Dukić, Ivor

Master's thesis / Diplomski rad

2024

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of Split, Faculty of Science / Sveučilište u Splitu, Prirodoslovno-matematički fakultet

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:166:980024

Rights / Prava: In copyright/Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2025-01-01

Repository / Repozitorij:

Repository of Faculty of Science

Sveučilište u Splitu Prirodoslovno-matematički fakultet

MODELIRANJE MEĐUATOMSKIH INTERAKCIJA

Diplomski rad

Ivor Dukić

Split, rujan 2024.

Temeljna dokumentacijska kartica

Sveučilište u Splitu Prirodoslovno-matematički fakultet Odjel za fiziku Ruđera Boškovića 33, 21000 Split, Hrvatska Diplomski rad

Modeliranje međuatomskih interakcija

Ivor Dukić

Sveučilišni diplomski studij Fizika i informatika; smjer: nastavnički

Sažetak:

U radu je opisano modeliranje neutralnih bozona malih energija na niskim temperaturama pomoću Schrödingerove jednadžbe. Predstavljeni su fizički modeli poznatih oblika potencijala za aproksimaciju stvarnih interakcija među česticama. Interakcije čestica opisane su pomoću mjerljivih veličina iz teorije raspršenja: duljine raspršenja i efektivnog dosega. Podaci o interakcijama niskoenergijskih hiperfinih stanja izotopa pod različitim jakostima magnetskog polja preuzeti su iz ranijih istraživanja. Interakcije su aproksimirane primjenom triju različitih modela potencijala: pravokutna jama, pravokutna jama s pravokutnom barijerom i Lennard-Jonesov potencijal (10-6). U radu su predstavljene numeričke metode za rješavanje složenih diferencijalnih jednadžbi te algoritmi za efikasno pronalaženje parametara potencijala. Konačni rezultat istraživanja je tablica parametara potencijala za fizički model koji s visokom preciznošću određuje mjerljive parametre raspršenja. Predložene metode i algoritmi mogu poslužiti kao smjernice za buduća istraživanja u određivanju fizičkih modela ili kao osnova za primjenu izmjerenih podataka na složenije sustave s više čestica.

Ključne riječi: Schrödingerova jednadžba, duljina raspršenja, efektivni doseg, međuatomske interakcije, Lennard-Jonesov potencijal, pravokutna jama
Rad sadrži: 41 stranica, 12 slika, 8 tablica, 8 literaturnih navoda. Izvornik je na hrvatskom jeziku.
Mentor: izv. prof. dr. sc. Petar Stipanović
Ocjenjivači: izv. prof. dr. sc. Petar Stipanović prof. dr. sc. Mile Dželalija dr. sc. Nikola Vukman

Rad prihvaćen:26. rujna 2024.

Rad je pohranjen u knjižnici Prirodoslovno-matematičkog fakulteta, Sveučilišta u Splitu.

Basic documentation card

University of Split Faculty of Science Department of Physics Ruđera Boškovića 33, 21000 Split, Croatia Master thesis

Modeling of interatomic interactions

Ivor Dukić

University graduate study Physics and Computer Science, specialization in Education

Abstract:

The paper describes the modeling of neutral bosons at low energies and low temperatures using the Schrödinger equation. Physical models of known potential forms are presented to approximate real interactions between particles. The interactions are described using measurable quantities from scattering theory: scattering length and effective range. Data on the interactions of low-energy hyperfine states of isotopes under varying magnetic field strengths were taken from previous research. The interactions are approximated using three different potential models: square well, square well with square barrier, and Lennard-Jones potential (10-6). The paper presents numerical methods for solving complex differential equations and algorithms for efficiently determining potential parameters. The final outcome of the research is a table of potential parameters for a physical model that precisely determines measurable scattering parameters. The proposed methods and algorithms can serve as guidelines for future research in determining physical models or as a basis for applying measured data to more complex multi-particle systems.

Keywords:	Schrödinger equation, scattering length, effective range, interatomic interactions, Lennard-Jones potential, square well							
Thesis consists of:	41 pages, 12 figures, 8 tables, 8 references. Original language: Croatian.							
Supervisor:	Assoc. Prof. Dr. Petar Stipanović							
Reviewers:	Assoc. Prof. Dr. Petar Stipanović Prof. Dr. Mile Dželalija Dr. Nikola Vukman							
Thesis accepted:	September 26, 2024.							

Thesis is deposited in the library of the Faculty of Science, University of Split.

Zahvala

Zahvaljujem se svim divnim ljudima koji su ostavili traga na mom akademskom putu.

Najveću zahvalnost dugujem svojoj obitelji – majci, ocu, bratu, nani, didi i baki – koji su kroz sve ove godine vjerovali u mene i pružali mi neizmjernu ljubav i podršku. Posebno se želim zahvaliti svojoj djevojci Ivoni, koja je uvijek bila uz mene, kroz sve uspone i padove. Bez nje bi moj put do diplome bio značajno teži.

Draga ekipa fizičara generacije 2018./2019. – Viktorija, Vijeko, Marko, Roko, Frane, Anđela i svi ostali – bez vas moji studentski dani ne bi bili isti. Uvijek sam se mogao osloniti na vašu pomoć kada mi je bila potrebna. Nadam se da sam vam uspio uzvratiti na isti način kad ste vi trebali moju. Također, zahvaljujem se svim ostalim kolegama s fizike i informatike, posebno Jasni, te prijateljima iz Studentskog zbora PMF-a koji su obogatili moje studentsko iskustvo.

Veliko hvala profesorima na fakultetu, koji su nesebično dijelili svoje znanje i uvijek me poticali da dam sve od sebe. Njihova predanost, trud i entuzijazam umnogome su doprinijeli mom akademskom napretku i uspjehu.

Posebno bih se želio zahvaliti najvažnijoj osobi u mom studiranju – profesoru Petru Stipanoviću. Vaše mentorstvo, ne samo na radu već i kroz cijeli studij, bilo je neprocjenjivo. Uvijek ste imali odgovore na sva moja pitanja, bili ste spremni pomoći i izvan radnog vremena, te ste me svojim savjetima usmjeravali kroz najteže dijelove studija. Vaša stručnost, strpljivost i nesebična podrška čine vas najboljim profesorom i mentorom, na čemu sam Vam beskrajno zahvalan.

Sadržaj

1	Uvod1
2	Međudjelovanje neutralnih čestica2
	2.1 Teorija raspršenja
3	Uzorak izotopa ³⁹ K5
4	Metoda 6
	4.1 Pravokutna jama
	4.2 Pravokutna jama s pravokutnom barijerom
	4.3 Lennard-Jonesov potencijal
	4.3.1 Numerov algoritam10
	4.3.2 Koeficijent nagiba pravca10
	4.3.3 Simpsonovo pravilo11
5	Rezultati12
	5.1 Pravokutna jama
	5.2 Pravokutan jama s pravokutnom barijerom
	5.3 Lennard-Jonesov potencijal
6	Zaključak20
7	Literatura
8	Dodatak22
	8.1 Precizni zapis parametara potencijala
	8.2 Kodovi za izračun i grafički prikaz parametara potencijala

1 Uvod

Modeliranje interakcija čestica predstavlja jedan od ključnih izazova u fizici. Zbog tehnoloških ograničenja, nikada nećemo biti u mogućnosti direktno proučavati ponašanje velikog broja čestica. Problem pri modeliranju nije samo u broju čestica već i u složenim interakcijama među njima. Te interakcije postaju još složenije kada se uzmu u obzir kvantni efekti. Sve to potiče istraživače da razviju jednostavnije modele koji mogu adekvatno aproksimirati navedene pojave.

Traženje jednostavnijih modela nije vođeno isključivo znanstvenom znatiželjom, već ima i značajnu praktičnu vrijednost. Precizni i jednostavni opisi interakcija omogućuju bolje razumijevanje fizičkih svojstava materijala, što može dovesti do značajnog tehnološkog napretka u različitim industrijama.

U ovom radu proučit ćemo međuatomsko djelovanje kalija na niskim temperaturama u prisutnosti magnetskog polja. Parametre raspršenja bitne za konstrukciju potencijala interakcije, poput duljine raspršenja i efektivnog dosega (poglavlje 2), preuzimamo iz znanstvene literature (poglavlje 3) [1][2]. Složene interakcije modeliramo različitim potencijalima, uključujući potencijal pravokutne jame, pravokutne jame s barijerom i Lennard-Jonesov potencijal (poglavlje 4). Konačno u 5. poglavlju, konstruiramo i ocjenjujemo naše modele s obzirom na efikasnost reproduciranja zadanih izmjerenih integralnih osobina. Na kraju rada predlažemo smjernice za računalno rješavanje ovakvih problema, uz preporuke za optimalne metode i alate za numeričke simulacije.

2 Međudjelovanje neutralnih čestica

Zbog fluktuacija elektronskog oblaka neutralne čestice (atomi ili molekule) djeluju privlačnom silom na većim udaljenostima, dok na manjim udaljenostima međusobno djeluju odbojnom silom. Takvo međudjelovanje može se opisati Lennard-Jonesovim potencijalom, čija opća formula glasi

$$V(r) = 4\epsilon \left[\left(\frac{\sigma}{r}\right)^m - \left(\frac{\sigma}{r}\right)^n \right], \tag{2.1}$$

gdje parametri m i n određuju jakost privlačnog i odbojnog potencijala, ϵ označava dubinu potencijalne jame, a σ nultočku potencijalne energije. Čestice se aproksimiraju točkastim masama m_1 i m_2 , udaljenima za r. Primjer potencijala prikazan je na slici 1.

Slika 1. Gibanje čestice u sfernosimetričnoj potencijalnoj jami V(r). Na udaljenostima manjim od σ djeluje odbojna sila, a na većima privlačna sila. Prema zakonima klasične fizike, čestica energije E ograničena je na gibanje između klasičnih točki okreta R_u i R_v . U kvantnoj fizici postoji vjerojatnost $r^2|\psi(r)|^2$ da se čestica nađe i u klasično zabranjenom području [6].

Prema zakonima klasične fizike, čestica energije E ne može napustiti područje omeđeno klasičnim točkama okreta R_u i R_v . U dnu potencijalne jame čestica ima najveću kinetičku energiju K(r), koja iščezava približavanjem granicama klasično dozvoljenog područja te prelazi u potencijalnu energiju V(r) prema jednadžbi

$$K(r) + V(r) = E.$$
 (2.2)

Napuštanje tog područja zahtijevalo bi veću energiju od one koju čestica posjeduje.

Zakoni kvantne fizike dopuštaju prijelaz u klasično zabranjeno područje. Tijekom kvantnog tuneliranja energija čestice se ne mijenja iako se ona "provuče" kroz potencijalnu barijeru koja je klasično neprobojna. Kvantna fizika ne osigurava prijelaz, već predviđa određenu vjerojatnost da će se čestica naći u zabranjenom području. Ponašanje čestica opisuje Schrödingerova jednadžba

$$-\frac{\hbar^2}{2m}\nabla^2 \boldsymbol{\psi}(\vec{r}) + V(r)\boldsymbol{\psi}(\vec{r}) = E\boldsymbol{\psi}(\vec{r}), \qquad (2.3)$$

gdje je $\psi(r)$ valna funkcija, čiji kvadrat daje vjerojatnost pronalaska čestice na udaljenosti r, a \hbar je reducirana Planckova konstanta ($\hbar = 1.05457182 \times 10^{-34} \text{ m}^2 \text{kg/s}$) [3].

Problem ponašanja dvije čestice svodi se na proučavanje gibanja jedne čestice u potencijalu V(r) uvođenjem reducirane mase

$$\mu = \frac{m_1 m_2}{m_1 + m_2}.$$
(2.4)

Tada je vremenski neovisna Schrödingerova jednadžba

$$-\frac{\hbar^2}{2\mu}\nabla^2 \boldsymbol{\psi}(\vec{r}) + V(r)\boldsymbol{\psi}(\vec{r}) = E\boldsymbol{\psi}(\vec{r}).$$
(2.5)

Za orbitalni kvantni moment l = 0 i sfernosimetrični potencijal V(r), valna jednadžba ovisi samo o r, pa pišemo

$$-\frac{\hbar}{2\mu}\frac{d^2}{dr^2}[r\psi(r)] + [V(r) - E][r\psi(r)] = 0.$$
(2.6)

Problem se sveo na rješavanje jednostavnije jednodimenzionalne diferencijalne jednadžbe. U gornju jednadžbu uvrštavamo izraz za energiju $E = (\hbar k)^2/2\mu$, te dobivamo

$$-\frac{d^2}{dr^2}[r\psi(r)] + \left[\frac{2\mu V(r)}{\hbar^2} - k^2\right][r\psi(r)] = 0.$$
(2.7)

Za realistične modele potencijala V(r), diferencijalnu jednadžbu moramo riješiti numerički. Analitička rješenja ostvariva su samo za jednostavne modele interakcije, poput pravokutne jame koju ćemo proučiti u idućem poglavlju.

2.1 Teorija raspršenja

Raspršenje čestice na potencijalu V(r) opisuje se duljinom raspršenja a i efektivnim dosegom r_{eff} . Duljina raspršenja a mjera je jačine interakcije između čestica pri niskim energijama i određuje udaljenost za granično ponašanje faznog pomaka raspršenog vala kada količina gibnja teži nuli. Pozitivna je za privlačni potencijal (vezano stanje), a negativna za odbojni (nevezano stanje). Efektivni doseg r_{eff} daje precizniju mjeru interakcije čestica pri nešto višim energijama, odnosno daje sljedeću popravku raspršenju opisanom s a.

Fazni pomak $\delta(k)$ pokazuje kako potencijal utječe na valnu funkciju čestice, odnosno kako mijenja fazu raspršenog vala u odnosu na slobodni val. Nisko-energijsko raspršenje čestica opisuje sljedeća jednadžba

$$k \cot \delta(k) = -\frac{1}{a} + \frac{1}{2}r_{\rm eff}k^2 + O(k^4).$$
(2.8)

Ako fazni pomak $\delta(k)$ možemo analitički izračunati, tada duljinu raspršenja nalazimo u aproksimaciji malih energija

$$a = -\lim_{k \to 0} \frac{\tan \delta(k)}{k}.$$
 (2.9)

Poznajući duljinu raspršenja, možemo izračunati i efektivni doseg iz jednadžbe. Ovaj postupak moguće je izvesti ako je potencijal čestice jednostavan [4].

Za realne potencijale koriste se sljedeće jednadžbe za izračun duljine raspršenja i efektivnog dosega:

$$a = \frac{2\mu}{\hbar^2} C_0^{-1} \int_0^\infty r V(r) [r\psi(r)] dr, \qquad (2.10)$$

$$r_{\rm eff} = \frac{2}{a^2} \int_0^\infty \left\{ (r-a)^2 - \frac{1}{C_0^2} [r\psi(r)]^2 \right\} dr.$$
(2.11)

Na slici 2 prikazan je graf funkcije $r\psi(r)$ te iscrtkanom linijom pravac koji aproksimira funkciju za velike *r*. Koeficijent nagib pravca je C_0 kojeg smo uveli u jednadžbi (2.10) i (2.11). Duljina raspršenja također može biti određena traženjem sjecišta pravca s x-osi [5].

Slika 2. Graf funkcije $r\psi(r)$ osnovnog stanja i pravac nagiba C_0 koji aproksimira krivulju radijalne valne funkcije za velike udaljenosti. Odsječak na x-osi određuje vrijednost duljine raspršenja a koja je na lijevom grafu pozitivna jer djeluje privlačna sila (vezano stanje), a na desnom negativna jer djeluje odbojna sila (nevezano stanje) [6].

3 Uzorak izotopa ³⁹K

Kalij je kemijski element s atomskim brojem 19, što znači da ima 19 protona u jezgri i 19 elektrona, što ga čini neutralnom česticom. Izotop ³⁹K sadrži 20 neutrona u jezgri. Neutralni atomi s parnim brojem protona i neutrona ponašaju se kao bozoni, što im omogućuje da više čestica zauzme isto kvantno stanje.

Hiperfine interakcije su međudjelovanja između nuklearnih i elektronskih magnetskih momenata u atomu koje rezultiraju cijepanjem energijskih razina. U prisustvu magnetskog polja *B*, energijske razine se značajnije podjele, što rezultira time da se atomi kalija mogu naći u jednom od dva hiperfina kvantna stanja. Atomi istih kvantnih stanja drugačije će međudjelovati od atoma različitih kvantnih stanja.

Za kvantnu smjesu sastavljenu od dva hiperfina stanja izotopa ³⁹K preuzete su vrijednosti duljine raspršenja i efektivnog dosega kao funkcije magnetskog polja *B*. Parametri raspršenja navedeni su u tablici 1 [1][2].

Tablica 1. Parametri raspršenja preuzeti iz literature [1][2]: duljina raspršenja a i efektivni doseg r_{eff} u Bohrovim radijusima a_0 kao funkcija magnetskog polja B, dane za interakciju atoma kalija u istovrsnim (indeksi 11, 22) i različitim kvantnima stanjima (12).

B (G)	$a_{11}(a_0)$	$r_{11}^{\rm eff}(a_0)$	$a_{22}(a_0)$	$r_{22}^{\rm eff}(a_0)$	$a_{12}(a_0)$	$r_{12}^{\rm eff}(a_0)$
56,230	63,648	-1158,872	34,587	578,412	-53,435	1021,186
56,337	66,619	-1155,270	34,369	588,087	-53,386	1022,638
56,395	68,307	-1153,223	34,252	593,275	-53,360	1022,617
56,400	68,453	-1153,046	34,242	593,722	-53,358	1022,616
56,453	70,119	-1150,858	34,136	599,143	-53,333	1023,351
56,511	71,972	-1148,436	34,020	604,953	-53,307	1024,121
56,574	74,118	-1145,681	33,895	610,693	-53,278	1024,800
56,639	76,448	-1142,642	33,767	616,806	-53,247	1025,593

4 Metoda

Iz poznatih vrijednosti duljine raspršenja i efektivnog dosega iz tablice 1 računamo parametre potencijala kojima smo aproksimirali interakciju.

Interakcije kalijevih atoma u različitim stanjima možemo aproksimirati primjerice pravokutnom jamom, dok interakciju čestica u istome stanju s pravokutnom jamom s kvadrantom barijerom (stanje označeno s 1) i 10-6 Lennard-Jonesovim potencijalom (stanje označeno s 2).

4.1 Pravokutna jama

Interakciju atoma kalija u različitim kvantnim stanjima možemo aproksimirati potencijalom pravokutne jame

$$V_{12}(r) = \begin{cases} -V_0 & 0 \le r < R_0 \\ 0 & R_0 \le r < \infty \end{cases}.$$
(4.1)

Grafički prikaz potencijala V(r) prezentiran je na slici 3.

Slika 3. Potencijalna energija pravokutne jame V(r) dubine $-V_0$ i širine R_0 .

Zakoni klasične fizike ograničili bi gibanje čestice na područje unutar jame što ne bi bilo ekvivalentno realnom gibanju atoma kalija i na udaljenostima većim od R_0 . Zbog kvantnog tuneliranja postoji vjerojatnost da česticu pronađemo i u klasično zabranjenom području.

Rješenja radijalnih valnih funkcija pronalazimo u obliku

$$r\psi(r) = \begin{cases} A\sin(Kr) & 0 \le r < R_0\\ \sin(kr+\delta) & R_0 \le r < \infty \end{cases}$$
(4.2)

gdje je $K^2 = 2\mu(V_0 + E)/\hbar^2$ i $k^2 = 2\mu E/\hbar^2$. Valne funkcije moraju zadovoljavati rubni uvjet:

$$\psi_I(R_0) = \psi_{II}(R_0), \tag{4.3}$$

kako bi $\psi(r)$ bila kontinuirana funkcija. S *I* i *II* označili smo redom područja prije i poslije R_0 . Jednadžba (4.3) i njena derivacija čine sustav jednadžbi iz kojih možemo dobiti fazni pomak

$$\delta(k) = -kR_0 + \tan^{-1}\left(\frac{k}{K}\tan(KR_0)\right).$$
(4.4)

U aproksimaciji malih energija dobivamo duljinu raspršenja

$$a = R_0 - \frac{\tan(R_0 \sqrt{V_0/D})}{\sqrt{V_0/D}},$$
(4.5)

gdje je $D = \hbar^2/2\mu$.

Efektivni doseg izvest će se iz razvoja faznog pomaka (4.4) po niskoj energiji. Prvi član daje inverznu duljinu raspršenja kao što je gore izračunato, a iz drugog člana dobivamo efektivni doseg

$$r_{\rm eff} = R_0 - \frac{D}{V_0} a^{-1} - \frac{1}{3} R_0^3 a^{-2}.$$
 (4.6)

Tijekom računanja $r_{\rm eff}$ koristili smo prva dva člana aproksimacija za male kutove funkcija cot() i tan() te odbacili parametre s k^2 [6].

4.2 Pravokutna jama s pravokutnom barijerom

Interakciju čestica prvog stanja možemo aproksimirati potencijalom pravokutne jame s pravokutnom barijerom

$$V_{11}(r) = \begin{cases} -V_0 & 0 \le r < R_0 \\ V_1 & R_0 \le r < R_1 \\ 0 & R_1 \le r < \infty \end{cases}$$
(4.7)

Potencijal čestica prikazan je na sljedećoj slici.

Slika 4. Potencijalna energija kvadratne jame s pravokutnom barijerom V(r) čija je dubina jame $-V_0$ i širina R_0 , visina barijere V_1 i širina R_1 .

Kao i u prethodnom slučaju, zakoni kvantne fizike ne ograničavaju česticu za prelazak potencijalne barijere što je sukladno realnom gibanju čestica na udaljenostima većim od R_0 i R_1 .

Opća rješenja za tri regije su:

$$r\psi(r) = \begin{cases} A\sin(Kr) & 0 \le r < R_0\\ B(\sin(\kappa r) + C\cosh(\kappa r)) & R_0 \le r < R_1,\\ \sin(kr + \delta) & R_1 \le r < \infty \end{cases}$$
(4.8)

gdje su definirani parametri dubine jame $k_0^2 = (2\mu V_0)/\hbar^2$, visine barijere $k_1^2 = (2\mu V_1)/\hbar^2$ i relativne kinetičke energije sudarajućih čestica $k^2 = 2\mu E/\hbar^2$ te pomoćni parametri $K^2 = 2\mu (V_0 + E)/\hbar^2 = k_0^2 + k^2$ i $\kappa^2 = 2\mu (V_1 - E)/\hbar^2 = k_1^2 - k^2$. Valna funkcija mora zadovoljavati rubne uvijete kako bi bila kontinuirana:

$$\psi_{\rm I}({\rm R}_0) = \psi_{\rm II}({\rm R}_0), \tag{4.9}$$

$$\psi_{\mathrm{II}}(\mathbf{R}_1) = \psi_{\mathrm{III}}(\mathbf{R}_1), \tag{4.10}$$

gdje I označava jamu, II barijeru, a III područje bez potencijala.

Jednadžbe rubnih uvjeta i njihove derivacije čine sustav jednadžbi iz kojih dobivamo C i $\delta(k)$ [7]. Iz prvog rubnog uvjeta dobivamo

$$C = \frac{\kappa \tan(Kr_0) - K \tanh(\kappa r_0)}{K - \kappa \tan(Kr_0) \tanh(\kappa r_0)'}$$
(4.11)

a iz drugog fazni pomak raspršenja

$$\delta(k) = -kr_1 + \tan^{-1}\left(\frac{k}{\kappa} \cdot \frac{\tanh(\kappa r_1) + C}{1 + C \tanh(\kappa r_1)}\right).$$
(4.12)

U limesu malih energija duljina raspršenja dana je s

$$a = -\lim_{k \to 0} \frac{\tan \delta(k)}{k} = r_1 - \frac{1}{k_1 \zeta} \{k_1 \tan(k_0 r_0) + k_0 \tanh[k_1 (r_1 - r_0)]\}, \quad (4.13)$$

gdje je

$$\zeta \equiv k_0 + k_1 \tanh(k_0 r_0) \tanh[k_1 (r_1 - r_0)].$$
(4.14)

Sličnom postupkom kao kod pravokutne barijere dobivamo izraz za efektivni doseg

$$r_{\rm eff} = r_1 + r_r + r_{\nu}, \tag{4.15}$$

gdje je

$$r_r = -\frac{k_0^2 + k_1^2}{k_0 k_1^2 a\zeta} \left\{ 1 + \frac{k_0 r_0}{a\zeta} \cdot \frac{1}{\cosh^2[k_1(r_1 - r_0)]} \right\},\tag{4.16}$$

$$r_{v} = \frac{k_{0}^{2} + k_{1}^{2}}{k_{0}k_{1}^{2}a\zeta} \frac{r_{1}}{a} \left\{ 1 - \frac{1}{k_{1}r_{1}} \tanh[k_{1}(r_{1} - r_{0})] \right\} + \frac{1}{k_{1}^{2}a} - \frac{r_{1}^{3}}{3a^{2}}.$$
 (4.17)

4.3 Lennard-Jonesov potencijal

Čestice u drugom stanju interagiraju na način koji možemo aproksimirati 10-6 Lennard-Jonesovim potencijalom.

$$V_{22}(r) = V_0 \left[\left(\frac{R_0}{r}\right)^{10} - \left(\frac{R_0}{r}\right)^6 \right].$$
(4.18)

Grafički prikaz potencijala prikazan je na sljedećoj slici.

Slika 5 Lennard-Jonesov potencijal s dubinom $-V_0$ i na udaljenosti R_0 .

Zbog složenog oblika potencijala parametre raspršenja ne možemo analitički izračunati već ih dobivamo iz jednadžbi:

$$a = \frac{2\mu}{\hbar^2} C_0^{-1} \int_0^\infty r V(r) [r\psi(r)] dr, \qquad (4.19)$$

$$r_{\rm eff} = \frac{2}{a^2} \int_0^\infty \left\{ (r-a)^2 - \frac{1}{C_0^2} [r\psi(r)]^2 \right\} dr, \qquad (4.20)$$

gdje je C_0 nagib pravca koji aproksimira valnu funkciju $\psi(r)$ za velike r. Schrödingerovu jednadžbu (2.6) možemo zapisati u obliku

$$\chi(r)'' = u(r)\chi(r) \tag{4.21}$$

gdje je

$$\chi(r) = r\psi(r) \tag{4.22}$$

$$u(r) = \frac{2\mu V(r)}{\hbar} - k^2.$$
 (4.23)

Rješenja diferencijalne jednadžbe (4.22) ne možemo dobiti analitički pa ćemo koristit Numerov algoritam za rješavanje jednadžbe [8].

4.3.1 Numerov algoritam

Numerov algoritam koristi se za rješavanje diferencijalnih jednadžbi drugog reda oblika

$$\chi(r)'' = u(r)\chi(r) + U(r).$$
(4.24)

Da bismo primijenili ovaj algoritam, prvo odabiremo interval radijalne udaljenosti r u kojem želimo izračunati rješenja funkcije. Ovaj interval podijelimo na N segmenta, pri čemu udaljenost između dvije susjedne točke označavamo s h. Manji korak h povećava preciznost algoritma, ali također produžuje vrijeme izvođenja zbog povećanja broja iteracija.

Algoritam zahtijeva početne uvjete, odnosno poznavanje vrijednosti funkcije χ u prve dvije točke $\chi(r_0)$ i $\chi(r_0 + h)$. Nakon toga, iterativno računamo vrijednosti funkcije u sljedećim točkama $\chi(r)$, koristeći Numerov algoritam prema sljedećoj formuli

$$\chi_{i+1} = \frac{2\left(1 - \frac{5}{12}h^2u_i\right)\chi_i - \left(1 + \frac{1}{12}h^2u_{i-1}\right)\chi_{i-1}}{1 + \frac{1}{12}h^2u_{i+1}},$$
(4.25)

gdje je $\chi_i = \chi(r_i)$ i $u_i = u(r_i)$.

U našem slučaju, za početnu vrijednost funkcije $\chi(r)$ biramo malu veličinu, a u drugoj točki možemo odabrati proizvoljno malu vrijednost te pritom paziti da funkcija ne raste prebrzo kako bismo izbjegli numeričke problema odrezivanja kada imamo brojeve veoma različitih redova veličina. Proizvoljni odabir u ovom slučaju nema utjecaj na rezultate parametara raspršenja jer normiranje ne utječe na rezultate.

4.3.2 Koeficijent nagiba pravca

Nagib pravca može se izračunati poznavanjem dvije točke pravca

$$k = \frac{x_f - x_i}{y_f - y_i}.$$
 (4.26)

Za vezano stanje predlaže se uzimati i = 50N/100 i f = 90N/100 rednu točku, a za nevezano i = 30N/100 i j = 60N/100 točku stanja, gdje je N broj točaka iz intervala, odnosno interval duž kojeg je ponašanje valne funkcije linearno.

4.3.3 Simpsonovo pravilo

Simpsonovo pravilo je algoritam za numeričko rješavanje integrala:

$$I = \int_{a}^{b} f(x) \, dx.$$
 (4.27)

Interval (a, b) podijelimo na N dijelova čija je dužina

$$h = \frac{b-a}{N},\tag{4.28}$$

gdje N mora biti paran broj. Rješenje integrala računamo prema formuli

$$I = \frac{h}{3} \left[f(a) + 4 \sum_{i=1, \text{neparno}}^{n-1} f(x_i) + 2 \sum_{i=2, \text{parno}}^{n-2} f(x_i) + f(b) \right].$$
(4.29)

Simpsonovo pravilo koristit ćemo za računanje jednadžbi (4.19) i (4.20) za koje smo računali vrijednosti valne funkcije pomoću Numerovog algoritma. Stoga se interval dijeli na jednake dijelove kako bi mogli iskoristiti vrijednosti izračunatih točaka $\chi(r)$.

5 Rezultati

Realno međudjelovanje čestica, određeno duljinom raspršenja a i efektivnim dosegom r_{eff} , opisat ćemo prikladnim modelima potencijala. Tražimo parametre potencijala koji zadovoljavaju jednadžbe za duljinu raspršenja a i efektivni doseg r_{eff} izračunate u prethodnim poglavljima. Parametre će zadovoljavati jednadžbe kad je odstupanje vrijednosti iz literature i izračunatih vrijednosti minimalno. Uvodimo funkcije greške

$$f_a = (a_{\text{literatura}} - a_{\text{izračunato}})^2, \tag{5.1}$$

$$f_{r_{\rm eff}} = \left(r_{\rm literatura}^{\rm eff} - r_{\rm izračunato}^{\rm eff}\right)^2,\tag{5.2}$$

kao kvadrate razlika izračunatih vrijednosti i vrijednosti dobivenih iz znanstvenih radova. Vrijednosti funkcija bit će pozitivne te će imati minimum u 0.

Grešku s kojom smo izračunali oba parametra raspršenja određujemo funkcijom

$$f = f_a + f_r f_{r_{\rm eff'}} \tag{5.3}$$

gdje je f_r faktor razlučivosti koji mijenja intenzitet pogreške $f_{r_{eff}}$ na ukupnu pogrešku, ali ne mijenja položaj minimuma.

Podatke parametara raspršenja iz tablice 1 skalirat ćemo s a_{11} , svojstvenim za svako magnetsko polje te ih prikazati u tablici 2. Radi jednostavnosti, u nastavku rada uvodimo energiju $E_1 = \hbar^2/(2ma_{11}^2)$ kojom ćemo prikazivati parametre potencijala.

B (G)	$a_{11}(a_{11})$	$r_{11}^{\mathrm{eff}}(a_{11})$	$a_{22}(a_{11})$	$r_{22}^{\rm eff}(a_{11})$	$a_{12}(a_{11})$	$r_{12}^{\rm eff}(a_{11})$
56,230	1,000	-18,208	0,543	9,088	-0,840	16,044
56,337	1,000	-17,341	0,516	8,828	-0,801	15,351
56,395	1,000	-16,883	0,501	8,685	-0,781	14,971
56,400	1,000	-16,844	0,500	8,673	-0,779	14,939
56,453	1,000	-16,413	0,487	8,545	-0,761	14,594
56,511	1,000	-15,957	0,473	8,405	-0,741	14,229
56,574	1,000	-15,458	0,457	8,239	-0,719	13,827
56,639	1,000	-14,947	0,442	8,068	-0,697	13,416

Tablica 2. Vrijednosti duljine raspršenja i efektivnog dosega iz tablice 1 skalirane su za parametar a_{11} .

Algoritme pretrage objasnit ćemo na primjeru za B = 56.337 G. Za traženje parametara potencijala napisani su kodovi u programskim jezicima Python i Fortran dok je za grafički prikaz rezultata bio korišten gnuplot. Primjeri kodova nalaze se u dodatku.

5.1 Pravokutna jama

Tražimo parametre potencijala R_0 i V_0 osnovnog stanja koji nam daju najbolje vrijednosti za *a* i r_{eff} . Za računanje parametara raspršenja koristimo jednadžbe (4.5) i (4.6).

Graf funkcija f_a i $f_{r_{eff}}$ u ovisnosti o R_0 i V_0 prikazan je na slici 6. Prikazali smo samo točke (R_0,V_0) čija je greška manja od 1,00. Vrijednosti na grafu obojane su od 0,00 (plava boja) do 1,00 (crvena boja). Na oba grafa nalazi se plava linija u kojoj su smještena rješenja s najmanjom pogreškom. U presjeku linija nalazi se minimum funkcije f, tj. traženi parametri potencijala.

Slika 6. Grafovi ovisnosti funkcija pogreške f_a (iznad) i $f_{r_{eff}}$ (ispod) dobivenih usporedbom vrijednosti a i $f_{r_{eff}}$ preuzetih iz znanstvenih radova te vrijednosti izračunatih formulama za različite R_0 i V_0 . Na grafu su prikazane samo pogreške ispod 1,00. Gradijent boje odabran je tako da su najveće vrijednosti obojane crvenom bojom, a najmanje plavom.

Gornji graf (slika 7) prikazuje funkciju f u ovisnosti o R_0 i V_0 . Linija minimuma ukupne pogreške nalazi se na presjeku linija minimuma individualnih funkcija pogrešaka. Manipuliranjem faktorom razlučivosti možemo bolje istaknuti područje minimuma. Na donjem grafu faktor razlučivosti je $f_r = 10,00$.

Slika 7. *Grafovi ovisnosti funkcija pogreške f o* R_0 *i* V_0 *za faktor razlučivanja f*_r = 1,00 (*iznad*) *i f*_r = 10,00 (*ispod*). *Promjenom faktora razlučivanja s većom preciznošću određeni su minimumi funkcije f*.

Na slici 8 nalazi se područje koje smo odredili sa slike 7 tako da sadrži minimum funkcije. Iterativnim traženjem minimuma i proučavanjem suženog područja oko minimuma, smanjuje se pogreška do potrebne razine.

Slika 8. Grafovi ovisnosti funkcije f o parametrima potencijala R_0 *i* V_0 *na području uvećanom oko linije minimuma određene na grafovima slike 7.*

Na grafu gdje je maksimalna vrijednost pogreške podignuta na 100.000, možemo uočiti liniju koja razdvaja područje jakosti potencijala koji ne podržava vezano stanje od područja parametara potencijala koji podržavaju osnovno (vezano) stanje pa bi slijedilo područje parametara potencijala koji podržava prvo pobuđeno (vezano) stanje. Minimum koji smo pronašli u prethodnim koracima nalazi se u području vrijednosti gdje nije podržano postojanje vezanog stanja.

Slika 9. Graf ovisnosti funkcije f o parametrima potencijala R_0 i V_0 . Maksimalna vrijednost prikazane pogreške je 100.000. Linija u gornjem desnom kutu predstavlja granicu između parametara koji ne podržavaju i podržavaju vezano stanje.

U tablici 3 prikazane su vrijednosti R_0 i V_0 za koje smo najbolje odredili a i r_{eff} . Sve vrijednosti određene su s postotnim odstupanjem manjim od 10^{-13} %.

Tablica 3. Parametri modela interakcije atoma kalija različitih stanja. Za potencijalne parametre R_0 i V_0 određeni su parametri raspršenja a i r_{eff} s postotnom pogreškom δa i δr u odnosu na vrijednosti iz tablice 2. Precizniji zapis parametara potencijala nalazi se u dodatku.

B (G)	$R_0(a_{11})$	$V_0(10^{-2}E_1)$	<i>a</i> (<i>a</i> ₁₁)	$r_{\rm eff}(a_{11})$	$\delta a(10^{-13}\%)$	$\delta r(10^{-13}\%)$
56,230	4,844	3,668	-0,840	16,044	0,397	1,550
56,337	4,630	4,011	-0,801	15,351	0,970	6,249
56,395	4,514	4,217	-0,781	14,971	0,142	3,441
56,400	4,505	4,235	-0,779	14,939	1,567	4,043
56,453	4,399	4,439	-0,761	14,594	0,000	5,112
56,511	4,286	4,672	-0,741	14,229	0,450	4,619
56,574	4,163	4,950	-0,719	13,827	1,236	3,983
56,639	4,037	5,261	-0,697	13,416	0,159	1,324

5.2 Pravokutan jama s pravokutnom barijerom

Pretražujemo parametre potencijala R_0 , R_1 , V_0 i V_1 za koje dobivamo najpreciznije vrijednosti parametara raspršenja a i r_{eff} iz jednadžbi (4.13) i (4.15).

Ponavljamo postupak iz prethodnog potpoglavlja gdje smo određivali minimume i radili pretragu na užem području oko tog minimuma. Za ovu vrstu potencijala imamo dvostruko više parametara od potencijala pravokutne barijere, a broj točaka za koje računamo parametre raspršenja se kvadrirao.

S obzirom na to da parametri potencijala tvore četverodimenzionalno polje koje je teško prikazati grafički, stanje čestica ćemo odrediti analizom grafa radijalne valne funkcije. Na grafu (slika 10) prikazana je radijalna valna funkcija, dobivena korištenjem Numerovog algoritma. Budući da na početku grafa ne vidimo periodičnost, možemo zaključiti da potencijal ne podržava vezana stanja.

Slika 10. Graf radijalne valne funkcije $r\psi(r)$ dobiven Numerovim algoritmom za potencijal pravokutne jame s pravokutnom barijerom. Uvećani graf ne pokazuje periodičnost pa su odabrani koeficijenti takvi da ne podržavaju vezano stanje.

U tablici 4 nalaze se vrijednosti izračunate za sve jačine magnetskog polja. Vrijednosti su dobivene s manjom preciznošću u odnosu na postotno odstupanje parametara raspršenja pravokutne jame.

Tablica 4. Parametri međudjelovanja atoma kalija prvog kvantnog stanja. Određeni su R_0 , R_1 , V_0 i V_1 koji najbolje opisuju parametre raspršenja a i r_{eff} . Parametri su određeni s postotnom pogreškom δa i δr_{eff} . Precizniji zapis parametara potencijala nalazi se u dodatku.

B (G)	$R_0(a_{11})$	$R_1(a_{11})$	$V_0(10^{-2}E_1)$	$V_1(10^{-2}E_1)$	<i>a</i> (<i>a</i> ₁₁)	$r_{\rm eff}(a_{11})$	$\delta a(10^{-6}\%)$	$\delta r(10^{-6}\%)$
56,230	3,562	6,172	10,359	6,474	1,000	-18,208	1,504	2,000
56,337	3,549	6,214	9,061	5,923	1,000	-17,341	1,846	3,269
56,395	3,512	6,157	9,274	6,074	1,000	-16,883	0,404	0,321
56,400	3,508	6,170	9,147	5,980	1,000	-16,844	1,530	3,484
56,453	3,558	6,247	7,558	5,451	1,000	-16,413	2,752	1,361
56,511	3,513	6,193	7,728	5,556	1,000	-15,957	0,487	0,432
56,574	3,542	6,177	6,965	5,496	1,000	-15,458	0,956	0,389
56,639	3,566	6,243	5,606	5,000	1,000	-14,947	0,201	0,410

5.3 Lennard-Jonesov potencijal

Iz jednadžbi (4.19) i (4.20) tražimo parametre potencijala R_0 i V_0 koji najbolje određuju parametre raspršenja *a* i r_{eff} .

Numerički algoritmi kojima određujemo parametre značajno su vremenski zahtjevniji za izvođenje od algoritama koje smo koristili u prethodnim primjerima. Za računanje parametara raspršenja za 150*150 točki parametara potencijala bilo je potrebno nekoliko dana.

Primjenom funkcija f_a i $f_{r_{eff}}$ dobili smo grafove koji su prikazani na slici 11. Zbog manjeg broj točki, grafovi ne izgledaju glatko. Na slici 12 prikazan je graf funkcije f.

Slika 11. Ovisnost f_a (iznad) i $f_{r_{eff}}$ (ispod) o parametrima potencijala R_0 i V_0 .

Zbog zahtjevnih algoritama nismo mogli pretraživati sve točke u novom manjem području. Kako bi uštedjeli na vremenu koristili smo algoritam šetanja. Odredimo vrijednost u trenutnoj točci i provjeravamo vrijednost u 8 smjerova oko točke te se pomičemo na mjesto s manjom greškom. Ako se nalazimo na mjestu s manjom greškom, tada smanjujemo korak. Ovim putem očekujemo da ćemo se spuštati u jamu.

Slika 12. Ovisnost greške f o parametrima potencijala R_0 i V_0 za faktor razlučivanja $f_r = 0,01$.

Unatoč optimiziranom algoritmu, parametri raspršenja određeni su s primjetljivo većom postotnom pogreškom u odnosu na parametre iz prethodnih potpoglavlja. Izračunate vrijednosti prikazane su u tablici 5.

Tablica 5 Rješenja za interakciju čestica vrste 2. R_0 i V_0 za koje jednadžba (5.3) ima minimum. Iz jednadžbi (4.19) i (4.20) analitički se dobiju vrijednosti za a i r_{eff} . Postotna odstupanja od stvarnih vrijednosti dana su u zadnja dva stupca tablice. Precizniji zapis parametara potencijala nalazi se u dodatku.

B (G)	$R_0(a_{11})$	$V_0(\mathbf{E_1})$	<i>a</i> (<i>a</i> ₁₁)	$r_{\rm eff}(a_{11})$	δ <i>a</i> (%)	$\delta r(10^{-5}\%)$
56,230	1,350	4,801	0,542	9,088	0,220	14,155
56,337	1,289	5,292	0,516	8,827	0,004	297,892
56,395	1,260	5,574	0,502	8,685	0,113	0,281
56,400	1,260	5,578	0,502	8,673	0,315	0,100
56,453	1,224	5,928	0,486	8,545	0,083	1,139
56,511	1,190	6,299	0,471	8,405	0,282	4,996
56,574	1,151	6,698	0,458	8,239	0,073	0,256
56,639	1,154	6,595	0,462	8,068	4,658	0,275

6 Zaključak

Pojednostavljeni fizički modeli, poput potencijala pravokutne jame, pravokutne jame s barijerom i Lennard-Jonesovog potencijala, uspješno su zamijenili složenije i realistične opise međuatomskih interakcija. Uočeno je da se razlike u integralnim osobinama, poput duljine raspršenja i efektivnog dosega, u odnosu na podatke dobivene iz znanstvenih radova povećavaju s rastućom složenošću modela potencijala korištenih za opis tih interakcija. Parametri raspršenja opisani potencijalom pravokutne jame pokazali su izuzetnu preciznost u usporedbi s vrijednostima dobivenim iz literature. Slična točnost postignuta je i za pravokutnu jamu s barijerom, iako je proces pronalaženja potencijala bio zahtjevniji. Najveći izazov predstavljalo je određivanje parametara za Lennard-Jonesov potencijal, pri čemu su odstupanja bila izraženija, posebno kod duljine raspršenja pri uzorku s najvećim magnetskim poljima. Unatoč tome, odstupanja su dovoljno mala da rezultati ovog rada mogu poslužiti kao solidna osnova za simulaciju interakcija višečestičnog sustav koristeći napredne stohastičke kvantne metode poput varijacijskog i difuzijskog Monte Carla kojima bi se mogli simulirati sustavi od nekoliko tisuća čestica.

7 Literatura

- V. Cikojević, L. V. Markić, and J. Boronat, "Finite-range effects in ultradilute quantum drops," New J. Phys., vol. 22, no. 5, p. 053045, May 2020, doi: 10.1088/1367-2630/ab867a.
- [2] S. Roy et al., "Test of the Universality of the Three-Body Efimov Parameter at Narrow Feshbach Resonances," Phys. Rev. Lett., vol. 111, no. 5, p. 053202, Aug. 2013, doi: 10.1103/PhysRevLett.111.053202.
- [3] N. Zettili, Quantum Mechanics: Concepts and Applications. John Wiley & Sons, 2009.
- [4] C. R. Gould and E. I. Sharapov, "Fermi's favorite figure: the history of the pseudopotential concept in atomic physics and neutron physics," EPJ H, vol. 47, no. 1, p. 10, Sep. 2022, doi: 10.1140/epjh/s13129-022-00042-z.
- [5] J. Pera and J. Boronat, "Low-energy scattering parameters: A theoretical derivation of the effective range and scattering length for arbitrary angular momentum," arXiv.org. Accessed: Oct. 02, 2024. [Online]. Available: https://arxiv.org/abs/2302.08331v1
- [6] P. Stipanović, "Stabilnost i univerzalnost malih kvantnih klastera te adsorpcijski utjecaji grafena i cezija na osnovno stanje malih klastera helija," info:eurepo/semantics/doctoralThesis, University of Zagreb. Faculty of Science. Department of Physics, 2015. Accessed: Oct. 02, 2024. [Online]. Available: https://urn.nsk.hr/urn:nbn:hr:217:823375
- [7] L. M. Jensen, H. M. Nilsen, and G. Watanabe, "BCS-BEC crossover in atomic Fermi gases with a narrow resonance," Phys. Rev. A, vol. 74, no. 4, p. 043608, Oct. 2006, doi: 10.1103/PhysRevA.74.043608.
- [8] V. Cikojević, "Ab-initio Quantum Monte Carlo study of ultracold atomic mixtures," info:eu-repo/semantics/doctoralThesis, University of Zagreb. Faculty of Science. Department of Physics, 2021. Accessed: Oct. 02, 2024. [Online]. Available: https://urn.nsk.hr/urn:nbn:hr:217:633063

8 Dodatak

8.1 Precizni zapis parametara potencijala

U sljedećim tablicama nalaze se parametri potencijala zapisani s većom preciznošću od parametara prikazanih u poglavlju Rezultati. Ove vrijednosti mogu se koristiti u daljnjim istraživanjima.

B (G)	$R_0(a_{11})$	$V_0(E_1)$
56,230	4.84351916386272	0.0366848259913369
56,337	4.62964449881839	0.0401068132724438
56,395	4.51427880384045	0.0421733300134148
56,400	4.50457856615933	0.0423544053625202
56,453	4.39856649724548	0.0443949161590593
56,511	4.28636081884807	0.0467213733100832
56,574	4.16294859029236	0.0495034406732663
56,639	4.03694274702182	0.0526072082910068

Tablica 6. Parametri potencijala pravokutne jame koji prikazuju interakcije atoma kalija različitih stanja. U tablici se nalaze precizniji podaci iz tablice 3.

B (G)	$R_0(a_{11})$	$R_1(a_{11})$	$V_0(E_1)$	$V_1(E_1)$
56,230	3.56175004386251	6.17208520103144	0.1035924158598240	0.0647397803467726
56,337	3.54903603695365	6.21406287090269	0.0906121103387130	0.0592339650415647
56,395	3.51222101267998	6.15718836981291	0.0927418357447574	0.0607362350928816
56,400	3.50825400233864	6.17024903199506	0.0914686755130165	0.0598026337716057
56,453	3.55764895759860	6.24660132445521	0.0755806320591976	0.0545097070457045
56,511	3.51304036531282	6.19338897388886	0.0772783580579255	0.0555580078399742
56,574	3.54194559037683	6.17679357751705	0.0696481275426383	0.0549567565363199
56,639	3.56572863662281	6.24254508916691	0.0560633612124004	0.0500016513427621

Tablica 7. Parametri potencijala pravokutne jame s pravokutnom barijerom koji prikazuju interakcije atoma kalija prvog stanja. U tablici se nalaze precizniji podaci iz tablice 4.

B (G)	$R_0(a_{11})$	$V_0(E_1)$
56,230	1.35011531602410	4.80110874266207
56,337	1.28942850014675	5.29182625807275
56,395	1.25999998979993	5.57407862345178
56,400	1.25958061218261	5.57841722419765
56,453	1.22399223890736	5.92754166991793
56,511	1.18999993801116	6.29934188938649
56,574	1.15109887792529	6.69801201076877
56,639	1.15400920105149	6.59503885023887

Tablica 8. Parametri Lennard-Jonesovog potencijala koji prikazuju interakcije atoma kalija drugog stanja. U tablici se nalaze precizniji podaci iz tablice 5.

8.2 Kodovi za izračun i grafički prikaz parametara potencijala

Određivanje parametara potencijala pravokutne jame R_0 i V_0 koji najbolje odgovaraju parametrima raspršenja *a* i r_{eff} traženjem minimuma funkcije greške $f = f_a - f_r f_{r_{eff}}$. Nakon što je određen minimum funkcije, pretražujemo područje oko tog mjesta. Kod je napisan u Fortranu.

```
PROGRAM RoVo
    IMPLICIT real*8 (A-H,P-V,X-Z)
    IMPLICIT integer (I-N)
    IMPLICIT logical (0)
    IMPLICIT character*30 (W)
    !Prebrojavanje broja linija
    irwn = 0
    OPEN(20,FILE="as_re\VC(phd)_Tab6.1.txt")
    read(20,*)
      read(20,*, END=10)
      irwn = irwn + 1
    enddo
10
    CLOSE(20)
    OPEN(33,FILE="Ro_Vo\Exp.dat")
                                             a_s/A
    write(33,'(A91)')'Pair
                                                             r_e/A'//
                                             R_0/A
                                                           V_0/mK'//
                                                       Ck/mKA**2'
    write(33,'(A91)')'------
    &
    OPEN(20,FILE="as_re\VC(phd)_Tab6.1.txt")
    read(20,*)
    do irw = 1, irwn
      read(20,*)wPair, a11, reff11, a22, reff22, a12, reff12
      wFile='Exp_'//TRIM(ADJUSTL(wPair))
      as = a12 / a11
       re = reff12 / a11
       Ck= 2.0d0
       !Granice pretraživanja
       Rmin=1.0d0
       Rmax=12.0d0
      Vmin=0.0005d0
       Vmax=0.06d0
       dr=0.001d0
       dV=0.0001d0
       Fmin=1.d5 !Početni minimum funkcije f
```

```
call system('mkdir Ro_Vo\'//TRIM(wFile))
OPEN(1,FILE="Ro_Vo\"//TRIM(wFile)//"\Exp_.tmp")
OPEN(2,FILE="Ro_Vo\"//TRIM(wFile)//"\Exp_min.tmp")
INQUIRE(FILE="Ro_Vo\"//TRIM(wFile)//".tmp", EXIST=oChgArea)
do iter = 0, 3 !Sužavanje područja pretraživanja
  nr=(Rmax-Rmin)/dr
  nV=(Vmax-Vmin)/dV
  write(1, '(A6, I2, A12, 2F14.6)')'#iter=', iter,'; (dr, dV)=', dr, dV
  write(2,'(A6,I2,A12,2F14.6)')'#iter=',iter,'; (dr,dV)=',dr,dV
  write(*,'(A6,I2,A12,2F14.6)')'#iter=',iter,'; (dr,dV)=',dr,dV
  do ir = 0, nr
    Ro=Rmin+ir*dr
    do iV = 0, nV
      Vo=Vmin+iV*dV
      F=(1.d0*((TAN(SQRT(Vo/Ck)*Ro)-SQRT(Vo/Ck)*(Ro-as))**2)
        +1.d0*(((as**2*(re-Ro)+as*Ck/Vo)/Ro**3+1.d0/3.d0)**2))
      if(F.LE.Fmin) then
        Fmin=F
        Rtmp=Ro
        Vtmp=Vo
        write(2,*)Ro, Vo, Fmin
        write(*,*)Ro, Vo, Fmin
      endif
      write(1,*)Ro, Vo, F
    enddo
    write(1,*)
  enddo
  write(1,*)
  write(1,*)
  write(2,*)
  write(2,*)
  !Nove granice pretraživanja
  Rmin=Rtmp-2.d1*dr
  if(Rmin.LE.0) then
    Rmin=1.0d0
  endif
  Rmax=Rtmp+2.d1*dr
  Vmin=Vtmp-2.d1*dV
  if(Vmin.LE.0) then
    Vmin=0.001d0
  endif
  Vmax=Vtmp+2.d1*dV
  dr=dr/10.d0
  dV=dV/10.d0
enddo
CLOSE(1)
CLOSE(2)
```

Ivor Dukić: Modeliranje međuatomskih interakcija

```
write(33,'(A11,4G20.12,F16.5)')wPair, as, re, Rtmp, Vtmp, Ck
write(*,*)Rtmp, Vtmp, Fmin
enddo
CLOSE(20)
CLOSE(33)
STOP
END
```

Izrada toplinske karte pogreške funkcije f u ovisnosti o parametrima raspršenja R_0 (x-os) i V_0 (y-os). Prikazuju se grafovi iz setova podataka dobivenih korištenjem prethodnog programa za traženje minimuma. Svaki sljedeći set podataka obuhvaća vrijednosti iz suženog područja pretraživanja, temeljeno na minimumu određenom u prethodnom setu podataka. Kod je implementiran u gnuplotu.

```
unset multiplot
reset
unset key
set encoding iso_8859_1
set term pngcairo enhanced font "Calibri,18" size 1200,1000
set sample 10000
set bmargin 0.
set lmargin 0.
set rmargin 0.
set tmargin 0.
set offsets 0, 0, 0, 0
set nokey
set pm3d
set view map
#set palette defined (0. "dark-red", 0.001 "red", 1. "orange", 10. "yellow")
#set cbrange [0:450]
set palette defined ( 0 '#000090',\
                  0.001 '#000fff',\
                    0.5 '#0090ff',\
                      1 '#Offfee',\
                      2 '#90ff70',\
                      4 '#ffee00',\
                      6 '#ff7000',\
                      8 '#ee0000',\
                     10 '#7f0000')
set label 1 '10^{-8}(10^4(tan({/Symbol \326}(V_o/C_k)r_0)-{/Symbol
326 (V o/C k)(r 0-a s))^2
+(a_sC_k/(2V_o)+r@_0^3/6-a_s^2r_0/2+r_ea@_s^2)^2)' at graph 0.0, graph 1.05
set xlabel "r_0 / \305"
set ylabel "V_0 / mK"
set output 'Exp_0.png'
set multiplot
 set origin 0.1,0.1
  set size 0.85,0.95
    splot [:][:][:1.E5] 'Exp_.tmp' i 0 u 1:2:3 w pm3d
unset multiplot
unset output
```

Ivor Dukić: Modeliranje međuatomskih interakcija

```
set output 'Exp_1.png'
set multiplot
 set origin 0.1,0.1
 set size 0.85,0.95
   splot [:][:][:1.E3] 'Exp_.tmp' i 1 u 1:2:3 w pm3d
unset multiplot
unset output
set output 'Exp_2.png'
set multiplot
 set origin 0.1,0.1
 set size 0.85,0.95
   splot [:][:1] 'Exp_.tmp' i 2 u 1:2:3 w pm3d
unset multiplot
unset output
set output 'Exp_3.png'
set multiplot
 set origin 0.1,0.1
 set size 0.85,0.95
   splot [:][:][:1E-3] 'Exp_.tmp' i 3 u 1:2:3 w pm3d
unset multiplot
unset output
set output 'Exp_4.png'
set multiplot
 set origin 0.1,0.1
 set size 0.85,0.95
   splot [:][:][:1E-3] 'Exp_.tmp' i 4 u 1:2:3 w pm3d
unset multiplot
unset output
reset
set terminal GNUTERM
```

Određivanje parametara potencijala pravokutne jame s pravokutnom barijerom (R_0, V_0, R_1, V_1) koji najbolje odgovaraju parametrima raspršenja *a* i r_{eff} traženjem minimuma funkcije greške $f = f_a - f_r f_{r_{\text{eff}}}$. Kod je napisan u Pythonu.

```
import numpy as np
m1 = 1.0
m2 = 1.0
def AsRe(param):
    r0, r1, u0, u1 = param[0], param[1], param[2], param[3]
    mu = 1.0 / (1./m1 + 1./m2)
    k0 = np.sqrt(mu*u0)
    k1 = np.sqrt(mu*u1)
    k02 = k0**2
    k12 = k1^{**2}
    zeta = k0 + k1*np.tan(k0*r0)*np.tanh(k1*(r1-r0))
    As = r1 - 1. / (k1*zeta) * (k1*np.tan(k0*r0) + k0*np.tanh(k1*(r1-r0)))
    Rr = -(k02 + k12) / (k0*k12*As*zeta) * (1. + k0*r0/(As*zeta) /
         (np.cosh(k1*(r1-r0)))**2)
    Rv = ((k02 + k12) / (k0*k12*As*zeta)) * (r1/As) * (1. - np.tanh(k1*
         (r1-r0))/(k1*r1)) + 1./(k12*As) - r1**3 / (3.*As**2)
    Reff = r1 + Rr + Rv
    eAs = 100. * (As-AsExp) / AsExp
    eReff = 100. * (Reff-ReffExp) / ReffExp
    return np.sqrt(eAs**2 + eReff**2), As, Reff
def new search matrix(m, param):
    #Novo područje pretrage je manji dio starog područja
    for i in range(4):
        new_area_perc = 50.0 / 100.0
        new_diff = (m[i][1] - m[i][0]) * new_area_perc
        m[i][0] = param[i] - new_diff/2.0 if (param[i] - new_diff/2.0) >
                  m[i][0] else m[i][0] #Nova donja granica pretraživanja
        m[i][1] = param[i] + new_diff/2.0 if (param[i] + new_diff/2.0) <</pre>
                  m[i][1] else m[i][1] #Nova gornja granica pretraživanja
    return m
file_name = "VC(phd)_Tab6.1.txt"
data = np.loadtxt(file name, float, skiprows=1)
```

Ivor Dukić: Modeliranje međuatomskih interakcija

```
#Izlazni podaci
output = open("Par11.txt", 'w')
output.write(" B
                                           reff11
                            a11
               r0
                             r1
                                           u0
                           \n")
               error
for i in range(len(data)):
    a11 = data[i,1] #a0
    ReffExp = data[i,2]/a11 # a11
    AsExp = data[i,1]/a11 # a11
    # Područje pretraživanja
    m = np.float64(
        [[3.50, 3.60], #r0
        [6.15, 6.25], #r1
         [0.05, 0.15], #u0
         [0.05, 0.15]]) #u1
    current_param = [0.0, 0.0, 0.0, 0.0]
    current_error = 100000000.0
    current_eAs = 0.0
    current_eReff = 0.0
    for j in range(20):
        print("\nj = " + str(j) + "\n")
        # Tražimo za sve vrijednosti R0, V0, R1, V1
        for new_param in [np.float64([r0,r1,u0,u1])
                for r0 in np.linspace(m[0][0], m[0][1], 20)
                for r1 in np.linspace(m[1][0], m[1][1], 20)
                for u0 in np.linspace(m[2][0], m[2][1], 20)
                for u1 in np.linspace(m[3][0], m[3][1], 20)]:
            new_error, eAs, eReff = AsRe(new_param)
            # Pamtimo novu vrijednost ako daje manju grešku
            if new_error < current_error:</pre>
                current_param = new_param
                current_error = new_error
                current_eAs = eAs
                current eReff = eReff
        # Pretražujemo novo manje područje oko pronađene vrijednosti
        m = new_search_matrix(m, current_param)
```

Kod za rješavanje diferencijalnih jednadžbi Numerovim algoritmom napisan u Fortranu kojim se rješava jednadžba (4.21).

```
SUBROUTINE Numerov (r0, u0)
!Numerov algoritam rješava: Y''(r)=U(r) + V(r)*Y(r)
!U našem slučaju: !Y''(r)=Ep(r)/Ck*Y(r)
!V(r) = Ep(r)/Ck, Ck=-h_bar**2/2/mi
IMPLICIT real*8 (A-H,P-V,X-Z)
IMPLICIT integer (I-N)
IMPLICIT logical (0)
IMPLICIT character*30 (W)
PARAMETER (Kmax = 200000) ! Broj točaka X(k)
PARAMETER (h = 1.0d-3) ! Korak h = X(k+1)-X(k)
PARAMETER (xFit = 20.d0) ! Najmanja točka za fitanje funkcije
PARAMETER (kFit = 1000) ! Svaka kFit-th točka odabrana za fitanje
DIMENSION Y(0:2), V(0:2)
Ck = -2.0
wFile='B56.337G_22'
Ck = -1.0*DABS(Ck)
Xo=0.5d0
Yo=1.d-13
Y1=1.d-12
OPEN(21,FILE="Ep\"//TRIM(wFile)//".tmp") !Sve točke potencijala
OPEN(22,FILE="Uo\"//TRIM(wFile)//".tmp") !Sve točke funkcije
OPEN(23,FILE="Uo\"//TRIM(wFile)//"_fit.tmp") !Točke za fit funkcije
X=Xo
Y(0)=Yo
V(0)=Ep(X,r0,u0)/Ck
write(22,'(2G26.16)')Xo, Y(0)
X=Xo+h
Y(1) = Y1
V(1)=Ep(X,r0,u0)/Ck
V(2)=Ep(X+h,r0,u0)/Ck
write(22,'(2G26.16)')X, Y(1)
write(21,*)Xo, V(0)*Ck
write(21,*)Xo+h, V(1)*Ck
n=1
do k = 1, Kmax
 X = Xo + (k+1)*h
 V(n+1)=Ep(X,r0,u0)/Ck
```

```
write(21,*)X, V(n+1)*Ck
 Y(n+1) = ((2.d0 - h*h*V(n)*5.d0/6.d0) * Y(n))
            -(1.d0 + h*h*V(n-1)/12.d0) * Y(n-1) )
             (1.d0 + h*h*V(n+1)/12.d0)
 write(22,'(2G26.16)')X, Y(n+1)
 if(X.GT.xFit.AND.MOD(k,kFit).EQ.0)
  write(23,'(2G26.16)')X,Y(n+1)
 Y(n-1)=Y(n)
 Y(n)=Y(n+1)
 V(n-1)=V(n)
 V(n)=V(n+1)
enddo
CLOSE(21)
CLOSE(22)
CLOSE(23)
END SUBROUTINE
!Potencijal
DOUBLE PRECISION FUNCTION Ep(r12,r0,u0)
IMPLICIT real*8 (A-H,P-V,X-Z)
IMPLICIT integer (I-N)
IMPLICIT logical (0)
IMPLICIT character*30 (W)
Ep = u0*((r0/r12)**10-(r0/r12)**6)
RETURN
END
```

Kod za rješavanje integrala Simpsonovim pravilom napisan u Fortranu kojim se rješavaju jednadžbe (4.19) i (4.20).

```
SUBROUTINE Scattering (r0,u0, as_sc,re_sc)
     ! a_s=Integral[U(r)*Ep(r)*r dr]/Afit/Ck
     ! r_e=Integral[(r-a_s)**2-(U(r)/Afit)**2 dr]/a_s**2
     IMPLICIT real*8 (A-H,P-V,X-Z)
     IMPLICIT integer (I-N)
     IMPLICIT logical (0)
     IMPLICIT character*50 (W)
     PARAMETER (cutFit = 1.d-6) ! Integrirati do relativne razlike rješenja
    OPEN(33,FILE="as_re\22.dat")
                                                      simp: a_s/A'//
simp: r_e/A'//
    write(33,'(A105)')'Pair
                                        trpz: a_s/A
                                       trpz: r_e/A
                                                      Ck/mKA**2'
                                       cut: r_e/A
    write(33,'(A105)')'-----
    Ck = -2.0
    wFile='B56.337G_22'
     Ck = DABS(Ck)
       !Brojanje linija
      OPEN(22,FILE="Uo\"//TRIM(wFile)//".tmp")
      read(22,*, END=10)x0,y0
      n = 1
      do
         read(22,*, END=10)xi,yi
       enddo
10
      CLOSE(22)
      n=n-1 !Indeks 0 je početak
      if(MOD(n,2).NE.0)n=n-1 !Potrebno za primjenu Simpsona
      if(y0.GT.yi)then !Točke za fit za vezana stanja
        i1=50*n/100
        i2=90*n/100
      else !Točke za fit za nevezana stanja
        i1=30*n/100
         i2=60*n/100
       endif
      OPEN(22,FILE="Uo\"//TRIM(wFile)//".tmp")
```

```
do i = 0, n
  read(22,*, END=10)xi,yi
  if(i.EQ.i1)then
    x1=xi
    y1=yi
  endif
  if(i.EQ.i2)then
    x2=xi
    y2=yi
    Afit=(y2-y1)/(x2-x1)
  endif
enddo
CLOSE(22)
T=0.d0 !Tas, Duljina raspršenja određena trapeznim pravilom
S=0.d0 !Sas, Duljina raspršenja određena simpsonovim pravilom
OPEN(22,FILE="Uo\"//TRIM(wFile)//".tmp")
OPEN(25,FILE="FsubInt\as_"//TRIM(wFile)//".tmp")
read(22,*)x0,y0
do i = 1, n-1
  read(22,*)xi,yi
  Ti=yi*Ep(xi,r0,u0)*xi
  Si=yi*Ep(xi,r0,u0)*xi*(2.d0+2.d0*MOD(i,2))
  T=T+Ti
  S=S+Si
  write(25,*)xi, Ti/Afit/Ck
enddo
read(22,*)xn,yn
CLOSE(22)
CLOSE(25)
T=T+(y0*Ep(x0,r0,u0)*x0
    +yn*Ep(xn,r0,u0)*xn)/2.d0
S=S+(y0*Ep(x0,r0,u0)*x0
    +yn*Ep(xn,r0,u0)*xn)
h=xn-xi
Tas=T*h/Afit/Ck
Sas=S*h/3.d0/Afit/Ck
T=0.d0 !Tre, Efektivni doseg određen trapeznim pravilom
S=0.d0 !Sre, Efektivni doseg određen simpsonovim pravilom
OPEN(22,FILE="Uo\"//TRIM(wFile)//".tmp")
OPEN(25,FILE="FsubInt\re_"//TRIM(wFile)//".tmp")
read(22,*)x0,y0
xi=0.d0
dx=(x0-xi)*1.d-3
xi=xi+dx
if(xi.LT.x0) then
  do j = 1, 999
   Ti=(xi-Tas)**2
```

```
Si=(xi-Sas)**2*(2.d0+2.d0*MOD(j,2))
    T=T+Ti
    S=S+Si
    xi=xi+dx
    write(25,*)xi, Ti/Tas**2
  enddo
  Ti=(Tas)**2 + (xi-Tas)**2
  Si=(Sas)**2 + (xi-Sas)**2
  T=T+Ti/2.d0
  S=S+Si
  Tre0=T*dx*2.d0/Tas**2
  Sre0=S*dx/3.d0*2.d0/Sas**2
endif
T=0.d0
S=0.d0
iSkip=0 !Izbjegavanje numeričke pogreške za nevezan sustav
do i = 1, n
 read(22,*)xi,yi
 Ti=(xi-Tas)**2-(yi/Afit)**2
  Si=Ti*(2.d0+2.d0*MOD(i,2))
  !Izbjegavanje numeričkih pogreška za velike r
  if(i.GT.10 .AND. iSkip.EQ.0
             .AND. (Ti/(xi-Tas)**2 .LT. cutFit)) then
    iSkip=1
    xn=xi
    yn=yi
    write(25,*)
    write(25,*)
  elseif(iSkip.EQ.0) then
    T=T+Ti
    S=S+Si
  endif
  write(25,*)xi, Ti/Tas**2
enddo
Ti=(x0-Tas)**2-(y0/Afit)**2 + (xn-Tas)**2-(yn/Afit)**2
Si=(x0-Sas)**2-(y0/Afit)**2 + (xn-Sas)**2-(yn/Afit)**2
T=T+Ti/2.d0
S=S+Si
Tre=T*h*2.d0/Tas**2
Sre=S*h/3.d0*2.d0/Sas**2
write(33,'(A11,5G16.6,F14.5)')wFile, Tas, Sas, Tre0+Tre,
                              Sre0+Sre, xn, Ck
as sc = Tas
re_sc = Tre0+Tre
CLOSE(22)
CLOSE(25)
```

```
CLOSE(33)

CLOSE(10)

END SUBROUTINE

DOUBLE PRECISION FUNCTION Ep(r12,r0,u0)

IMPLICIT real*8 (A-H,P-V,X-Z)

IMPLICIT integer (I-N)

IMPLICIT logical (0)

IMPLICIT character*30 (W)

Ep = u0*((r0/r12)**10-(r0/r12)**6)

RETURN

END
```

Kod za određivanje vrijednosti a i r_{eff} za polje određeno R_0 i V_0 uz pomoć prethodno opisanog Numerovog algoritma i Simpsonovog pravila. Napisano u Fortranu.

```
PROGRAM Grid_a_reff
IMPLICIT real*8 (A-H,P-V,X-Z)
IMPLICIT integer (I-N)
OPEN(46,FILE="grid3.tmp")
r0 min = 0.2
r0_{ink} = 0.032
u0_{min} = 0.2
u0_ink = 0.065
iti = 0
do r0_i = 0, 150, 1
 do u0_i = 0, 150, 1
    r0 = r0_min + r0_i * r0_ink
    u0 = u0_min + u0_i * u0_ink
    iti = iti + 1
    call Numerov(r0, u0)
    call Scattering(r0, u0, as_sc, re_sc)
    write(*,*) iti, r0, u0, as_sc, re_sc
    write(46,*) r0, u0, as_sc, re_sc
  enddo
enddo
CLOSE(46)
STOP
END
```

Iz dobivenih vrijednosti a i r_{eff} iz prethodnog koda računamo f za uzorak vrijednosti a i r_{eff} .preuzete iz znanstvenih radova. Kod je napisan u Fortranu.

```
PROGRAM Grid_f
      IMPLICIT real*8 (A-H,P-V,X-Z)
      IMPLICIT integer (I-N)
      OPEN(46,FILE="grid.tmp")
      OPEN(47,FILE="grid2.tmp")
      as_r = 0.515881278150212
      re_r = 8.82735377820075
      r0_b = 0.0
      do
        read(46,*, END=48) r0, u0, as_sc, re_sc
        if (r0/=r0_b) then
          write(47,*)
          r0_b = r0
        endif
        error_new =
              (as_r - as_sc)**2 + 1.d-3*(re_r - re_sc)**2
        write(47,*) r0, u0, error_new
      enddo
     write(*,*) "Gotovo"
48
      CLOSE(46)
      CLOSE(47)
      STOP
      END
```

Odabiremo točku najmanje pogreške f određene s grafa prethodnog koda. Iz te točke se pomičemo za male korake u smjerovima manjih f te dolazimo do preciznije određenih rješenja za a i r_{eff} .

```
PROGRAM Setanje
IMPLICIT real*8 (A-H,P-V,X-Z)
IMPLICIT integer (I-N)
OPEN(45,FILE="setanje.txt")
as_r = 0.543410633484163
re_r = 9.08766968325792
r0 best = 1.37
u0_best = 4.75
call Numerov(r0 best, u0 best)
call Scattering(r0_best, u0_best, as_sc, re_sc)
error = abs(as_r - as_sc) + 1 * abs(re_r - re_sc)
step = 5.0E-002
r0_x_last = 2
u0_y_last = 2
do korak = 1, 50, 1
 write(*,*) korak
 maknut = 0
 do r0_x= 1, -1, -1
    do u0_y= 1, -1, -1
      if (!((r0_x.eq.0.0).or.(u0_y.eq.0.0)).and.
           ((r0 x/=r0 x last).or.(u0 y/=u0 y last))
           .and.((r0_x/=0).or.(u0_y/=0))) then
        r0 = r0_best + r0_x * step
        u0 = u0_best + u0_y * step
        call Numerov(r0, u0)
        call Scattering(r0, u0, as_sc, re_sc)
        error_new = abs(as_r - as_sc) + 1 * abs(re_r - re_sc)
        if(error_new<error)then
          error = error_new
          r0_best = r0
          u0 best = u0
          maknut = 1
          r0_x_last = r0_x^*(-1.0)
          u0 y last = u0 y^{*}(-1.0)
          write(*,*) 'maknut'
        endif
        write(*,*) r0_x, u0_y, error_new, r0, u0, step
        write(45,*) r0, u0, error_new, as_sc, re_sc
      endif
    enddo
  enddo
```

```
if(maknut == 0)then
   step = step *0.8
   r0_x_last = 2
   u0_y_last = 2
   endif
enddo

call Numerov(r0_best, u0_best)
call Scattering(r0_best, u0_best, as_sc, re_sc)
write(*,*)
write(*,*) r0_best, u0_best, as_sc, re_sc, error

close(45)
STOP
END
```