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Introduction 

In the field of astronomy, exoplanet detection is a new and rapidly emerging field of science 

dedicated to finding planets around other stars. Unlike the planets in our own solar system, 

which are very close to us on astronomical scales, extrasolar planets pose a challenge in 

understanding and characterising their nature. Unusual compositions and orbits challenge 

our understanding of planet formation and the history of the universe.  

Machine learning could prove essential in the future of exoplanet detection. Currently, only 

the radial velocity discovery method can tell us the exact mass and orbital parameters of 

planets orbiting other stars. 

Orbiting planets exert a measurable and repeating force on their parent star – moving the star 

away and towards the earth. From these oscillations, astronomers can extract planetary data. 

In the real world, noise heavily disturbs this process. [3] 

Stars themselves produce non-random noise which can mimic planetary influence. For 

example, sunspots, areas of a star where local temperature falls below the rest of the star, 

can be detected as a fall in brightness. There have been attempts at masking these and similar 

influences, but at most they were used to corroborate true positives of planetary detection. 

As radial velocity is directly dependant on the mass and orbit of the planets, a system which 

hold one massive planet close in to the star will dominate the radial velocity measurement, 

or many smaller planets will have their sinusoidal traces stretched over many years of 

measuring. 

The Milky Way contains roughly 100 billion stars, of which as much as 8.3% might contain 

planet discoverable though the radial velocity method. Classical processes may take as much 

as 427 seconds [2] to process each star system. 

As part of this master’s thesis, we will discuss the possibility of using machine learning 

models to process vast amounts of radial velocity data and measure their usefulness. We will 

create synthetic data and train a machine model to identify planetary peaks within the data 

and comment its usefulness on both synthetic and real data. 
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Due to lack of full system data, where all planets in a star system are known, synthetic data 

generation will be necessary. Validation will be done on some real-world data procured by 

current telescopes and measured with the F1 score, a harmonic mean of accuracy and recall. 
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1. Systematic Literature Review 

Preferred Reporting Items for Systematic Reviews and Meta-Analyses" (PRISMA) [1] is 

used to confirm to proper use of compute and procedures for the thesis. The PRISMA process 

was centred around key questions, and the process of literature review is outlined in the 

following sections. 

1.1. Outline 

The following questions need to be answered as part of the literature review: 

1. What is radial velocity and how is it measured? 

2. How is radial velocity data stored? 

3. How do astronomers extract planetary data from radial velocity? 

4. How to generate synthetic radial velocity data? 

5. How does noise and temporal sampling influence periodograms? 

6. What impact did machine learning models have so far in the field of exoplanet 

detection via radial velocity? 

7. What are the key limitations of using this method for exoplanet detection? 

These questions were formulated to provide a clear path towards model development. 

Publications have been filtered using the exclusion criteria and the inclusion criteria found 

in the tables below. 

Table 1 Exclusion Criteria 

Exclusion Criteria 

Exclude studies not written in English. 

Exclude studies published before 2015. 

Exclude studies that do not use only radial velocity data for exoplanet detection. 

Exclude theoretical papers that do not provide empirical data or practical insights into 

radial velocity measurements. 
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Exclude non-peer-reviewed articles, editorials, letters, and conference abstracts, tutorials, 

presentations. 

Exclude not publicly available studies. 

While keeping the exclusion criteria in mind we can proceed with further refinement of our 

literature selection. The inclusion criteria below are designed to primarily answer our 

research questions. 

Table 2 Inclusion Criteria 

Inclusion Criteria 

Include studies that explicitly investigate or utilize radial velocity measurements for 

exoplanet detection. 

Include studies that discuss and present ways to generate realistic synthetic radial 

velocity data. 

Include studies that apply machine learning techniques to the analysis of radial velocity 

data for the purpose of detecting exoplanets. 

Include studies that describe methods for storing and handling radial velocity data. 

Include studies that detail the processes and algorithms used by astronomers to extract 

planetary data from radial velocity measurements. 

Include studies that assess the impact of machine learning models on the field of 

exoplanet detection via radial velocity. 

Include studies that discuss the limitations and challenges of using radial velocity data 

and machine learning for exoplanet detection. 

Include studies that validate machine learning models on real-world radial velocity data, 

especially those that use data from current ground-breaking telescopes. 

1.2. Executing the literature search 

Following the definition of research questions, the exclusion and inclusion criteria, a search 

was executed using the following keyword combinations: 
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Keyword combinations: 

• radial velocity AND exoplanet detection OR machine learning AND exoplanet 

detection 

• stellar noise AND exoplanet 

Table 3 Literature search results 

Archive name Total results 

arXiv 32 

IEEE Xplore 69 

Google Scholar ~50 

These archives were processed one by one, and after a sufficient number of papers were 

collected – ones that are relevant to all the research questions, the search for further archives 

was stopped.  
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Figure 1 PRISMA diagram of publications 

These are the remaining publications: 

Table 4 Final selected publications 

Tile Authors Publication Date 

ExoplANNET: A deep learning 

algorithm to detect and identify 

planetary signals in radial velocity 

data [2] 

L. A. Nieto 

and R. F. Díaz 
June 2023 
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Identifying Exoplanets with Deep 

Learning. IV. Removing Stellar 

Activity Signals from Radial 

Velocity Measurements Using 

Neural Networks [4] 

Zoe. L. de Beurs, Andrew 

Vanderburg, Christopher J. 

Shallue, … 

August 2022 

The need for a public forecast of 

stellar activity to optimize exoplanet 

radial velocity detections and 

transmission spectroscopy [5] 

Lalitha Sairam and Amaury H. 

M. J. Triaud 
May 2023 

Exoplanet Detection: A Detailed 

Analysis [6] 

Mahima Kaushik, Aditee Mattoo 

and Dr. Ritesh Rastogi 
April 2024 

Modelling Stellar Jitter for the 

Detection of Earth-Mass Exoplanets 

via Precision Radial Velocity 

Measurements [7] 

Samuel Granovsky, Irina N. 

Kitiashvili, Alan Wray 
February 2022 

Randomization Inference of 

Periodicity in Unequally Spaced 

Time Series with Application to 

Exoplanet Detection [8] 

Panos Toulis and Jacob Bean May 2021 

Statistical Methods for Exoplanet 

Detection with Radial Velocities [9] 
Nathan C. Hara, Eric B. Ford August 2023 

Detection Limits of Low-mass, 

Long-period Exoplanets Using 

Gaussian Processes Applied to 

HARPS-N Solar RVs [10] 

N. Langellier, T. W. Milbourne , 

D. F. Phillips, … 
June 2021 

Radial-velocity variations due to 

meridional flows in the Sun and 

solar-type stars: impact on exoplanet 

detectability [11] 

N. Meunier and A.-M. Lagrange April 2020 
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3D Magneto-Hydrodynamical 

Simulations of Stellar Convective 

Noise for Improved Exoplanet 

Detection [12] 

S. Sulis, D. Mary, and L. Bigot February 2020 

Filtering Solar-Like Oscillations for 

Exoplanet Detection in Radial 

Velocity Observations [13] 

William J. Chaplin, Heather M. 

Cegla, Christopher A. Watson, 

Guy R. Davies, 

and Warrick H. Ball 

March 2019 

A Machine Learning Approach for 

Correcting Radial Velocities Using 

Physical Observables [14] 

M. Perger, G. Anglada-Escudé, 

D. Baroch, … 
February 2023 

Improving Earth-Like Planet 

Detection in Radial Velocity Using 

Deep Learning [15] 

Yinan Zhao, Xavier Dumusque, 

Michael Cretignier, … 
May 2024 

A Gaussian Process Framework for 

Modelling Stellar Activity Signals in 

Radial Velocity Data  [16] 

V. Rajpaul, S. Aigrain, M. A. 

Osborne, S. Reece, 

and S. Roberts 

June 2015 

A detailed derivation of 

The Radial Velocity Equation [17] 
Kelsey I. Clubb August 2008 

1.3. Answering research questions 

1.3.1. What is radial velocity and how is it measured? 

As the Earth orbits the Sun, it induces radial motion dependent on its distance and mass. Due 

to the Earth's much smaller mass, the Sun moves far less than the Earth – which travels more 

than 940 million kilometers over the course of a year. Exoplanets also disturb their parent 

stars, and this motion can be detected using Doppler spectroscopy. Due to the nature of 

waves, when an emitting source moves away from an observer, its wavelength increases, 

effectively red-shifting the signal. And when the source moves towards the observer, the 
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wavelength decreases, causing a blue shift. By measuring these line-of-sight changes, a 

graph can be constructed which informs us of the change in radial velocity of a star due to 

its orbiting bodies. [3] 

 

Figure 2 Radial velocity inducet wavelength shift 

As a planet orbits a star, it exerts a gravitational force on the star, causing the star to move 

in a small orbit around the common center of mass (barycenter) of the star-planet system. 

This motion results in periodic changes in the star's velocity along the line of sight from 

Earth as seen in Figure 2 Radial velocity inducet wavelength shift. 

This motion of the star towards and away from Earth causes shifts in the wavelength of the 

star's light due to the Doppler effect. When the star moves towards Earth, its light is blue-

shifted (wavelengths become shorter), and when it moves away, its light is red-shifted 

(wavelengths become longer). 

Using the measured Doppler-shifted wavelength, and the ground truth wavelength, the 

following equation is applied: 

 

(1) 

Where:  

• v is the radial velocity 

• Δλ is the Doppler shift in wavelength 

• Λrest is the original wavelength of the light 
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• c is the speed of light 

1.3.2. How is radial velocity data stored? 

Radial velocity data usually consist of more than 100 datapoints with the corresponding 

timestamp, radial velocity measurement and uncertainty.  

The timestamps are quasi-uniformly distributed and follow nightly observation cycles. Some 

contain multiple observations per night. 

The intrinsic uncertainty is contained withing some abstract multivariate distribution. Within 

this value are all the noise sources associated with the star: such as sunspots, magnetic 

disturbances, convective forces on the star’s surface, dust clouds, etc… [18] 

1.3.3. How do astronomers extract planetary data from radial 

velocity? 

Once radial velocity data has been gathered, usually by high precision instruments such as 

HARPS, SOPHIE, CARMENES or ESPRESSO, astronomer employ periodograms.[10]  In 

the analysis of irregularly spaced time series data, such as those commonly gathered in radial 

velocity (RV) surveys, researchers frequently utilize periodograms to identify repeating 

patterns. The Lomb-Scargle technique has become a widely adopted tool for uncovering 

periodic signals within RV datasets. 

 

Figure 3 Periodogram from the ExoplANNET paper 

Astronomers then identify significant peaks in the periodogram data, as seen in Figure 3 

Periodogram from the ExoplANNET paper. This corresponds to the period of the planet, and 

using the mass of the star, a Keplerian model can illuminate the true mass and semi-major 

axis of the planet. [19] 
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Often multiple peaks in the data can be identified, which corresponds to multiple orbiting 

bodies. 

1.3.4. How to generate synthetic radial velocity data? 

To effectively train, validate, and test a neural network, a large dataset is essential. While 

the exact size requirement is not known, it stands to reason that larger training and validation 

sets tend to increase effectiveness. 

The dataset must be representative of the scenarios the network will encounter during 

inference, such as data point quantity, variability patterns, and the presence of periodic 

signals.  

Current radial velocity (RV) time series from large-scale surveys pose challenges for 

efficient training due to their limited number and high diversity. These datasets lack 

sufficient examples of different variability types and planetary system configurations. 

Furthermore, the uncertainty in the exact number of planets in each system introduces the 

problem of imprecise labeling, making it difficult to accurately categorize each dataset for 

the algorithm's learning process. 

An alternative approach involves training and assessing the neural network using synthetic 

radial velocity (RV) time series [2], followed by an examination of its effectiveness on actual 

observational data. This method may suffice if the simulated data adequately reflect real-

world conditions, though it's likely that some adjustments to the network's structure would 

be necessary. 

We can use deterministic equations from a large number of synthetic star systems to generate 

the needed data. A drawback is that the significance of the study's findings is inherently tied 

to the realism of the simulations - the accuracy of the synthetic data directly influences the 

relevance and applicability of the results to real-world scenarios 

To generate the radial velocity data which account for eccentricity and inclination of planets 

we turn to “A detailed derivation of The Radial Velocity Equation” by Kelsey I. Clubb [17]. 

In it, the following equation is stated:  

 

(2) 
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Where: 

• K1 is the radial velocity semi-amplitude of the star 

• P is the period of orbiting body in seconds 

• E is the eccentricity of the orbiting body 

• i is the inclination of the orbiting body 

• m1 is the mass of star 

• m2 is the mass of orbiting body 

The process used to generate the radial velocity data can be summarised as; 

1. Generate planetary system and store them for later use. These systems should vary 

in size and mass and be representative of the distribution of real-life planetary 

systems. 

2. Using the radial velocity function, calculate the ground-truth value for the velocity. 

3. Add noise and uncertainty to the data; Pulsation, Granulation, Rotational modulation 

and instrument noise. 

4. Sample the data at uneven intervals mimicking the observation schedules of real-life 

observatories. 

1.3.5. How does noise and temporal sampling influence 

periodograms? 

Using the generated velocity and time arrays, periodograms can be created. In Figure 4 

Evenly sampled simulated periodogram with planets and masses labelled we see two graphs 

of the same planetary system. The first graph uses roughly daily observational intervals i.e. 

it simulates what an observatory might detect over the course of 7000 days while making 

daily measurements. 
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Figure 4 Evenly sampled simulated periodogram with planets and masses labelled 

The power corresponds to the intensity of the signal within the data at the specific frequency 

(period is used in the plot for ease of understanding). We can see, labelled with red dashed 

lines, ground truth plants and where we would expect to see their signals. Planets 1 and 3 

have clearly visible peaks. 

Planets 2 and 4, who have the lower mass, do not contribute as much as the others, and so 

their power is significantly lower. It represents the most common cause for false negatives 

in exoplanet detection – low masses, which do not perturb the star. To detect it, the sampling 

would need to be faster, the mass ratio different, the noise absent, or the other planets 

removed. 

Here is the system’s periodogram if we removed the other planets from the system: 
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Figure 5 Small planets relative to stellar noise 

Even now, the strength of the planet signal is miniscule. This systems star measures 0.72 

solar masses, and the planets themselves are more massive than Earth. This clearly illustrates 

the difficult proposition of earth-like planet detection around even sunlike stars. 

As before, we can see other peaks which are connected to the stellar noise, which is described 

in more depth later. 

Finally, let’s take a look at a periodogram of this system with realistic temporal sampling 

i.e. sampling we could expect from real-life observatories; 

 

Figure 6 Periodogram with all noise sources 
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Many sources of noise worth together to render the periodogram messy. We can see a more 

ordered signal nearing 100-day periods and beyond – due to the most noise sources being 

shorter in their periodicity. Using our human intuition, we could only conclude the existence 

of a single planet, Planet 3, in the data. A machine learning model might do better. 

1.3.6. What impact did machine learning models have so far in the 

field of exoplanet detection via radial velocity?  

Due to the constraints of time and complexity of manual exoplanet detection, machine 

learning models can offer much greater volumes of processed data. The ExoplANNET 

framework achieves 28% fewer false-positive with a five orders of magnitude speedup. [2] 

1.3.7. What are the key limitations of using this method for 

exoplanet detection? 

Influenced by the variability of the star and the instrument sensitivity, the radial velocity 

detection method suffers greatly from the introduced noise. Alongside the fact that the 

inclinations of exoplanets are rarely aligned as so to make the observations as simple 

extraction of planetary parameters. More often than not, a planet does not orbit edge on when 

viewed from earth, and astronomers, as well as a machine learning model, will need to 

account for the angle of the planet’s revolution. 

The instrument precision over soon-to-be online telescopes has reached 10cm-1, which over 

long periods of observations, might be able to detect the influence of the earth on the sun, 

which is recorded at 9cm-1. [20] 

Detecting low-mass, long-period planets require numerous observations to capture the entire 

sinusoidal pattern, a process that can span a decade or more. Identifying planets with larger 

masses (approximately 0.5 m s−1) using current-generation spectrographs and Gaussian 

Process (GP) regression would demand more than 12 years of densely sampled radial 

velocity (RV) observations. 
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2. Machine Learning for Radial Velocity 

Machine Learning has had an immensely positive impact on the field of astronomy. [6] As 

the volume of collected data increases year over year, aided by the newly constructed 

observatories such as the James Webb Space Telescope, and the upcoming Vera Rubin 

Observatory and the Extremely Large Telescope. There has crystalized a real need to process 

immense amounts of data quickly and efficiently. 

A potential path forward to processing this data is the use of machine learning. Specifically, 

in this thesis, the use of neural networks for exoplanet detection will be discussed. 

 

Figure 7 Radial velocity visualisation 

As the motion of the exoplanet around the star presents a repeating periodic signal, one which 

can be processed into a periodogram, a convolutional neural network is likely to be the best 

option to process this data. 

2.1. Neural Networks 

Neural networks are a form of machine learning consisting of many layers. Stacked on top 

of one another, these layers are in turn comprised of individual neurons – very much inspired 

by biological brains. 

By nesting many of these neurons together in a layer, and in turn combining many layers 

together, we construct an arbitrary mathematical operation. The outputs of all the neurons of 

a single layer are connected to the inputs of all the neurons in the following layer. 
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In principle, due to the unique set of weights and biases, each input corresponds to an unique 

set of activations and propagations though the neural network. 

2.1.1. Neurons 

Smallest units of a neural network. They conduct a multiplication of its input with its internal 

weight. A bias is added, also internal to each neuron, and finally, an activation function maps 

the value according to a specific function. 

2.1.2. Activation Functions 

These functions are applied to the output of a neuron to transform the value from one value 

space to another. They are usually set on a per-layer basis and are crucial for introducing 

non-linearity. 

 

Figure 8 Logistic aka Softmax function 

Visualised on the image above, the activation function maps its input X = 2 to the output 

value of approximately 0.88. 

This particular activation function is useful for outputs of classification tasks, because it 

clamps the value of the output to between 0 and 1, while allowing the inputs to be practically 

anything. This then also serves as the neural networks confidence value for each specific 

class, and an output of 0.6 would be considered significantly different than an output of 0.99, 

even though they both technically classify as 1. 
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2.1.3. Backpropagation 

Setting the weights and biases of a neural network is too complex a task for a human to do. 

We just set the initial parameters. Imagine a single neuron with a weight of 0.5 and a bias of 

3, using a linear identity activation function. We want this neuron to output the next integer 

value that is twice the input. To train it, we prepare a dataset of input-output pairs like (1,3), 

(4,9), (10,21). 

For the input 10, the neuron's output would be 8. We calculate the error (13) and use 

backpropagation to adjust the weight and bias. Repeating this process for multiple pairs, we 

update the neuron's parameters until the error is minimized. 

In practice, the weight might become 1.999 and the bias 1.0000001. The learning rate, 

adjusted by an optimizer, governs the speed of these adjustments to avoid local minima and 

reach the global minimum. 

 

Figure 9 Local and global minima 

On the image above, we see a simplified representation of the gradient space of a neural 

network. R represents some combination of internal parameters, while E is the error. A 

neural network at the start will have some random combination of r, and therefore some 

random location on the gradient. Trought training and backpropagation, we hope to reach 

the global minimum. 

https://vitalflux.com/wp-content/uploads/2020/09/local-minima-vs-global-minima-1.png
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2.2. Types of Layers 

2.2.1. Dense 

A dense layer of the neural network contains neurons which are full connected to the 

preceding layer. They are the core of reasoning in neural networks and are often used in 

groups. During training, the weights and biases of dense layers are tuned to reduce the loss 

function.  

Multiple dense layers are computationally expensive and are better used at the end of a neural 

network after feature extraction to make the final decisions for the network. 

2.2.2. Convolution 

A special type of a neural network layer is the convolutional layer. These layers learn abstract 

shapes within the data using a kernel. For example, a convolutional neural network 

identifying cats and dogs might have a kernel that identifies ears. Deeper layers may learn 

specific ear shapes and breed differences. 

A convolutional layer slides a kernel across its input, multiplying and summing values to 

create a mapping. The kernel is learned during training, and its movement is defined by its 

stride. Padding allows the layer to maintain input dimensions and learn edge features. The 

number of kernels determines the number of output feature maps. 

If we have a kernel shaped like a cat's ear, the convolution result would be a feature map 

with high values where the cat's ears are present. An activation function is applied to each 

feature map member before passing to the next layer. This helps the network learn non-linear 

features. 

2.2.3. Batch Normalization 

During training and inference, input values can become unstable due to successive 

transformations by layers. Batch normalization layers can solve this by calculating the mean 

and standard deviation of the batch, then normalizing the values to preserve their distribution 

without affecting trainability. During training, batch normalization layers learn internal 

parameters (gamma and beta) and store running averages of the mean and variance for use 
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during inference. The accuracy of batch normalization depends on the batch size, with larger 

batches providing more accurate mean and variance values. 

2.2.4. Dropout 

Dropout layers fight overfitting by randomly setting to 0 their inputs based on a single 

hyperparameter. It is called the dropout rate and is defined as a percentage, so a dropout 

layer with a dropout rate of 20% would drop 1 in 5 of its input neurons. 

This operation reduces the sum of the neurons, which can negatively impact layers 

downstream. To preserve the approximate sum, the neurons that have not been dropped have 

their values increased by a value equal to the inverse of 1 minus the dropout rate. With a 

dropout rate of 0.2, the scaling factor would be 1.25. 

During inference, no neurons are dropped, but the opposite problem as the one during 

training appears. We now must scale down the sum of the neurons, which we do by 

multiplying the values by 1 minus the dropout rate. With a dropout rate of 0.2, we would 

multiply the values by 0.8. 
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3. Radial Velocity Data 

3.1. Real Radial Velocity Data 

As of the writing of this paper, 1093 exoplanets have been discovered using the radial 

velocity data. Their radial velocity graph is hosted on the NASA exoplanet archive, and a 

convenient script is provided to download the data. 

Once downloaded, the data contains the star name, dates and values of observations and the 

uncertainties. 

 

Figure 10 Radial Velocity curve of Gliese 3021 perturbed by its planet - GJ 3021 b 

Figure 10 Radial Velocity curve of Gliese 3021 perturbed by its planet - GJ 3021 b shows 

the real-life data of the exoplanet Gliese 3021 b as it orbits its star and perturbs it by as much 

as 170 meters per second. A portion of the radial velocity data obtained in this way has its 

values offset by a large amount, such as on the above graph – the original values were about 

5000 meters per second lower. 

This data simply tells us the motion of the star relative to earth, and often when making 

observations of stars in binary systems, the velocity is dominated by the companion star. 
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Figure 11 Binary system 

Figure 11 Binary system shows the relationship between orbiting objects; If we would take 

radial velocity measurement so the red star in the above image, we would get exceptionally 

high values – caused by the more massive blue star. It is important to consider that planets 

which would orbit the red star, are more likely to be detected if their period is significantly 

smaller than the period of the red star’s orbit. As we need many observations of its 

periodicity compared to the period of the star. [10] 

Because of this, we normalised the data to have a mean of 0. 

By analysing this data, we can paint a clearer picture of real-life radial velocity 

measurements. One of the most important questions is; What is the distribution of 

differences in time between subsequent observations? This can be computed in buckets, and 

for the sake of removing outliers, we count all times beyond 100 days as a single bucket and 

cap it to 365 days. 

 

Figure 12 Histogram of delta time between observations 
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Figure 12 Histogram of delta time between observations is the binned histogram of the 

differences between two subsequent observations based on real data. We see a sharp 

maximum in sub-1-day observations and another peak at roughly 25 days. This will guide 

our synthetic observations. Below can see the stats for ou time difference observations. 

Evident is the very large range of values with the mean at 33.04 days and a standard deviation 

of 67.71. 

Statistics of time differences (up to 365 days): 

• Minimum: 0.00 days 

• Maximum: 364.96 days 

• Mean: 33.04 days 

• Median: 2.92 days 

• Standard deviation: 67.71 days 

• Mode (rounded to nearest day): 1 days 

• 25th percentile: 0.99 days 

• 75th percentile: 28.01 days 

This histogram will later be used to compute the temporal noise. A perfect use case would 

be an hourly measurement, but real-life has to contend with; Yearly motions of the earth 

around the sun – which prohibit observations of certain portions of the night sky. And 

observation schedules and maintenance of the instrument.  

We can compute periodograms for these real-life systems and see if we can identify some 

planets with the naked eye. 

 

Figure 13 HD 3651 periodogram 
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Figure 13 shows a periodogram of star HD 3651. Above we can see a clear spike at about 

60 days. This corresponds to a period of ~62 days of the planet HD 3651 b. Now that we are 

certain these radial velocities can be used to find planets, can move on to generating synthetic 

systems. 

Two scripts have been created that generate and preprocess the data, these are: 

main_generate_systems.py and main_preprocess.py. These are available at my GitHub[26]. 

The quality of the radial velocity data underpins this entire project – we need to ensure both 

synthetic data contains enough real-world equivalence, so that the eventual machine learning 

model may create an accurate internal world-model. 

3.2. Planetary System Generation 

The first step in generating our radial velocity data, is creating a realistic pipeline for crating 

star systems. These star systems should contain the orbital characteristic of the planets, their 

mass and the mass of the star. With these parameters we can later simulate the data. We must 

choose an assortment of ranges for our random generation. 

First the stellar masses, a value between 0.05 and 2 solar masses should account for the vast 

majority of stars. This will serve a sort of seed value for much of the remining generation. 

More massive stars usually have more material around them for forming planets and as such 

are expected to have higher mass planets orbiting it. 

Then we must choose to semi-major axes of the planets and their count. The planetary count 

is defined as a random value a mean of 7 and a standard deviation of 3.3. We discard any 

planet counts below 2. 

A system’s compactness can be described as the ratio of the semi-major axis of the first and 

final planet in astronomical units. Since they have the same units, this value is dimensionless 

For example, the solar system has a compactness score of 77.758 due to the orbits of Mercury 

and Neptune. We choose this value at random, between 55 and 88. 

Another important value is the semi-major axis of the first planet, this can be thought of as 

the first semi-major axis. It can also be thought of as a ratio of the first orbit and the star’s 

mass. For the solar system, since the sun is exactly 1 solar mass, this value is 0.387098 

AU/Solar mass – the exact value of Mercury’s orbit. Ultimately, we have decided to choose 

this value at random between 0.01 and 1.2, to cover all shapes and sized of planetary systems. 
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The maximum semi major axis is the value of the first semi major axis multiplied by the 

compactness. 

As we finally have the lower and upper bounds of the system, we begin choosing the semi 

major axes of the planets within. Starting with the minimum semi major axis, we choose a 

random spacing value. This is a dimensionless value which corresponds to the ratio of two 

neighbouring orbits. Its distribution has been calculated using the values in the solar system, 

the Trappist-1 system, and the Draco-90 systems. We have a mean of 1.614 and a standard 

distribution of 0.5941. By successively multiplying the orbits with this spacing value we get 

the full list of planetary orbits. 

The first important caveat to this approach is the inherent oversimplification of real-world 

truths. There may yet exist some unknown relationships between the planetary orbits, the 

mass of the planets and stars [21], which can influence the process of generating systemic 

data. Given that such deep truths are unknown to us, and due to the constraints of time and 

compute, we are forced to assume this naïve approach to system generation. For example, 

we do not take into account orbital resonances, which force planets over many orbits to fall 

into stable resonances with each other, such as Pluto who orbits twice for every three orbits 

of Neptune. 

We also don’t take into account the effects of general relativity, for example, the orbit of 

Mercury precesses i.e. rotates around the sun due to the inherent curvature of space-time 

caused by the sun’s mass. Though this effect is small, about 0.001 degrees per century, it 

nevertheless represents another point of simplification. [1][22] 

An earth-like ratio corresponds to the percentage likelihood of a planet having earth-like 

mass, or mass closer to the massive planets like Jupiter and Saturn. It is chosen at random 

between 0 and 1. 

The for each of the chosen semi-major axes, we choose a mass – a log-normal distribution 

with mean of 1 earth masses and standard deviation of 0.85, or 0.6 mean Jupiter masses with 

a deviation of 0.85. By doing this we achieve a total distribution of expected planetary 

masses in real-life observations. 

Then for the eccentricity, i.e. how circular the orbit is, we choose a random value using the 

Rayleigh distribution with a peak on 0.1. We further limit the eccentricity to 0.4. Rayleigh 

distribution is used because it favours low values. Higher eccentricates are rare. 
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Another planetary parameter is inclination. It relates to the angle at which the planet orbits 

from the perspective of earth. An inclination of 0 means the orbit crosses exactly between 

earth and the star, in such a perfect case the plants mass can often also be calculated. Usually, 

astronomers are not so lucky, so we also must choose an inclination. A random value 

between 0 and 30 degrees is chose, with a high bias towards lower values. A high inclination 

system has little hope for discovery using the radial velocity method, and as such, inclination 

above 30 degrees is ignored. 

Then we finally choose a random argument of periapsis and phase offset. The latter governs 

the position of the planet in its orbit, and the other the angle at which the planet is inclined 

relative to earth. These values are purely random as their real-life counterparts do not depend 

on anything expect the orientation of the observer. 

The final caveat to this generation is the lack of other sources of radial velocity disturbances. 

Such as moons, which dynamically orbit their planets and in turn disturb their parent star. 

We also lack dust clouds and asteroid field, which also influence their stars, tough much less 

than the planets.[23]  Calculations of these too would bring little benefit to our study, as the 

sensitivity of real-life instruments in nowhere near to being able to read motions on the scale 

of moons and asteroids. 

All this allows us to quickly generate realistic star systems. 
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Figure 14 Examples of generated systems 

Figure 14 Examples of generated systems shows 9 random samples of generate star system 

using our main_generate_systems.py script. While the approach is generally successful, we 

can see cases where planets cross each other’s orbits. This is impossible in real life, as such 

arrangements would cause instability and migration of both planets. This can then be turned 

into radial velocity using the equation (1) found in A detailed derivation of The Radial 

Velocity Equation [17]. The code for this is shown below:  

def calculate_rv(system, time_tensor, device): 

    mass_star = torch.tensor(system['star_mass'], dtype=torch.float32, 

device=device) 

    rv_total = torch.zeros_like(time_tensor) 

 

    for planet in system['planets']: 

        mass = torch.tensor(planet['mass'], dtype=torch.float32, 

device=device) 

        P_days = torch.tensor(planet['P'], dtype=torch.float32, 

device=device) 

        e = torch.tensor(planet['e'], dtype=torch.float32, device=device) 

        w = torch.tensor(planet['w'], dtype=torch.float32, device=device) 

        phase_offset = torch.tensor(planet.get('phase_offset', 0), 

dtype=torch.float32, device=device) 

 

        M = 2 * torch.pi * time_tensor / P_days + phase_offset 

        E = M + e * torch.sin(M) 
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        theta = 2 * torch.atan2(torch.sqrt(1 + e) * torch.sin(E / 2), 

torch.sqrt(1 - e) * torch.cos(E / 2)) 

 

        K = calculate_K(mass, P_days, e, mass_star, device) 

        rv = K * (torch.cos(theta + w) + e * torch.cos(w)) 

        rv_total += rv 

 

    return rv_total 

 

def calculate_K(mass_planet, period, e, mass_star, device): 

    G = 6.67430e-11 

    G_tensor = torch.tensor(G, dtype=torch.float32, device=device) 

    period_sec = period * 86400 

    K = (2 * torch.pi * G_tensor / period_sec) ** (1 / 3) * ( 

            mass_planet / (mass_star + mass_planet) ** (2 / 3)) / 

torch.sqrt(1 - e ** 2) 

    return K 

Code 1 Radial velocity calculation code 

Code 1 calculates the total radial velocity (RV) of a star influenced by its orbiting planets 

using their orbital parameters. The calculate_rv function takes a system dictionary 

containing the star's mass and details of its planets and a tensor of time values and a device 

for computation (CPU or GPU). For each planet, it computes the mean anomaly and 

eccentric anomaly, then derives the true anomaly. Using these anomalies, it calculates the 

radial velocity contribution from each planet based on a derived value K and sums these 

contributions to yield the total radial velocity at the specified times.. 

 

Figure 15 Radial Velocity graph with no noise and evenly distributed sampling 
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Figure 16 Radial Velocity graph with temporal, stellar, and instrument noise 

3.3. Synthetic Radial Velocity Data 

Due to the low resolution and highly chaotic nature of radial velocity data, there exists an 

inscrutable gap between simulated and observational data. Within our simulated 

environment, we can classify and measure effects of increasingly small source of 

information, such as miniature planets. While in real-life, we lack such detail. This prohibits 

us from looking at a simulated system and comparing it to a real one – as we do not have a 

clear picture of the latter. 

Because of this we turn to Kepler’s equations of motion, which allow us to approximate our 

lack of data. 

The next step is to generate the radial velocity graph for our generated systems, we do so 

with the main_preprocess.py script. It will intake our generated planets and create 

periodograms for each system. Chief among the processes is the generation of various 

sources of noise. They perturb the ground truth radial velocity from the ground truth case, 

shown on the left on the image below, to a real-life case, shown on the right. 
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Figure 17 Radial velocity before and after noise 

Figure 17 Radial velocity before and after noise shows the decrease in human-readability 

when we remove observation uniformity. 

3.3.1. Temporal Noise 

Firstly, we must choose a temporal distribution of observations. Broadly speaking, we can 

have regular observations intervals, life-like observation interval we have prepared 

previously, and everything in between. 

# Generate time array based on the ratio 

ratio = random.uniform(0, observation_entropy) 

time_array = [0] 

while time_array[-1] < time_span: 

    if random.random() < ratio: 

        # Use time sampler 

        delta_time = time_sampler(1)[0] 

    else: 

        # Use 1 day interval 

        delta_time = 1 * random.uniform(0.95, 1.05) 

    time_array.append(time_array[-1] + delta_time) 

Code 2 Observation times generation 

We define a random sampling ratio between 0 and 1. Then for each delta time we sample a 

random uniform value, and if it falls below our sampling ratio, we use our histogram 

distribution. 
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Figure 18 Periodograms with sampling ratios 0, 0.25, 0.5, and 1 

Figure 18 Periodograms with sampling ratios 0, 0.25, 0.5, and 1 shows a clear decrease in 

accuracy due to observational entropy. The less uniform the observation, the more chaotic 

the resulting periodogram. We generate this array of temporal observations until we reach 

the maximum observational period, for this we chose a random value based on real-life data 

shown in the code below: 

def generate_time_span(): 

    mean = 1784.78 

    std_dev = 1567.18 

    min_span = 10 

    max_span = 7000 

 

    while True: 

        span = random.gauss(mean, std_dev) 

        if min_span <= span <= max_span: 

            return span 

Code 3 Observation duration generation 

Now that we have an array of our observation times, we can generate the stellar noise. 

3.3.2. Stellar Noise 

Many factors contribute to the noise generated by the star itself, among those are star-spots. 

Area of unusually lower temperature compared to the rest of the star. [11] These spots are 

cooler, and therefor the star emits less blue light, which is associated with higher 

temperatures. This mimics blue-shift i.e. the star appears to be moving away. Couple this 

with the periodicity of these spots – they rotate with the star; we have an effect mimicking 

orbiting planets. 
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We generate this activity using the approach outlined in the ExoplANNET paper [2]: 

 
(3) 

There are four hyperparameters in the equation [2]: 

• A – the covariance amplitude sampled using a gamma distribution. Γ(2.0 , 0.5) 

• P – the recurrence time i.e. the rotational period of the star. Uniformly sampled 

between 10 and 40. 

• τ – decay time, the average lifetime of an active region. Normal distribution 

dependant on the recurrence time. N(3*P, 0.1*P) 

• ϵ – structure factor, associated with the count of active regions. Uniform 

distribution between 0.5 and 1. 

The code below has been created for this purpose:  

def generate_stellar_noise_gpu(time_tensor, device): 

    t = time_tensor.to(device) 

    n_points = len(t) 

    time_span = t[-1] - t[0] 

 

    # Check if time array is strictly increasing 

    if not torch.all(t[1:] > t[:-1]): 

        # Force strict increase by adding a small increment 

        t = torch.cumsum(torch.abs(torch.diff(t, 

prepend=torch.tensor([0.0], device=device))), dim=0) 

 

    mean_uncertainty = 1.0 

    uncertainties = torch.normal(mean_uncertainty, 0.3, (n_points,), 

device=device) 

    uncertainties = torch.clamp(uncertainties, min=0.5 * 

mean_uncertainty) 

    intrinsic_errors = torch.normal(0, uncertainties) 

 

    freqs = torch.linspace(1/time_span, 10, n_points, device=device) 

    pulsation_power = 1 / (1 + (freqs/0.1)**2) 

    granulation_power = 10 / (1 + (freqs/0.01)**2) 

    total_power = pulsation_power + granulation_power 

    pulsation_granulation = torch.normal(0, torch.sqrt(total_power)) 

 

    P = torch.rand(1, device=device) * 30 + 10  # Uniform between 10 and 

40 

    A = torch.distributions.Gamma(torch.tensor([2.0]), 

torch.tensor([0.5])).sample().to(device) 

    tau = torch.clamp(torch.normal(3*P, 0.1*P), min=P*0.1)  # Ensure tau 

is positive and not too small 

    epsilon = torch.rand(1, device=device) * 0.5 + 0.5  # Uniform between 

0.5 and 1.0 

 

    K = quasi_periodic_kernel_gpu(t, A, tau, epsilon, P) 

 

    # Scale the matrix to improve numerical stability 

    scale = torch.max(torch.abs(K)) 

    K_scaled = K / scale 

 

    # Add a larger regularization term 
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    K_scaled += torch.eye(n_points, device=device) * 1e-3 

 

    try: 

        L = torch.linalg.cholesky(K_scaled) 

        rotational_modulation = torch.matmul(L, torch.randn(n_points, 

device=device)) * torch.sqrt(scale) 

    except RuntimeError: 

        print("Warning: Cholesky decomposition failed. Using diagonal 

approximation.") 

        rotational_modulation = torch.normal(0, 

torch.sqrt(torch.diag(K))) 

 

    total_noise = intrinsic_errors + pulsation_granulation + 

rotational_modulation 

    return total_noise.cpu().numpy() 

Code 4 Generating stellar noise 

def quasi_periodic_kernel_gpu(t, A, tau, epsilon, P): 

    diff = t.unsqueeze(1) - t.unsqueeze(0) 

    return A**2 * torch.exp(-(diff**2) / (2*tau**2) - 2/epsilon * 

torch.sin(torch.pi*diff/P)**2) 

Code 5 Quasi periodic kernel 

Code 4 and the function shown in Code 5 requires to GPU to be run and each system takes 

around ~0.75 seconds on NVIDIA RTX 3050 Laptop GPU. 

 

Figure 19 Periodogram of stellar noise – no planets or other noise sources 

On Figure 19 Periodogram of stellar noise – no planets or other noise sources we see a clean 

periodogram with just stellar noise. In practice we never expect to see such a clean 

periodogram, due to other noise sources and the certain existence of objects orbiting each 

star. 
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3.3.3. Intrinsic Errors 

Another class of errors is the cumulative and unknown errors from many sources, such as 

temperature variation within observation instrument, interstellar dust, and atmospheric 

disturbances. [2] These errors are defined as having a mean of 1, and a standard deviation of 

0.3. 

 

Figure 20 Two examples of periodogram with just intrinsic errors 

Figure 20 shows the incredibly chaotic periodograms of intrinsic error, expected since they 

are sampled from a normal distribution. 

3.3.4. Pulsation and Granulation 

This final source of noise seeks to capture short-term variations using stellar pulsation, and 

long-term changes with granulation. These two values are used together to perturb the 

ground truth frequencies within the radial velocity. They are defined as: 

freqs = torch.linspace(1/time_span, 10, n_points, device=device) 

pulsation_power = 1 / (1 + (freqs/0.1)**2) 

granulation_power = 10 / (1 + (freqs/0.01)**2) 

total_power = pulsation_power + granulation_power 

pulsation_granulation = torch.normal(0, torch.sqrt(total_power)) 

Code 6 Pulsation and granulation implementation 

Where freqs is an array of frequencies within the observation period, starting at 1/time_span 

and ending at 10 Hz. 
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Figure 21 Frequency Pulsation and Granulation 

Figure 21 shows a chaotic but small periodogram noise generated die to pulsation and 

granulation. 

3.4. Data Preprocessing and Feature Selection 

The most important factor in exoplanet detection in radial velocity is the inherent periodicity 

within the signal, and as such we have prepared the periodograms as inputs for our models. 

Now we must normalize them and do further feature selection. 

3.4.1. Peak Selection 

An emergent feature of a periodogram is the appearance of sloped peaks around certain 

frequencies. Astronomers identify these peaks and infer the existence of planets using their 

power and overall periodogram composition. [6] When preparing our data, we must be 

careful to choose peaks that represent the distribution of candidate exoplanet peaks, while 

also providing enough examples of true negatives. 

To this end, we prepare a function that selects the indices of all peaks by first finding their 

peak then masking surrounding frequencies which belong to that peak. We define 

“belonging” as having a power which is smaller than the power of the previous frequency.  

We mask all these frequencies so that we don’t return to them when choosing other peaks. 

In the end we get a list of all peaks within the periodogram sorted by power. 
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By comparing the frequencies of these peaks and the periods of the ground-truth planets we 

can ascertain which of these peaks are in fact planets. We add all of them to the list of 

planetary peaks. 

Next, we select N random high-power peaks which do not belong to a planet. These will 

serve as true negatives that help tech that model not all high-powered peaks are caused by 

planets. 

Finally, we must account for all the low-powered planets within the data. Planets such as the 

one highlighted with an arrow:  

 

Figure 22 Low-power planets 

Figure 22 shows planet peaks (highlighted with red lines) in an example periodogram. Here 

we can also see that often the exact period of the planet does not correspond to any peak 

within the periodogram. Mostly due to irregularities caused by the join effect of temporally 

uneven observations and intrinsic errors.  

Therefor we say a planet belongs to a peak if its true period is within 10% of the peak’s 

frequency. The model at the end will not learn if there is absolutely a planet at the selected 

frequency, only if there is any planets within 10% of the value.  

On the far left we see two planets whose long periods and relatively low mass cause 

substantial errors in the periodogram. There is little hope of detection for these planets, 

unless more temporally consistent observations are made. 
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As for the low-powered short-period planets, their true negatives are chosen at random from 

the upper 75% of the peaks – ignoring all low powered noise-induced peaks. During all this, 

we are careful to keep away from the 10% limit around true planetary periods. 

In the end, we may get something like this: 

 

Figure 23 Four selected planetary peaks (red), four random high-power peaks (green), five random 

low-power peaks (purple) 

These peaks are labelled accordingly, and their surroundings extracted into a separate 61-

length array. It contains the peak at the centre, and the surrounding frequencies. Padding is 

done to maintain constant length. The peak is normalized to a range from 0 to 1, and its peak 

frequency recorded alongside its power. 

3.4.2. Periodogram Normalization 

The values of frequency within the periodogram are static, ranging from 6 hours to 7000 

days. A period of 7000 days would represent the very limit of our detection capabilities. 

The power of each frequency, i.e. the strength of its presence within the periodogram can 

range from less than 1 to 10e8 so while we normalize this range to a between 0 and 1, we 

must also provide the absolute value of the peak. We do this by logarithmically normalizing 

the power of the selected peak and preparing it as an additional input feature for the model. 

Effect of this is shown on Figure 24: 
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Figure 24 Normalized periodogram 



 

39 

4. Model Design and Training 

The provided features are as follows: The periodogram of the entire planetary signal, the 

mass of the star – normalized to solar masses, and the peak frequency and power – labelled 

as planet or not. 

These three separate inputs must be processed separately by the branches of the model, 

before their outputs are combined into a series of dense layers which make the final decision 

on the existence of planets within each selected peak.  

 

Figure 25 Overview of the model 
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4.1. Periodogram Branch 

The Periodogram Branch of our model is responsible for processing the frequency and 

powers of our data. Its abstract task would be to learn the overall structure of the star system 

that is being considered, and as such this branch would need to learn some representation of 

planetary periodicity. 

The input powers are scaled according to our preprocessing steps and passed on into the 

periodogram branch. 

Within the periodogram branch we employ the use of residual blocks. Each consists of two 

convolutional layers, batch normalization, and a shortcut connection to the input of the 

residual block. 

Residual blocks bring their input though a shortcut connection all to way to the output. 

Therefore, it allows the gradient during training to cross freely though the architecture. Since 

our model is of moderate depth, it helps with training.  

The shortcut path contains a simple convolution which works to align the dimensions of the 

input and output. 

After each residual block we employ a max pooling layer and a dropout layer: 

 

Figure 26 Max pooling and dropout 

Dropout layers randomly set a percentage of neurons on their input to 0, and pass the rest of 

the neurons unchanged to their output. This forces the neural network to learn information 

from the overall representation of neuron values, instead of relying on a couple of high-

importance neurons. This prevents overfitting, where the model learns the noise instead of 

the general representation of data. A dropout rate of 10% has been maintained though the 

entirety of the periodogram branch. 

Table 5 Hyperparameters of the ResBlocks in the periodogram branch 
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ResBlock Input channels Output channels Kernel Padding 

1 2 32 3 1 

2 32 64 5 2 

3 64 128 7 3 

4 128 256 9 4 

5 256 512 11 5 

We have chosen an increasing number of parameters for the ResBlocks due to their inherent 

ability to learn more complex features with depth. The first layer starts of with two input 

channels, one for frequency and one for power of the input periodogram. This gets increased 

to 32 channels by the two convolutional layers within the block. By increasing the kernel 

and the padding, we are explicitly instructing the model to learn features of increasing size. 

4.2. Selected Peak Branch 

The purpose of this branch is to process the specific selected peak and learn its features and 

shapes, so that we may later decide if it is significant enough to classify as a planet. This 

branch is mostly identical to the periodogram branch save for the number of residual blocks 

and their hyperparameters. As the peak branch only needs to learn the representations of a 

single peak, its size is justified in being much smaller. 

Table 6 Hyperparameters of the ResBlocks in the selected peak branch 

ResBlock Input channels Output channels Kernel Padding 

1 1 16 3 1 

2 16 32 5 2 

3 32 64 7 3 

An additional hyperparameter relating to the peaks is the count of datapoints surrounding 

the peak. By visual analyses it was discovered that a value of 30 is sufficient. This value 

selects the peak power and adds 60 more surrounding frequencies to the peak – 30 on each 

side – bringing the total to 61 points. 



 

42 

 

Figure 27 Example selected peak with 61 points centred on peak power 

Figure 27 shows the selected peak and its surrounding points. The selected peak branch only 

has the normalized power values on its input – and normalized to the maximum of the peak 

itself, not the periodogram as a whole. The frequencies are not present in the input, they are 

implied by the sequential nature of the power values. By doing this we are forcing this branch 

to focus solely on the shape of the peak and its neighbourhood. The actual power and 

frequency of the peak are also relevant, and are provided to the model in the final branch. 

His branch also contains the max pooling layers and dropout layers se to 10%. 

4.3. Feature Branch 

The feature branch ingests the additional features relevant to the periodicity of the signal – 

these are the frequency and power of the peak. Supposedly star mass could be added here 

too, distance to the observed star system, the coordinates in the galaxy, the type of 

observatory and its location. These features could provide additional insights to the model, 

but since we lack the data to generate them convincingly, they have been left out.  

This branch contains densely connected layers connected with batch normalization, ReLu 

and dropout layers. The dropout layers are set to 20%, which is higher than the periodogram 

and selected peak branches. The function of this branch is to prepare the feature information 

for processing by the convergence layers, so this branch is the smallest of the three. 
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4.4. Convergence Layers 

The outputs of the three branches are joined together and passed into a series of densely 

connected layers which will make the final decision on the presence of an exoplanet within 

the periodogram data. The input size of the first dense layer is 640, which matches the 512 

output neurons of the periodogram branch, the 64 neurons of the selected peak branch, and 

the 64 neurons of the feature branch. 

Table 7 Input and output dimensions of dense layers in the convergence branch 

Dense Layer Input Output 

1 640 512 

2 512 512 

3 512 256 

4 256 256 

5 256 64 

6 64 6 

7 6 1 

As the dimensions of the dense layers decrease, the information becomes condensed into 

smaller and smaller representations. The dropout rate between these layers also decreases 

from 20% at the start to 0% between the last two layers. At the end we apply a sigmoid 

activation function which limits the output to a range between 0 and 1. These final values 

represent the model’s confidence in the presence or lack of a planet within the selected peak. 

4.5. Architecture choices 

Due to the nature of the periodogram, where the relationships between powers found within 

are the thing that holds information, convolutional layers were chosen. They have proven to 

me most effective with learning relationships between data and utilizing the available 

compute.  
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We chose the use residual blocks due to their ease of training and better performance with 

rising depth [24]. 

During the model design process several other architectures and layer configurations were 

tested. By process of elimination, this final architecture was chosen, as described in the 

previous section. Here are the most relevant things tested, their impact, and the reason they 

were discarded; 

• Basic Convolutional layers instead of Residual Blocks: Simpler and faster to compute 

and train. During testing they provided marginally worse results. 

• Bottleneck Block. Similar to Residual blocks but they reduce the input before applying 

larger kernels. They provided worse results, mostly due to them being useful only with 

deeper networks. [24] 

• Average Pooling or Strided Convolution instead of Max Pooling: these can provide 

better performance with smoother feature learning. Strided Convolution also has more 

learnable parameters. However, during testing neither performed better than Max 

Pooling. 

• SpatialDropout1d: This could replace Dropout. However, during testing, it took 

significantly longer to achieve the same performance. Therefore, it was dropped due to 

the increased training time, which would impact the already lengthy training runs. 

• DropConnect can be useful with deeper layers instead of using Dropout [25]. Didn’t 

provide improvement to our model, likely due to our model’s smaller size. 

• GlobalMaxPool1d instead of AdaptiveAvgPool1d. Would keep only the globally 

maximal values. As this is the final layer in each branch it is unwise to remove 

information from the network at this stage. Testing confirmed this, and 

AdaptiveAvgPool1d was kept. 

• LeakyReLu and Swish instead of ReLu. LeakyReLu and Swish did not provide 

noticeable improvement during testing. 

Other macroscopic architecture choices were: 

1. Long Short-Term Memory (LSTM). Since we transform a graph of sequential data 

in the form of radial velocity measurements, into a static periodogram, LSTM lose 

their main advantage – their ability to capture temporally distributed information. 

During early model design, they were tested using raw radial velocity data – they 

were unable to achieve useful learning. 

2. Temporal Convolutional Networks (TCNs) were too large to fit on the available 

hardware. 
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3. Transformers. Also tested on raw radial velocity data. Their training times were too 

large to be useful for experimentation, upwards of 4 hours. Smaller sized did not 

learn effectively. 
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5. Training 

The model was set to train on 30 000 synthetic star systems which yielded 365 756 datapoints 

for training. 18.86% of these were real planetary signals, while the rest were a mix of high-

powered peaks, random low-power peaks, and purely random peaks, all true negatives. 

The data was split into training and test with a test size of 0.2. Training was set to last 250 

epoch with patience set to 15 epoch with regard to the F1 score on the validation set. If the 

F1 score didn’t improve for 15 epochs, the training would stop and the highest F1 score 

epoch would be presented as the final model. Each epoch was also saved to maintain 

reproducibility of the F1 scores. 

 

Figure 28 Training graph 

Figure 28 show our training run, in the end, training was manually stopped after overfitting 

was observed. Curiously, the F1 score has continued to improve on the validation set even 

in the overfitting regime. And by testing epochs between 23rd and 60th the 51st epoch was 

chosen as the best. 

The training took 109 minutes with each epoch taking ~1.5 minutes. 
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6. Evaluation  

We prepare an evaluation script for the model with the aim of simulating a data pipeline 

astronomers might use once they procure the radial velocity data of real stars. This includes 

converting the data into a periodogram, and then selecting n top peaks within the signal. 

There are type types of data that can be used to evaluate the model. Real data and synthetic 

data we have generated in previous sections. For real data, a fair amount of manual data 

preparation is necessary, so first we take a look at synthetic evaluation. 

6.1. Synthetic Evaluation 

Temporal sampling, the distribution of delta times between subsequent observations greatly 

influences the look and quality of the periodogram. Another hyperparameter that comes into 

play here is the detection threshold – the value we consider to be the minimum required to 

classify a peak as a planet. The heatmaps below have been generated on ~1000 synthetic star 

systems. Daily observations represent a daily observation cycle, where we observe each 

simulated star once per day – this yields higher resolution data. This improves the model 

performance. Real-life observations mimic the chaotic observation cycles of existing 

exoplanet data. The observed increase in the F1 score is significant, as it underscores the 

increase in performance with cleaner data. It also shows that with 3 peaks we maintain state 

of the art performance on recall. 
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Figure 29 Heatmaps of number of peaks vs detection threshold 

Figure 29 shows the heatmaps for pairs of number of peaks and detection thresholds, for 

both daily observations and chaotic observations. The current state of the art in exoplanet 

detection via periodograms and machine learning [2] achieves a recall of 0.741, a precision 

of 0.934, and a F1 score of 0.8264. These values are achieved on evenly sampled data i.e. 
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daily observations and the peaks are selected using a “virtual astronomer” whereby the 

authors select significant peaks which get removed from the signal and the process repeats. 

Our model naively selects top n peaks and achieves a F1 score on par with exoplANNET at 

n = 3 peaks with a detection threshold of 0.73. At these hyperparameters we get the following 

metrics and confusion matrix at 9893 evaluation systems: 

Table 8 Metrics naive approach 

 exoplANNET Our work 

Precision 0.934 0.935 

Recall 0.741 0.78 

F1 score 0.826 0.851 

Table 9 Confusion matrix at n = 3 and threshold = 0.73 

True Negatives: 14394 False Positives: 777 

False Negatives: 3182 True Positives: 11326 

The beauty of this machine learning oriented approach is the ability to tweak 

hyperparameters according to our desired behaviour. Let’s take a look at how the confusion 

matrix changes with the detection threshold: 
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Figure 30 Confusion matrix values against detection threshold at n = 3 

Figure 30 shows how our confusion matrix changes with the detection threshold. Based on 

model requirements the network can be set up to be biased against false positives, which are 

in our case quite costly. It would be more convenient to miss an exoplanet detection that it 

would be to claim a planet where there is none. Another point to consider is that the radial 

velocity measurements are often dictated by existing measurements of the star. If an 

astronomer detects a clearly visible signal within the first dozen observations, they are more 

likely to request subsequent observation time. These observations would then be done in 

quick succession, and the planet within the signal, likely a large short-period object to be 

detected easily, would be classified as a discovery. 

Our current pipeline does not take into account such a scenario – where the detection itself 

becomes more or less likely depending on the mass and period of the planet, and the mass 

of the star. We can see this discrepancy clearly here: 
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Figure 31 Detections based on star mass 

Figure 31 has been generated based on star mass. As the mass of the star increases the change 

of detecting low mass and higher period planets decreases. This is expected, as the force 

with which the planet pulls at the stars is proportional to the mass of the planet, and inverse 

proportional to the distance. Also of note are the two vertical groupings at the 7000-day 

period mark on the right of each graph. These are remnants of system generation. 

6.2. Observational Data  

After downloading and preparing the radial velocity data from the NASA exoplanet archive 

[2], we have procured 552 unique star systems which contain planets. Then we use the 

NASA exoplanet archive API to match the names of the stars to all confirmed planets. We 
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select only those discovered using the radial velocity data. By doing this we have discarded 

230 planetary systems due to missing data. In the end we get this confusion matrix at n = 3 

and threshold = 0.73: 

Table 10 Confusion matrix of real data with n = 3 and tr = 0.73 

True Negative: 722 False Positive: 10 

False Negative: 183 True Positive: 51 

 

Figure 32 Confusion matrix vs detection threshold at n = 3 

The resulting precision equals 0.8361 with a recall of 0.2179. We mostly discover high mass 

planet and those with a large number of evenly spaced observations.  
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7. Conclusion  

I have developed an algorithm that can generate realistic star system compositions. The code 

provides masses of stars which are within currently detectable mass ranges for radial 

velocity, while maintaining enough randomness to generalize to most star systems. A noise 

algorithm for stellar activity was also developed, which randomly assigns periodic 

disruptions to the radial velocity signal.  

An inherent drawback, due to computational constraints, is the lack of simulated influences 

of relativity. In a more accurate simulation, the star system would go through a period of 

stabilization where n-body physics would act in a virtual 3D environment. Time in this 

simulation would move planetary orbits towards an equilibrium, which would then be 

reflected in the periodogram data and would allow the model to regress to some deeper 

understanding of planetary orbits. 

I have created a machine learning model which works by processing a selected peak from 

the radial velocity periodogram, which is filled with stellar and instrument noise. The model 

is split into three branches, the first processed the entire 1000 point wide periodogram. The 

second contains just the selected peak, and the last intakes the true values of the power and 

frequency of the periodogram. The outputs of these branches are processed by a series of 

dense layers which output the final probability of the planet within the selected peak. 

Trough evaluation, the model was found to match state of the art in precision and has 

achieved a higher recall rate i.e. a lower number of false negatives. When evaluating or real 

data procures from the NASA exoplanet archive, the model maintains a high precision but 

suffers in recall. 

The model presents promise when it comes to executing a large search across millions of 

stars. But further work should focus on relativistic effect of gravity within planetary systems 

and n-body physics. The simulation of stellar noise while accurate so some degree, would 

benefit from higher accuracy inherent to deeper physical simulation. 
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