed balance, which is a sufficient condition for (3.4)

p(s)P (s→ s′) = p(s′)P (s′ → s). (3.5)

Detailed balance can be satisfied by a simple rule

A(s→ s′) = min

[
1,
T (s′ → s)p(s′)

T (s→ s′)p(s)

]
(3.6)

In each step of the algorithm, a possible type of transition is picked from the menu, sampled
from the sampling probability, and then accepted or rejected according to (3.6).

Once the desired distribution is reached, (3.3) can be calculated numerically by averaging
over random walkers. Direct calculation of energy in this way is a trivial example of an esti-

mator. Estimators are functions that are used to calculate observables, and different estimators
of the same observable can have different statistical error, efficiency, bias, time-step error, and
finite-size error [3]. Most notably, the PIMC implementation used in this study uses the virial
estimator of energy, and the winding-number estimator of superfluid fraction. We omit any
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further discussion of estimators, and refer the reader to reference [3].

3.2.2 The problem of sampling in PIMC

There are two components to sampling the possible microstates of the system, the path sam-
pling, and the sampling of permutations that close the paths. There are many possible "correct"
ways of sampling, in the sense that they eventually converge to the right distribution, but in
computational methods, efficiency is as much of an issue as correctness, since time and com-
putational resources are limited. The analogue of the classic sampling method used in many
other Monte Carlo simulations would be the method of attempting to move a single bead at a
time to a random position inside a box whose length is adjusted to achieve close to 50 % rate of
acceptance. This method may be the best example of the peril of making bad sampling choices.
It can be shown from the fact that the largest displacement possible is of the order of the thermal
wavelength that the computer time needed for the centre of mass of a polymer to diffuse a fixed
distance scales unfavourably with M (M3) for large M . Hence, trying to reduce the time step
τ to increase precision will lead to prohibitively long correlation times [3].

A degree of optimization can be achieved by performing "multi-slice" updates. The proposed
new positions of a number l of slices belonging to the same world line are sampled from a
product of free-particle density matrix terms (propagators) at the inverse temperature τ = β/M .
A recursive multilevel bisection algorithm is often used [3], namely the staging algorithm [13],
wherein the midpoint position is generated first from the free-particle propagator at τ l/2, and
then quarter point, etc.

Permutation sampling can be achieved in a direct way by attempting cyclic permutations P
with probability T ∗(P) ∝ ρ(Rm,PRm+l, τ l), normalized so that the probability of choosing
any permutation is one. This is equal to the full transition probability since the acceptance rate
is 100 % 4. A suitable approximation does away with the potential action, and the remaining
free-particle density matrix may be factorized into a product of elements of the transition table.
After a permutation is performed, a segment of path must be constructed in accordance with the
permutation, and this can be done in the same manner as for path sampling. Since this is not
the method we applied, we will not go into further detail of this method. This can be found in
references [3, 13].

More recently, another kind of permutation sampling, which we have used and will describe
in the next section, has gained use. The reason for its emergence, as explained in [12], lays in the
fact that the frequency with which long permutation cycles are sampled decreases exponentially
with N 5. Therefore, it becomes increasingly harder to study large systems. Additionally, it is

4This is called the heat bath rule, and it is difficult to apply to continuous path sampling due to the infinite
number of possible paths.

5Long permutation cycles are necessary for studying some quantum properties, most notably they are needed
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difficult to distinguish if the reason for the absence of long permutation cycles lays in physics
or in non-ergodicity of the sampling method.

3.2.3 Worm algorithm

The worm algorithm (WA) represents an alternative approach to sampling paths that solves
some of the problems of the conventional PIMC algorithm [12]. One of the innovations of WA
is the ability to operate in the grand canonical ensemble, as presented in [12], but since we work
in the canonical ensemble, we only use updates which preserve the total number of atoms.

The configurational space of the WA is extended to include off-diagonal configurations which
contain a single open world line, referred to as the worm, along with N − 1 closed world lines.
The beads at the two ends of a worm are called the head or Ira (I), and the tail or Masha (M).
At a given point during simulation, the configuration can be either diagonal or off-diagonal.
The diagonal configurations belong to the Z-sector of the configurational space, while the off-
diagonal ones belong to the G-sector, and there are updates that allow for transition between the
sectors. The Z-sector configurations enable the calculation of diagonal properties, associated
with the partition function Z, while G-sector is necessary to make any topological changes such
as winding of the paths6, and for calculation of the OBDM. A special type of update which acts
on the worm takes care of all permutation sampling ergodically, by reconnecting the head of the
worm to another world line.

The version of WA that we have used allows seven types of updates. Each of the updates has
a certain probability of being proposed, and if proposed, is accepted or rejected according to
the standard Metropolis algorithm. We will now describe the possible updates and show their
schematic world-line diagram 7 representations.

Two of the possible updates, the dispace and wiggle, can be performed in both sectors, but are
only performed on closed world lines. These are not limited to the WA class of PIMC methods.
The displace update is a simple rigid translation of the entire world line. The translation vector is
picked randomly, subject to constraint that its magnitude is less than a predetermined maximum
length. This length is modified during the simulation in order to optimize acceptance rate. Since
the kinetic action is unaffected by a rigid translation, the acceptance probability depends only
on the difference in potential action between the initial and proposed configuration. The wiggle
update consists of picking a random atom index i, and reconstructing the positions of its beads
between slice j0, also picked at random, and slice j0+l. This is shown in Figure 3.1. In this case,
the value of l is modified to achieve optimal acceptance ratio. The new positions are sampled
from the distribution determined by free-particle action, i.e. the product of gaussians for every

to have a non-zero value of the winding-number estimator of superfluid fraction.
6Though winding number averages are calculated in the Z-sector.
7The x-axis of a world-line diagram represents space, and the y-axis time.
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Figure 3.1: The wiggle update. On the left side, the initial configuration is shown. On the right side, the
updated configuration is shown in solid, along with the initial configuration in dashed lines. The images
are reproduced with permission from [29].

link. This is done in multiple steps, according to the staging algorithm. Since kinetic action
is exactly the free particle action, this takes care of the kinetic factor in acceptance probability,
which, yet again, depends only on the potential action [13, 5] 8

Adisplace/wiggle = min

[
1, exp

(
M∑
m=1

U(Rm,Rm−1; τ)− U(R′m,R
′
m−1; τ)

)]
, (3.7)

where the prime denotes the proposed coordinate, τ = β/M , and the summation limits may be
replaced by j0 + 2 and j0 + l in case of the wiggle update.

Figure 3.2: The open update. On the left side, the initial configuration is shown. On the right side, the
updated configuration is shown in solid, along with the initial configuration in dashed lines. The images
are reproduced with permission from [29].

Next, two complementary updates switch between the sectors. The open update operates only
in Z-sector, and it opens one of the closed polymers. This is achieved by randomly selecting a
bead ri,j0 and an integer l such that 1 ≤ l ≤ lmax < M , and then removing the l − 1 successive
beads ri,m with m = j0 + 1, j0 + 2, . . . , lmax − 1. The two end beads now become Ira and

8From here on we omit the 1/~ factor, letting the action absorb it.
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Figure 3.3: The close update. On the left side, the initial configuration is shown, and on the right side,
the updated configuration. The images are reproduced with permission from [29].

Masha. This is shown in Figure 3.2 The probability of accepting this update is

Aopen = min

[
1, C

e∆U

ρ0(ri,j0+l, ri,j0 ; τ l)

]
, (3.8)

where ∆U is again the difference in the potential action between the initial and proposed con-
figurations, and C is the constant that controls the relative statistics of the two sectors. C and
lmax are simulation parameters that only affect the efficiency of the simulation [12]. On the
other hand, the close update, shown in Figure 3.3, operates only in G-sector, and it reconnects
Ira and Masha by constructing a path consisting of l beads between them. The number l is
the "distance" between the position of Ira and Masha in time. The path is sampled from the
free-particle distribution, and the acceptance probability is

Aclose = min

[
1,
ρ0(rM, rI ; τ l) e

∆U

C

]
. (3.9)

The parameters lmax and C are the same as before. In this case the move has to be rejected if
l > lmax.

Figure 3.4: The advance update. On the left side, the initial configuration is shown, and on the right
side, the updated configuration. The images are reproduced with permission from [29].
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Another pair of complementary updates operate exclusively in G-sector. The advance update
(Figure 3.4) moves the head of the worm in space and advances it in time by attaching to it
a random number l < lmax of beads sampled from the free-particle distribution. The recede

update (Figure 3.5 erases l < lmax beads. The update is rejected if l is greater than the number
of beads in the worm. The probability of acceptance is

Aadvance/recede = min
[
1, e∆U

]
. (3.10)

Figure 3.5: The recede update. On the left side, the initial configuration is shown. On the right side, the
updated configuration is shown in solid, along with the initial configuration in dashed lines. The images
are reproduced with permission from [29].

Figure 3.6: The swap update. On the left side, the initial configuration is shown. On the right side, the
updated configuration is shown in solid, along with the initial configuration in dashed lines. The images
are reproduced with permission from [29].

Finally, the swap update ensures ergodic and comparatively efficient permutation sampling
[12]. Let jI denote the time slice of the head of the worm, and l = lmax. One of the jI+ l beads,
denoted by α is chosen with probability proportional to the free particle propagator between rI
and rα

Tα =
ρ0(rα, rI ; τ l)

ΣI
, (3.11)
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where the normalization is the sum over propagators corresponding to possible choices of α

ΣI =
∑
σ

ρ0(rσ, rI ; τ l). (3.12)

Following the same world line α belongs to back in time from jα to jI , if any of the beads
encountered is Masha, the move is rejected to prevent the worm from closing. If not, let ξ
denote the jI -th time slice of the same world line, and let us define Σξ =

∑
σ ρ0(rσ, rξ; τ l). An

attempt to reconnect world lines is made now. A new path segment is sampled between α and
I , the segment between α and ξ is eliminated, and I and ξ switch labels. This is shown in
Figure 3.6. The proposed update is accepted with probability

Aswap = min

[
1,

ΣI
Σξ

e∆U

]
. (3.13)

Basic strucutre of the program

We thank M. Boninsegni for providing the code for the C++implementation of WA, that made
possible obtaining the results that will be presented in this thesis in a reasonable amount of time.
The main function contains three basic levels of nested loops. We describe what each does in
the following paragraphs.

The outermost loops over a predetermined number of blocks. The results we use are block
averages of different quantities. The reason for grouping results into blocks is to remove cor-
relation between successive values that is generally present with Markov chain based methods,
and tends to decrease the error estimate, which is made under assumption of independent data
points. The error estimates tend to rise at first with increasing block size. The size of blocks
can be manually optimized by picking one within a range in which the error estimate resem-
bles a plateau. This kind of blocking analysis was performed with estimated errors of energy
per particle for a single system, and a block size that was picked was used for all simulations
(1000). Note that this analysis was far from comprehensive; preferred block sizes may change
for varying system parameters, and perhaps different physical quantities. However we feel that
the benefit from additional precision would not justify the time expense, since this is a prelimi-
nary study, and is not precision oriented. Different optimal block sizes, were they sought, would
likely be of the same order of magnitude.

Each iteration of the middle loop is a "pass" over the system, in the sense that a number of
updates greater than or equal to the number of particles is attempted, thus moving the whole
system one step. After the step has been made, the diagonal quantities are measured.

The innermost loop is the one that carries out each pass. First a "coin toss" is performed to
chose whether to attempt to move a closed or open world line. In the first case, another coin
toss decides between calling the dispace or wiggle methods, and the in second case, one of
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the three equally likely possibilities is chosen. The first possibility calls imove which attempts
either advance or recede update, the second calls swap, and the third close. Opening a world
line will be attempted along with a worm update if the system is in Z-sector. The OBDM is
measured in each iteration of the innermost loop. This loop is finished when two conditions are
met; the number of iterations must not be less than the number of particles and the worm must
be closed in order to measure diagonal properties.

3.2.4 Action approximation

We have already encountered the primitive approximation for the action in section 2.2.2

e−τ(T̂ +V̂) = e−τ T̂ e−τ V̂ , (3.14)

and we have noted that it becomes exact in the τ → 0 limit. Unfortunately, the time step τ
can never be made zero in simulations, and the question of its accuracy and efficiency has to
be brought up. While simulations with small enough τ will achieve adequate convergence and
successful simulation can indeed be achieved with primitive action in some cases, more accurate
approximations have been developed. These approximations are appropriate for simulations of
large systems, when it is necessary to use larger time steps to increase computational efficiency.
We will only briefly present the action that is used in the particular implementation of PIMC
that we have used, as laid out in [13]. For details on action approximation methods, see [3].

The potential action of the (m+ 1)-th link takes the form

Um+1 ≡ U(Rm+1,Rm; τ) = τ

[
2

3
V (Rm) + Ṽ (Rm)

]
, (3.15)

where V (Rm) ≡
∑

i<j V (|ri,m − rj,m|) is the potential energy of the system in configuration
Rm, assuming it can be expressed as a pairwise sum of terms, and

Ṽ (Rm) =

2
3
V (Rm) + 2λτ2

9

∑N
i=1 (∇iV (Rm))2 , m = 2k + 1

0 , m = 2k
; k = 0, 1, 2 . . . ; (3.16)

∇iV (Rm) being the gradient of the total potential energy of configuration Rm with respect to
the coordinates of the i-th particle ri,m. This action approximation is accurate up to terms of
order τ 4.
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Chapter 4

Results

In this chapter we present a selection of the results obtained from the worm algorithm PIMC
and DMC simulations as described in the previous chapter. A section is devoted to determining
the value of the Luttinger parameter K of 1D systems of 4He (see section 3.1) atoms at three
different densities, and the following section presents the temperature and length dependence
of the fraction of superfluid with and without disorder.

4.1 The Luttinger parameter

In this section we analyse the data on the OBDM and the pair correlation function obtained from
PIMC, along with the DMC data on the pair correlation function, the static structure factor1, and
the dependence of the Luttinger parameter on the average density ρ0. The last is obtained from
the compressibility, which is calculated from the equation of state at 0 K [19]. The main goal is
to determine the best fit value of the Luttinger parameter.

4.1.1 The pair correlation function

The pair correlation function is defined as

g(r) = (ρ0)−2 〈ρ̂(r)ρ̂(0)〉 = (ρ0N)−1
N∑
i,j 6=i

〈δ(r − |ri − rj|〉 . (4.1)

1The static structure factor is the Fourier transform of the pair density correlation function, but is calculated
independently.
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Figure 4.1: The main graph shows the pair correlation functions calculated from the zero-temperature
DMC and PIMC simulations at several temperatures and density ρ0 = 0.2Å−1, along with four best-
fit functions (4.2) differing in the lower fit cutoff. The cutoff positions are marked by vertical lines of
the same type as the lines representing the corresponding fitted function. The lower-right inset shows a
portion of the main graph with magnified y-axis, and the left inset shows the dependence of the K, A,
and χ2 fit statistics on the cutoff radius. The rescaled χ2 (grey) is included to enable better visualisation.
All of the insets share the main x-axis.

For a LL system in the zero-temperature limit, its asymptotic behaviour is given by the equation
(2.96). Keeping only the m = 1 term we have

g(r) = 1− 2K

(2πρ0r)2
+ A(ρ0r)

−2K cos(2πρ0r). (4.2)

This expression was fitted to the g(r) data with A and K as adjustable parameters. Since this is
an asymptotic expression valid at r � ρ−1

0 , the radii r . ρ−1
0 should be excluded from the fit.

The exact cutoff radius chosen can impact the quality of the fit, and it is often unclear which one
will produce the most accurate estimate of the parameters. The approach we have adopted is to
produce the best fits for a wide range of cutoffs and search for objective indicators of quality
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Figure 4.2: The figure shows the dependence of the PIMC χ2 andK fit statistics at density ρ0 = 0.2Å−1

and temperature T = 0.1K on lower fit cutoff. The χ2 is shown in the lower graph alongside with its
rescaled values (grey) to enable better visualisation. Additionally, in the upper graph, the K values of
several higher temperatures (color) are shown to demonstrate the convergence, and the DMC K values
are shown for comparison (grey).

of the fit, i.e. the reduced2 chi-square values (χ2) and the stability of the best-fit parameters, as
well as the visual correspondence to the plotted data. When there is a lot of variance between
the results, and no obvious way to determine the most correct result, we attempt to asses the
reasonable interval for the value of K.

We start with the system at density ρ0 = 0.2 Å−1. The PIMC and DMC data are given
in Figure 4.1, along with curves fitted to the DMC data for various fit cutoffs. The decaying
oscillation of the g(r) characteristic of liquid systems can be seen from the main plot, but
the decay appeares to cease at large radii for the DMC data. The PIMC data shows a slight
dependence of the amplitude of the peaks on temperature, as can be seen magnified in the
bottom-right inset, and the agreement between the zero-temperature DMC and the PIMC data
at the lowest temperatures is very good. However, though the decay of oscillation is slow,
it does not appear to completely cease for PIMC. This could perhaps be a finite temperature
effect, but it is likely that the cessation of the decay is a method-specific numeric effect since
the low K values it requires are inconsistent with the rest of the results. The left inset shows the
dependence of the DMC fit statistics, namely the χ2 and the fit parameters, on the cutoff radius.
The K parameter drops from around 0.6 to 0, and there appears to be no range of stable values
of the fit parameters. The χ2 values are large for lower cutoffs, and become of order ∼ 1 close

2Divided by the number of degrees of freedom.

38
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to radius L/2. However this region corresponds to unlikely low values of K, close to zero. It is
worth noting that the large χ2 values may be due to underestimate of the uncertainty in the data,
but we did not attempt to verify this possibility. The PIMC fit statistics are shown in Figure 4.2.
In this case, the values of fit parameters are somewhat more stable, and the global minimum of
χ2 corresponds to K ∼ 0.4. The PIMC and DMC fits produce similar results up to about L/8
radius (K ∼ 0.3-0.6). We will see from comparison with the structure factor and equation of
state results that it is indeed likely that the actual parameter is within a similar range. We also
note that the majority of attempted fits, and all of the DMC fits with χ2 less than two orders of
magnitude greater than the minimum (excluding regions of high instability on the right side of
Figure 4.2) give the value of K less than 0.5.
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Figure 4.3: The main graph shows the pair correlation functions calculated from the zero-temperature
DMC and PIMC simulations at several temperatures and density ρ0 = 0.125Å−1, along with two best-
fit functions (4.2) differing in the lower fit cutoff. The cutoff positions are marked by vertical lines of
the same type as the lines representing the corresponding fitted function. The lower-right inset shows a
portion of the main graph with magnified y-axis (rotated by 90◦ anticlockwise), and the left inset shows
the dependence of the K, A, and χ2 fit statistics on the cutoff radius. The rescaled χ2 (grey) is included
to enable better visualisation. The left inset shares the main x-axis.

In Figure 4.3 we show the DMC and PIMC data on pair correlation functions at density
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Figure 4.4: The main graph shows the pair correlation functions calculated from the zero-temperature
DMC and PIMC simulations at several temperatures and density ρ0 = 0.1Å−1, along with three best-
fit functions (4.2) differing in the lower fit cutoff. The cutoff positions are marked by vertical lines of
the same type as the lines representing the corresponding fitted function. The lower-right inset shows a
portion of the main graph with magnified y-axis (rotated by 90◦ anticlockwise), and the left inset shows
the dependence of the K, A, and χ2 fit statistics on the cutoff radius. The rescaled χ2 (grey) is included
to enable better visualisation. The left inset shares the main x-axis.

ρ0 = 0.125 Å−1, and two fits to DMC data. The oscillations decay very rapidly after the first
peak, after which the DMC pair correlation function approaches the constant value of 1 from
below. The PIMC pair correlation function appears to approach a lower value, and this value
rises toward 1 at lower temperatures. Presumably, the PIMC plot would look very similar to the
DMC plot at a low enough temperature, but this was not simulated due to high computational
cost of low-temperature PIMC simulations. This can be seen in more detail in the bottom-right
inset. As can be seen from the DMC fit statistics inset, the value of theK estimate is fairly stable
at K ∼ 1.5± 0.2 3 in a region from ρ−1

0 = 8 Å to about 30 Å, after which it rises above 2 which
is implausible both due to its inconsistency with results for smaller cutoffs, reduced stability of

3The interval is assessed from the behaviour of the K plot, and is different from the computed errors which
tend to be an order of magnitude smaller as can be seen from the legend.
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both parameter estimates, and disagreement with estimates obtained from other methods. The
χ2 values are close to one at around 15 Å and up to 20 Å, indicating good fit quality. We omit
the discussion of fits to the PIMC data since they are necessarily of lesser quality due to the
discussed finite-temperature effects.

Nearly everything stated in the previous paragraph applies as well to the ρ0 = 0.1 Å−1 case,
and the graphs are shown in Figure 4.4. In this case, the K estimate can be given at around
or slightly above 2, but less than 2.5. The χ2 values are approximately 1.5, which is less than
ideal for a large number of degrees of freedom 4, but probably low enough to allow a decent fit
quality.

4.1.2 The structure factor
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Figure 4.5: The main graph shows the results of the DMC calculation of the static structure factor at low
q and density ρ0 = 0.2Å−1, along with several lines representing the best fit of (4.4) to the low q data
up to various values of upper fit cutoffs qc. The qc positions are marked by vertical lines of the same type
as the lines representing the corresponding fitted function. The bottom-right inset shows the full range of
q, and the insets on the top left graphically show the dependence of fit statistics on the selected qc. The
leftmost K estimate comes from the linear interpolation between q = 0, and the first q point.

4The table of critical values of nonreduced χ2 can be found at http://www.itl.nist.gov/div898/handbook/eda/
section3/eda3674.htm
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Figure 4.6: The main graph shows the results of the DMC calculation of the static structure factor at
low q and density ρ0 = 0.125Å−1, along with several lines representing the best fit of (4.4) to the low q
data up to various values of qc. The qc positions are marked by vertical lines of the same type as the lines
representing the corresponding fitted function. The bottom-right inset shows the full range of q, and the
insets on the top left graphically show the dependence of fit statistics on the selected qc. The leftmost K
estimate comes from the linear interpolation between q = 0, and the first q point. A simple linear fit to
the K estimates is drawn in order to extrapolate the K estimate to the q → 0 limit. The extrapolated
value is K → 1.53± 0.02.

The static structure factor

S(q) =
1

N

〈
N∑
i,j 6=i

e−iq(ri−rj)

〉
(4.3)

is the reciprocal space analogue of the pair correlation function, which implies that, like the
r →∞ limit of g(r) , its behaviour in the q → 0 limit is controlled by K. We expect that[17]

K = 2πρ0 lim
q→0

S(q)

q
, (4.4)

and therefore, a function

S(q) =
K

2πρ0

q (4.5)

can be fitted to the data via the parameter K for q � 2πρ0. The data on the structure factor
were obtained from DMC simulations. The main problem with this method is that q is discrete
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for finite box sizes, and the system sometimes has to be very large in order to have enough low
q points to obtain a good fit.

The structure factor at density ρ0 = 0.2 Å−1 is shown in Figure 4.5, partially in the main
graph, and full range is given in one of the insets. The fits were done for various cutoff values
qc up to about πρ0. Except for the qc = 0.17 Å−1 fit, the fit quality indicated by χ2 values is
relatively poor (but not terrible), even for the qc = 0.3 Å−1 fit which only has three degrees of
freedom5. However, the one fit of good quality and the manually added value of K obtained
from a single q point are both close to 0.51. We may quote the added value and its error as the
final estimate K = 0.51± 0.01, but note that the uncertainty may be an underestimate.
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Figure 4.7: The main graph shows the results of the DMC calculation of the static structure factor at
low q and density ρ0 = 0.1Å−1, along with several lines representing the best fit of (4.4) to the low q
data up to various values of qc. The qc positions are marked by vertical lines of the same type as the lines
representing the corresponding fitted function. The bottom-right inset shows the full range of q, and the
insets on the top left graphically show the dependence of fit statistics on the selected qc. The leftmost K
estimate comes from the linear interpolation between q = 0, and the first q point. A simple linear fit to
the K estimates is drawn in order to extrapolate the K estimate to the q → 0 limit. The extrapolated
value is K → 2.22± 0.04

The ρ0 = 0.125 Å−1 data are shown in Figure 4.6. The range in which a linear fit makes
sense is much more restricted than in the previous case. In fact, all of the fits appear to be of
poor quality from the χ2 values, and no K convergence is visible. We have attempted a linear

5This sets the p = 0.99 critical value below 4.
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extrapolation of K to the q → 0 limit. The estimate obtained in this way is K = 1.53 ± 0.02,
and is not far off from the single-point K estimate. The correct result is not likely to exceed this
estimate significantly, but it may be slightly lower, between 1.3 and 1.5 judging by the two-point
fit.

Finally, the ρ0 = 0.1 Å−1 data are shown in Figure 4.7. The graph is very similar to the pre-
vious case, and there is no need for detailed discussion. The extrapolated value of the Luttinger
parameter is K = 2.22 ± 0.04, but the smaller values of K are still plausible, down to about
K = 1.7.

4.1.3 The one body density matrix
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Figure 4.8: The figure shows the results of the PIMC calculation of the one body density matrix at three
average densities and the dependence of the Luttinger parameter K on the average density (bottom-
right). The latter is calculated from the zero-temperature average energies (equation of state) obtained
from DMC simulations. For each density, the function (4.6) fitted to the lowest temperature (black) and
the second-lowest temperature (grey) data for two lower cutoff radii is shown. The upper cutoff radius of
0.1L is used as well, since the results seem to become less reliable, probably due to inefficient sampling.
It is marked by a thin vertical line in each of the subplots. The subplots at the top share the same y-axis.
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The one body density matrix was defined in (2.7), and here we present the PIMC results on
the OBDM normalized by particle density n(|r′ − r′′|), so that its value at n(r = 0) is 1. The
long-range behaviour in the Luttinger model is given by (2.97), or keeping only first two terms

n(r) = (ρ0x)−
1

2K

[
B0 +B1(ρ0r)

−2K cos(2πρ0r)
]
. (4.6)

Fitting (4.6) to the data mostly produced fits of poor quality. We show the fits for the lowest
and the second lowest available temperature in Figure 4.8. There is no evidence of convergence
toward zero-temperature values of K, except in the case of ρ0 = 0.2 Å−1 shown in the bottom-
left corner. This is not surprising as we have already seen from the g(r) results that the simulated
temperatures are not low enough. The value obtained in the ρ0 = 0.2 Å−1 case is between
0.65 and 0.75 which is slightly above previous estimates, and in the case of ρ0 = 0.125 Å−1,
the estimated interval is between 1.2 and 1.4, slightly below previous estimates. While these
results are not too far off from the previous estimates, the result for the density ρ0 = 0.1 Å−1 is
significantly lower than before at K . 1.5. Clearly, significantly lower temperature is required
to successfully approximate the pair correlation function and the OBDM at such a low density.
However, since the K estimates tend to rise as the temperature decreases, this can be taken as
evidence that K > 1 at ρ0 = 0.1 Å−1 and ρ0 = 0.125 Å−1.

4.1.4 Summary

Here we summarise the results on the Luttinger parameter, and state what may be concluded
about its value.

ρ0 = 0.2 Å−1 The fits to the pair correlation function seem to imply the value in the (0.3, 0.6)

interval, based on combination of PIMC and DMC data, with the PIMC data showing
more stability, and is awarded more weight. The DMC static structure factor data leads to
a consistent result K = 0.51±0.01, as well as the DMC equation of state which suggests
a value between 0.5 and 0.6, as can be read from Figure 4.8. Only the PIMC OBDM data
suggest a value above 0.6, and the fits are of low quality. We conclude that the value of
K is likely to be in the interval (0.4, 0.6), and it is almost certainly less than 1, which will
be relevant after introducing disorder.

ρ0 = 0.125 Å−1 Here the DMC g(r) data suggests that K is likely to be in the (1.3, 1.7)

interval, the structure factor data suggests a similar interval (1.3, 1.6), and the equation
of state gives a value between 1.2 and 1.3. The OBDM gives an interval of (1.2, 1.4),
but with low fit quality and questionable convergence to zero-temperature behaviour. K
is almost certainly above 1, but it is impossible to verify with available data whether it is
below 1.5. Its value probably lies in the interval (1.2, 1.6).
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ρ0 = 0.1 Å−1 The interval consistent with the DMC g(r) data is (2, 2.4), and (1.7, 2.3) for the
structure factor. The equation of state suggests 1.8. We conclude the value is probably
above 1.5, with (1.7, 2.3) being the likely interval.

4.2 The superfluid fraction

We have shown over the course of chapter 2 how superfluidity and path integral formalism fit
together. At the end of subsection 2.3.1 we have shown the scaling relations that connect the
superfluid fraction of a finite LL to its length and temperature. Here we show the data on the
superfluid fractions obtained from PIMC simulations with and without disorder.

4.2.1 Systems without disorder
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Figure 4.9: The figure shows the plot of PIMC data on superfluid fractions for a range of temperatures
and different box lengths at density ρ0 = 0.2Å−1 without disorder, against the scaling variable u =
LkBT
~v0J

, along with the scaling function (4.7) fitted to the combined data.

Superfluid fraction estimates obtained using the winding number estimator for systems at
density ρ0 = 0.2 Å−1 are shown in Figure 4.9. Systems with four different box sizes L were
simulated at a range of temperatures. The fitted line is the LL prediction for Galilean invariant
systems, with ~v0

J as an adjustable parameter. The first 3 terms in the expansion on the right-
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hand side of (2.101) were kept, resulting in the expression

ρS
ρ

= 1− 8π

u

e−2πu + 4e−8πu

1 + 2e−2πu + 2e−8πu
, (4.7)

where u = LkBT
~v0J

. The fit is quite good, which means that there is no significant depen-
dence on either L or T separate from the scaling variable u. The expected value of ~vJ ,
~v0

J = 2πλρ0 = 7, 61477, is within one standard error of the estimated value of the fit parame-
ter, ~v0

J = (7.64± 0.09) Å K.
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Figure 4.10: The top panel shows the plot of PIMC data on superfluid fractions against the variable
u0 = LkBT

~v0J
for systems of various lengths and temperatures (ρ0 = 0.2Å−1) with a single disorder

particle. The potential between the disorder particle and regular atoms is either Gaussian-shaped (color)
or the Lennard-Jones potential (black), with the potential parameters given in the legend. Fits of the
scaling function (4.8) to the Gaussian disorder (ε = 10K) data are shown in the same color as the points
for each box length, and the theoretical prediction for a Galilean invariant system without disorder is
shown in grey. The bottom panel shows the fits to the ε = 50K data. Both panels share the same x-axes.
The data points are the average of several (n) simulations with different randomly selected positions of

the impurity. The errors are calculated from σ = 1
n

√∑n
i σ

2
i .

47
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4.2.2 Systems with disorder

We begin by noting that the additional particle of impurity is expected to have the effect of
decreasing effective density by excluding a part of the volume. However, if simply the range
of the disorder potential is excluded in calculation of ρ0, the effect on the results is of little
significance.
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Figure 4.11: The top panel shows the plot of PIMC data on superfluid fractions against the scaling
variable u0 = LkBT

~v0J
for systems of various lengths and temperatures (ρ0 = 0.125Å−1) with a single

disorder particle. The potential between the disorder particle and regular atoms is Gaussian-shaped
with ε = 10K. Fits of the scaling function (4.8) to the data for two of the box lengths are shown, and
the theoretical prediction for a Galilean invariant system without disorder is shown in grey. The bottom
panel shows the fits to the ε = 50K data. Both panels share the same x-axes. The data points are the
average of several (n) simulations with different randomly selected positions of the impurity. The errors

are calculated from σ = 1
n

√∑n
i σ

2
i .

The scaling relation used in previous subsections assumes Galilean invariance, and requires
that ρS/ρ → 1 as T → 0. Instead, we fit the data on systems with disorder to the expression
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(2.100), keeping only the first three terms in expansion:

ρS
ρ

=
2πLkBT

~v0
J

exp
(
−π

2
u0

v0J
vJ

)
+ 4 exp

(
−4π

2
u0

v0J
vJ

)
1 + 2 exp

(
−π

2
u0

v0J
vJ

)
+ 2 exp

(
−4π

2
u0

v0J
vJ

) , (4.8)

v0
J/vJ being an adjustable parameter, and u0 v

0
J/vJ = u.

In Figure 4.10 we see the superfluid fraction data for ρ0 = 0.2 Å−1 systems with disorder of
varying "magnitude"6 , represented by the normalization parameter ε of the Gaussian potential.
Evidently, the magnitude of the disorder affects the resulting fraction, but the fraction does not
vanish, except in the case of the unbounded LJ potential. The fractions are very weakly affected
in case of ε = 2 K, which is an order of magnitude larger than the measured average energies
per particle at this density (∼ 0.4K). The disorder of ε = 10 K magnitude visibly destroys
the u-scaling. The different box lengths are differently affected, with the fraction being more
suppressed for larger lengths. The fits to the scaling relation are visibly poor, and χ2 values are
high. The fractions of systems with ε = 50 K are almost completely suppressed.

The top and bottom panels in Figure 4.11 show the ρ0 = 0.125 Å−1 data for different disorder
magnitudes. The lower-magnitude data on the top appear to be better described by the scaling
relation than the ρ0 = 0.2 Å−1 data. However, there is visible disagreement between the fits and
the data, especially in the low u region, and the χ2 values are still quite high (although lower
for each box length than earlier). The bottom, higher-magnitude data does not show any indi-
cation of obeying the predicted scaling relation. However, in both cases there is little difference
between different box lengths, as evidenced by the nearly same value of the fit parameter in the
lower-magnitude case.

The same discussion applies to the ρ0 = 0.1 Å−1 case in Figure 4.12. The deviation from the
scaling relation fit is qualitatively the same as in the previous case. However, we see slightly
better evidence of breakdown of u-scaling, since the ρS/ρ values in the bottom panel appear
slightly more suppressed for larger box length.

In summary, addition of disorder suppresses the values of the superfluid fraction and, at least
in case of ρ0 = 0.2 Å−1 for which K < 1, destroys the u-scaling. For the two lower densities
(K > 1), the scaling appears to be mostly, but perhaps not entirely, preserved. The discussed
scaling relation fits the lower-magnitude disorder data better, but there are visible deviations.

6We introduce this as an internal shorthand to differentiate between cases differing exclusively in the normal-
ization parameter of the Gaussian.
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Figure 4.12: The top panel shows the plot of PIMC data on superfluid fractions against the scaling
variable u0 = LkBT

~v0J
for systems of various lengths and temperatures (ρ0 = 0.1Å−1) with a single

disorder particle. The potential between the disorder particle and regular atoms is Gaussian-shaped
with ε = 10K. Fits of the scaling function (4.8) to the data for two of the box lengths are shown, and
the theoretical prediction for a Galilean invariant system without disorder is shown in grey. The bottom
panel shows the fits to the ε = 50K data. Both panels share the same x-axes. The data points are the
average of several (n) simulations with different randomly selected positions of the impurity. The errors

are calculated from σ = 1
n

√∑n
i σ

2
i .
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Chapter 5

Discussion

5.1 Agreement with LL model for systems without disorder

We expect the asymptotic behaviour of correlation functions studied here, as well as superfluid
fraction scaling, to be consistent with the predictions of the LL model in absence of disorder.
Verification of this prediction is not the main focus here, but lack of agreement would inval-
idate our discussion of systems with disorder. We have seen from the results of section 4.1
that the asymptotic properties of the pair correlation function and OBDM are in qualitative
(and visual) agreement with the LL prediction, at least for systems for which we can be rea-
sonably sure finite-temperature effects do not have a major impact and sampling is sufficient.
Quantitative results on χ2 values may raise some doubts in case of PIMC data on g(r) and
OBDM at ρ0 = 0.2 Å−1, but this is likely to be due to unreliability of results. Deviations from
prediction could stem from minor effects of finite temperature and problems with numerical
precision, sampling or value estimation. On the other hand, the DMC structure factor allows
better fits, and gives consistent results for K. This, along with the qualitative agreement of
g(r) and the excellent agreement of superfluid fraction results with the model prediction (Fig-
ure 4.9), demonstrates the applicability of the LL theory in this case. The results obtained by
others studying similar systems (e.g. [16]) further support this conclusion. For other densities,
the DMC results on g(r) and the structure factor show good agreement with the LL model.
The fits to g(r) data are good, and the structure factor gives consistent results, despite prob-
lems caused by small system sizes. The PIMC results on g(r) seem to approach the DMC ones
as temperature drops. Unfortunately, the available OBDM results do not allow unambiguous
conclusion.

The behaviour of OBDM warrants separate discussion. We see from Figure 4.8 that it appears
to tend to a finite value near the end of the box in some cases. This would imply the existence of
off-diagonal long-range order, i.e. Bose-Einstein condensation. This is impossible since we are
dealing with a 1D system. Even algebraic order should not be possible at a finite temperature,
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and the OBDM can only be approximately described by an algebraically decaying function at
short enough distances [20]. We can see from the figure that this appears to happen invariably
near the end of the available interval. This has indeed been our experience even when working
with the same density systems of different length. We conclude that this effect is most likely
not physical, but a problem with finite-size simulations.

5.2 Classification of systems without disorder

The predictions of the LL model for the behaviour of the simulated systems is based on the
value of the Luttinger parameter K. The results on K were presented in section 4.1.

In presence of disorder, systems of noninteracting particles can undergo Anderson localiza-
tion, characterized by exponential decay of single-particle eigenstates [18, 19]. The existence
of a localized phase of 1D interacting bosons was shown in [21]. This phase, termed Bose

glass, is an insulator, i.e. there is no superfluidity due to localization. It is predicted that the
transition between superfluid and Bose glass (SF-BG) occurs at Kc = 3/2 [21, 22], hence we
should observe no superfluidity in systems of K < 3/2. However, the full picture is more
complicated. Under conditions of dilute disorder and above above a certain finite temperature,
a system can remain superfluid down to K = 1 [23, 24]. Furthermore, as the disorder strength
is increased the transition to the localized phase has also been predicted for K > 3/2 [28].
However, different scenarios have been proposed and the issue is still a matter of debate.

As we have seen from figures 4.1 and 4.2, the asymptotic behaviour of g(r) of ρ0 = 0.2 Å−1

systems obtained from PIMC simulations is not entirely consistent with those of DMC simula-
tions. We have already concluded that this is more likely to be due to problems with the DMC
simulation, rather than finite-temperature effects. Either way, the slow decay of oscillations,
and the peak in structure factor at q ≈ 2πρ0 indicate solid-like properties. Since most fits to the
g(r) give K < 0.5, this would place the system in the so-called quasi-solid regime [19], but the
results are not clear enough to determine this with high certainty. However, it is enough for our
purposes to categorize this system as a K < 1 system. This allows us to make a prediction that
introduction of even localized disorder in form of a single particle should completely suppress
superflow.

As we have seen, we can conclude with a high degree of confidence that K > 1 at density
ρ0 = 0.125 Å−1. This means that LL model predicts robustness of superfluid response at least
to a localized disordered perturbation, which is the case we have studied. There is some in-
dication that K < 1.5, but this is unclear. If true, this would mean that superfluidity should
be suppressed by addition of several impurities at random positions. The most straightforward
way to determine the value of K more precisely would be to determine the structure factor for
larger systems. Alternatively, one could use a system at a slightly higher density. However, we
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did not attempt to test this prediction here. On the other hand, it is fairly certain that K > 1.5

for systems at ρ0 = 0.1 Å−1. These systems should therefore be robust to disorder in a more
general sense, as long as it is sufficiently weak.

5.3 Agreement with the LL prediction for disordered systems

The destruction of u-scaling after adding an impurity to a K < 1 system clearly shows that
the system is no longer in LL regime. On the other hand, the u-scaling appears to remain valid
(with possible slight deviations) for the two K > 1 systems. This is in accordance with the
prediction in the sense that there is a qualitative difference between K < 1 and K > 1 systems.
However, the superfluid fraction does not vanish as expected in the K < 1 case, and is in fact
very slightly affected for disorder potential of the smallest magnitude shown in Figure 4.10.
Since the superfluid fraction decreases with L, we speculate that it eventually converges to
zero. This is straightforward to check, but will require lengthy simulations. We note that these
results are in accordance with those of reference [17].

The validity of the LL prediction in K > 1 case is unclear. While results may be consistent
with u-scaling, the scaling relation probably has to differ from the one predicted to explain the
observed behaviour. Agreement with the scaling relation (2.100) is much better for smaller
disorder magnitude in both K > 1 cases, but even here, the deviations do not seem to be due
to chance, since in both cases the fitted function overshoots the calculated ρS/ρ values at low u

by a margin much larger than the error estimate. We can ascertain by observing the fluctuations
of ρS/ρ in all of the figures of section 4.2 that the true statistical errors are not significantly
larger than the typical estimate. The lack of apparent systematic bias in Figure 4.9 lends some
credibility to the results, but since the circumstances are different, we would not be entirely
justified in dismissing this possibility.

If the scaling relation is changed, this would imply a correction to the LL Hamiltonian (2.84)
would be necessary to explain the physical properties of this class of systems in the presence
of disorder. However, besides systematic bias, we believe there is another possible explanation
for this effect, based on the relative impact of interaction with disorder on particles of different
energy, that would have to be excluded before accepting the necessity of any modifications to
the LL model.

We have seen from the PIMC pair correlation function and the OBDM that the K > 1 sys-
tems were not simulated at a low enough temperature to achieve convergence to T = 0 K values.
A cursory study of energy dependence (see Figure 5.1) on temperature of systems without dis-
order shows the dependence is significant down to T = 0.1 K, which is only slightly higher
than the lowest temperature used in disorder calculations (0.09 K). Suppression of superfluid
fractions in disordered systems is clearly more pronounced at higher disorder magnitude, and
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we assume that this is controlled by its value relative to the average energy. Since the energy
decreases together with temperature, and hence with u (L is kept constant), the relative magni-
tude of disorder increases at low u. If this hypothesis is correct, we should not expect u-scaling,
except approximately for small enough ∆u. The scaling would remain valid, however, if the
magnitude of disorder is varied with temperature so that the relative magnitude remains con-
stant. Therefore, this hypothesis may be tested by fitting (2.100) to the data obtained in this
way. Another way to test the hypothesis is to extend the range of simulated temperatures for
systems of larger size so that the data includes points at equally low u as that of smaller size.
We would expect to see a breakdown of u-scaling with systems of larger size having smaller
ρS/ρ at low u. This is a slightly more straightforward, but less robust test.
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Figure 5.1: Dependence of the average PIMC energy on temperature. The horizontal lines represent the
value of the DMC zero-temperature average energy and its error estimate.
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Chapter 6

Conclusion

We have studied a series of cold one-dimensional Bose systems via the worm algortihm path
integral Monte Carlo computational method, and to an extent the diffusion Monte Carlo method.
Our aim was to test the applicability of the Tomonaga-Luttinger liquid theory to these systems,
especially in presence of disorder.

Our findings on systems without disorder suggest agreement with the Luttinger liquid predic-
tions. Upon introducing dilute disorder, the systems show two different patterns of behaviour.
The first pattern, observed in case of the largest simulated density and the Luttinger parame-
ter value K < 1, is the complete cessation of u-scaling predicted by the LL model, meaning
that the superfluid fractions show separate dependence on temperature and size of the system.
The superfluid fractions are not completely suppressed but since they decrease with increasing
system size for equal u, we did not discard the possibility that the system sizes were not large
enough for localization to achieve full effect. Further research on this is needed. The second
pattern was observed in cases of the two K > 1 systems, of which at least in one, but possibly
in both cases, K was larger than 3/2. It is characterized by a u-scaling with only minor possi-
ble deviations in the simulated range. The u-dependence is not well modelled by the predicted
relation, and it is not clear if this implies inapplicability of the LL model. Other possibilities
considered are systematic bias and the effect of varying ratio of the average energy to the height
of the disorder-related potential barrier.

The results seem to be reconcilable with the predictions of the LL model. However, more
research is needed to reach firm conclusions. Tests were proposed in the discussion to verify
the convergence of large system sizes to zero superfluid fractions in K < 1 systems, and to see
if the deviations from the predicted scaling relation in K > 1 systems are due to variance in the
average energy. Additional convergence tests should also be performed to check the quality of
sampling, optimize simulation parameters, and reduce the possibility of biased results. Aside
from this, additional densities with more precisely determined K values should be simulated
to find the critical value of K. Systems with nondilute disorder should be simulated in order
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to see if this results in different a critical value, and if it corresponds to the predicted value of
Kc = 3/2 for SF-BG transition in case of nondilute disorder.
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