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1 Introduction

In classical physics, one can easily keep track of different particles and follow their individual
trajectories. However, in quantum physics, no such notion exists. Quantum particles are
indistinguishable, and in three-dimensional space, they fall into two categories based on their
behavior when exchanged. The wave function of fermions is antisymmetric, which leads to
the Pauli exclusion principle, making fermions the building blocks of our world. Bosons, on
the other hand, have symmetric wave functions and, at the fundamental level, mediate forces.
Composite particles, like atoms, can also exhibit quantum behavior and consequently also fall
into these two categories. The distinction between the two types lies in their spin.

The spin of a quantum particle has nothing to do with classical spinning; rather, it represents
an intrinsic angular momentum of the particle. The spin wave function of a quantum particle is
an element of a representation space of the group SU(2). Representations of the SU(2) group
come in symmetric and antisymmetric varieties, corresponding to bosons and fermions,
respectively. At a more detailed level, integer spin representations correspond to bosons
(j = 0, 1, 2, . . . ), while odd half-integer spin representations correspond to fermions
(j = 1

2
, 3
2
, 5
2
, . . . ). Elementary particles that build our world are all spin-1

2
, and since neutral

atoms have the same number of protons and electrons, the number of neutrons decides whether
an atom is a fermion or a boson.

Bosons exhibit a peculiar behavior at low temperatures, namely Bose-Einstein condensation
(BEC). Bose-Einstein condensation originated in Albert Einstein’s study of non-interacting
atoms in 1925 [1], where he predicted a phase transition during which all atoms condense
into the lowest energy state. His work was based on Satyendra N. Bose’s study of photons [2]
published in 1924.

Experimentally, two phenomena are of significance: superconductivity and superfluidity.
Superconductivity was first observed in 1911 by Heike K. Onnes in mercury [3], while
superfluidity in helium was discovered independently by Pyotr Kapitza [4], and John F. Allen
and Don Misener [5] in 1938. That same year, Fritz London realized that Bose-Einstein
condensation and superfluidity in helium-4 are connected. The λ-transition in the heat capacity
of helium-4 shows a clear similarity to a spike predicted by Bose-Einstein statistics [6].

Superconductivity and superfluidity were phenomenologically described by László Tisza in
1938 using a two-fluid model [7], which treats the system as a mixture of a normal fluid
and a superfluid. In 1941 Lev Landau developed the first full theory of superfluids based on
elementary excitation spectrum [8], while a microscopic description of interacting Bose gases
was published by Nikolay Bogoliubov in 1947 [9].

In 1951, Lev Landau and Evgeny Lifshitz [10], and Oliver Penrose [11] made significant
advances in understanding the microscopic nature of superfluids by introducing the concept of
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off-diagonal long-range order, which provided a quantum mechanical criterion for
distinguishing between normal and superfluid phases in terms of the density matrix. This
concept was instrumental in the later development of the theory. Later, in 1956, Penrose,
together with Lars Onsager, expanded upon this work, generalizing the mathematical
description of BEC to include systems of interacting particles [12].

In 1949, Onsager had already laid the groundwork for the understanding of rotating BECs by
introducing the concept of quantized vortices in superfluids [13]. This quantization is a hallmark
of superfluid behavior. Richard Feynman contributed to the understanding of superfluidity in
1955 by developing a path-integral formulation of quantum mechanics that could be applied
to superfluids. He used this approach to describe the properties of superfluid helium-4 [14].
Feynman’s work provided a powerful tool for studying superfluid systems and contributed to
the broader understanding of quantum fluids.

In 1956, H. E. Hall and W. F. Vinen experimentally confirmed the existence of quantized
vortices in superfluid helium-4. Their experiments provided the first direct evidence of these
quantized structures, validating the theoretical predictions made by Onsager and Feynman [15].
This discovery was a pivotal moment in the study of superfluids, as it confirmed the quantum
mechanical nature of superfluidity at a macroscopic scale.

Finally, in 1957, T. D. Lee, K. Huang, and C. N. Yang made a groundbreaking contribution
by developing a microscopic theory of Bose-Einstein condensation in interacting Bose gases.
Their work extended Bogoliubov’s earlier theory by considering the higher order effects of
interactions between particles in a Bose gas, leading to a more accurate description of the
properties of superfluid helium-4 [16]. This theoretical advancement provided deeper insights
into the nature of Bose-Einstein condensates.

The invention of the laser by Theodore Maiman in 1960 [17] and the subsequent development
of lasers in the 1960s revolutionized the experimental study of quantum systems, providing a
powerful tool for the precise manipulation and control of atomic and molecular systems. This
advancement enabled a wide range of experiments, making lasers essential for cooling and
trapping atoms and paving the way for the development of techniques such as laser cooling and
magneto-optical traps (MOTs).

In the late 1970s and 1980s, laser cooling techniques enabled the creation of ultra-cold atomic
systems, where quantum phenomena could be observed on a macroscopic scale. Critical to this
development were magneto-optical traps (MOTs), developed in the late 1980s. MOTs use a
combination of laser cooling and magnetic fields to trap neutral atoms in a small region of
space, where they can be cooled to microkelvin temperatures [18].

These developments culminated in 1995, when Eric Cornell and Carl Wieman at the
University of Colorado, Boulder, and Wolfgang Ketterle at the Massachusetts Institute of
Technology (MIT), independently achieved Bose-Einstein condensation in dilute gases of
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alkali atoms [19, 20]. Cornell and Wieman’s group created a BEC using rubidium-87 atoms,
while Ketterle’s group achieved BEC with sodium atoms.

The experimental discovery of a Bose-Einstein Condensate in 1995 was a landmark
achievement in condensed matter physics, as it provided the first direct observation of the state
of matter predicted by Einstein and Bose in the 1920s. This breakthrough opened new avenues
of research, leading to advancements in areas such as quantum computing, precision
measurements, and the study of quantum many-body systems. For their work, Cornell,
Wieman, and Ketterle were awarded the Nobel Prize in Physics in 2001. Their discovery
continues to be influential, with BECs remaining a key part of modern atomic, molecular, and
optical physics [21].

Quantum droplets, self-bound states of ultracold atoms, emerge from the interplay of
attractive and repulsive forces within ultracold quantum gases. These droplets exhibit
fascinating behaviors, distinct from classical liquid droplets, driven by quantum fluctuations
and many-body interactions. Quantum droplets arise due to the delicate balance between
mean-field attractions and repulsive forces that are stabilized by quantum fluctuations [22].
The density of quantum droplets is significantly lower than that of conventional liquids, such
as helium or even air, making them a unique state of matter. Experimentally observed
potassium droplets have a density on the order of ∼ 10−9 − 10−8 g/cm3 [23, 24], which is
several orders of magnitude lower than that of liquid helium (0.145 g/cm3) [25] and even air
(1.2 · 10−3 g/cm3) [26].

In ultracold atomic systems, the interaction between atoms can be finely tuned using external
magnetic fields through a technique known as Feshbach resonance [27]. This allows for precise
control over the strength and nature (attractive or repulsive) of the interatomic forces, making it
possible to explore a wide variety of quantum states, including quantum droplets. For instance,
in a BEC of dysprosium or erbium atoms, where dipole-dipole interactions play a significant
role, the competition between long-range dipolar attractions and short-range contact repulsions
can give rise to self-bound states [28].

One of the most interesting aspects of quantum droplets is their ability to remain stable even
without external confinement [29]. This self-bound nature results in quantum droplets that
are essentially isolated from their environment, making them ideal for studying fundamental
quantum effects in a controlled manner. Moreover, these droplets can exhibit a form of quantum
coherence similar to that seen in superfluids [30].

Furthermore, quantum droplets enable the exploration of the interplay between quantum
mechanics and fluid dynamics, giving rise to phenomena such as pattern formation in so-called
supersolids [31]. These phenomena are not only of fundamental interest but also hold potential
applications in developing new quantum technologies, including precision measurement
devices, quantum simulators, and quantum computers.

3
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As research in this field advances, the ongoing exploration of quantum droplets in ultracold
atomic systems promises to deepen our understanding of quantum many-body physics. The
versatility and tunability of atomic systems ensure that they will remain at the forefront of this
area of research, with the potential to uncover novel quantum phenomena. Quantum droplets
have been observed in homonuclear mixtures of two hyperfine states of 39K [23, 24], as well as
in heteronuclear mixtures of 41K-87Rb [32] and 23Na-87Rb [33]. One difficulty in experimental
realization is the number of atoms required. However, this can be reduced by squeezing the
droplet in one direction [34].

Vortices are yet to be observed in Bose-Bose quantum droplets. They have been theoretically
investigated in 3D droplets of heteronuclear mixtures of 41K-87Rb [35], where the critical atom
number for hosting vortices was determined. This analysis has not yet been performed for
homonuclear mixtures of 39K, and predictions for the critical atom number under experimentally
attainable parameters for squeezed droplets are of particular interest. The aim of this thesis is to
study vortices in squeezed homonuclear mixtures of 39K, determine the optimal configuration
for a vortex in such mixtures, and find the critical number of atoms for vortex hosting.

The structure of this thesis is organized as follows: Chapter 2 introduces the fundamental
theory of Bose gases, covering topics such as the ideal gas, the Gross-Pitaevskii equation,
weakly interacting gases, and the Bogoliubov transformation. In Chapter 3, the focus shifts
to bosonic mixtures and the concept of quantum droplets. Chapter 4 delves into the study
of superfluids, particularly discussing their rotational properties. The methodology employed
throughout the thesis is detailed in Chapter 5. Simulation results are presented in two parts:
Chapter 6 covers the findings for non-rotating quantum droplets, while Chapter 7 addresses
the behavior of rotating quantum droplets with vortices. Finally, Chapter 8 offers concluding
remarks and a summary of the thesis.

4
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2 Basic theory of Bose gases

In this section, we delve into the fundamental theory necessary for a comprehensive
understanding of this thesis. The approach is primarily based on the work of Lev Pitaevskii
and Sandro Stringari, as detailed in their book [36], with parts taken from Christopher
Pethick’s and Henrik Smith’s book [37].

2.1 Statistical Physics of The Ideal Bose Gas

Statistical description of a Bose gas is the simplest in the grand canonical ensemble. What
follows is a description of the grand canonical ensemble and it’s application in quantum many
body theory.

The grand canonical ensemble describes a system in thermodynamic equilibrium that
exchanges energy and particles with a reservoir. It is typically parameterized by the reservoir’s
chemical potential µ, temperature T , and the system’s volume V .

Quantum systems are described by their Hamiltonians, eigenstates, and eigenvalues, which
correspond to possible energies. The configuration ofNk particles in an eigenstate k with energy
Ek has a probability of realization given by

PNk
(Ek) = eβ(µNk−Ek), (2.1)

where β = 1
kBT

. Thus, the grand canonical partition function is

Z(β, µ) =
∞∑

Nk=0

∑
k

PNk
(Ek) =

∞∑
Nk=0

∑
k

eβ(µNk−Ek). (2.2)

Here, one can notice the canonical partition function

QNk
(β) =

∑
k

e−βEk , (2.3)

so the grand canonical partition function can be written as

Z(β, µ) =
∞∑

Nk=0

eβ(µNk)QNk
(β). (2.4)

Once the partition function is known, other thermodynamic properties of the system can be
calculated from the grand canonical potential

Ω = −kBT lnZ, (2.5)

5
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since it is defined as
Ω = E − TS − µN. (2.6)

This gives the entropy of the system

S = −∂Ω
∂T

, (2.7)

the total number of particles

N ≡ ⟨N⟩ = −∂Ω
∂µ

, (2.8)

and energy

E ≡ ⟨E⟩ = Ω− T
∂Ω

∂T
− µ

∂Ω

∂µ
. (2.9)

A non-interacting quantum system is described by an independent Hamiltonian

Ĥ =
∑
j

Ĥ
(1)
j , (2.10)

where Ĥ(1)
j is the single-particle Hamiltonian and the sum over j includes all particles. The

solution boils down to solving a single-particle Schrödinger equation

Ĥ
(1)
j ϕi(r⃗) = ϵiϕi(r⃗), (2.11)

where the eigenstate of the full Hamiltonian, k, is given by the set of occupation numbers ni of
single-particle states and corresponding energies ϵi, such that Nk =

∑
i ni and Ek =

∑
i ϵini.

With this in mind, the grand canonical partition function can be written as

Z(β, µ) =
∞∑

Nk=0

∑
k

eβ(µNk−Ek)

=
∏
i

∞∑
ni=0

[
eβ(µ−ϵi)

]ni

=

{
∞∑

n0=0

[
eβ(µ−ϵ0)

]n0

}
·

{
∞∑

n1=0

[
eβ(µ−ϵ1)

]n1

}
· . . . .

(2.12)

Here, one can recognize the geometric series
∑∞

k=0 ax
k = a(1 − x)−1 for |x| < 1. Plugging

this into the equation (2.5) for the grand potential Ω yields

Ω = −kBT lnZ = kBT
∑
i

ln
(
1− eβ(µ−ϵi)

)
, (2.13)

from which it follows, using (2.8), that the total number of particles is

N =
∑
i

[
eβ(ϵi−µ) − 1

]−1
=

∑
i

⟨ni⟩ . (2.14)

6
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The average occupation number of single-particle states ⟨ni⟩ is thus defined by the Bose-
Einstein distribution function

⟨ni⟩ =
1

eβ(ϵi−µ) − 1
. (2.15)

Consequently, it follows that the energy of the system is given by

E =
∑
i

ϵi
eβ(ϵi−µ) − 1

. (2.16)

A consequence of equation (2.15) is that, since the occupation number must always be greater
than or equal to zero, the chemical potential must be lower than the lowest eigenenergy of the
single-particle Hamiltonian, µ < ϵ0.

Bose-Einstein condensation emerges from the fact that the occupation number of the lowest
energy state N0 ≡ ⟨n0⟩ grows as µ→ ϵ0. The equation (2.14) can be written as

N = ⟨n0⟩+
∑
i ̸=0

⟨ni⟩ ≡ N0 +NT , (2.17)

where NT is called the thermal component and corresponds to the number of particles outside
of the condensate, while N0 are particles in the condensate.

At a given temperature T , N0 as a function of the chemical potential diverges as µ → ϵ0,
while NT reaches its maximum value of Nc. This behavior can be seen plotted in Figure 1.
The critical value Nc changes with temperature, and at temperatures higher than Tc it holds that
Nc(T ) = NT (T, µ = ϵ0) > N . In that case,N = N0+NT is valid for µ < ϵ0, and consequently
NT ≫ N0. Decreasing the temperature, eventually one reaches a critical temperature Tc, such
that

Nc(Tc) = NT (Tc, µ = ϵ0) = N, (2.18)

and at temperatures below that, the thermal component alone cannot satisfy the condition N =

N0 + NT , so the condensed component becomes meaningfully large. Temperature Tc is the
critical temperature at which Bose-Einstein condensation takes place.

Better insight may be attained by applying this formalism to a gas in a box of volume V .
Since the gas is ideal, the single-particle Hamiltonian is given by

Ĥ(1) =
p2

2m
. (2.19)

With standard periodic boundary conditions, the solutions to the Schrödinger equation are plane
waves

ϕp⃗ =
1√
V
e

i
ℏ p⃗·r⃗, (2.20)

7
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Figure 1: The number of particles in the condensed (N0, dashed) and thermal (NT , solid) components
plotted as functions of the chemical potential µ at a fixed temperature T . Taken from [36].

whose energies are

ϵp⃗ =
p2

2m
. (2.21)

Momentum is given by

p⃗ =
2πℏ
L
n⃗, (2.22)

where L = V 1/3 and n⃗ = (nx, ny, nz).

The lowest energy state is p = 0, with ϵ0 = 0, thus the chemical potential has to be negative.
The number of atoms in the excited states can be calculated as

NT =
∑
p ̸=0

1

eβ(ϵp−µ) − 1
=

∑
p̸=0

1

eβ(p2/2m−µ) − 1
, (2.23)

which can be easily done by integrating over p⃗-space instead of summing over states.
Concretely, when the thermal energy is much greater than the energy difference between
eigenenergies, kBT ≫ h2

2mV 2/3 , one can do a substitution

∑
p⃗

→ V

2πh3

∫
dp⃗, (2.24)

so
NT =

V

2πh3

∫
dp⃗

1

eβ(p2/2m−µ) − 1
. (2.25)

This works out to be
NT =

V

λ3T
g3/2(e

βµ), (2.26)

where λT is the thermal de Broglie wavelength

λT =

√
2πℏ2
mkBT

. (2.27)

8
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The function gp(z) is a Bose function

gp(z) =
1

Γ(p)

∫ ∞

0

dx
xp−1

z−1ex − 1
=

∞∑
l=1

zl

lp
, (2.28)

which in the case at hand works out to be

g3/2(z) =
2√
π

∫ ∞

0

dx
x1/2

z−1ex − 1
. (2.29)

The quantity z = eβµ is known as fugacity. In the case of z = 1, the Bose function (2.28) boils
down to a Riemann zeta function:

ζ(s) =
∞∑
n=1

1

ns
, (2.30)

where s ∈ C, and Re(s) > 1 [38].

From the condition (2.18), the result for the critical temperature for Bose-Einstein
condensation follows:

kBTc =
2πℏ2

mg3/2(1)2/3

(
N

V

)2/3

. (2.31)

Since at higher temperatures NT ≫ N0, the chemical potential can be obtained from NT = N ;
while at temperatures below Tc one sets µ = 0 in NT [36, p. 20, 3.30].

Substituting the thermal wavelength λT into (2.26), with µ = 0, yields

NT =

(
mkBT

2πℏ2

)3/2

V g3/2(1), (2.32)

which together with the critical temperature Tc, as defined in (2.31), simplifies to

NT =

(
T

Tc

)3/2

N. (2.33)

The number of particles in the condensate is simply

N0(T ) =

[
1−

(
T

Tc

)3/2
]
N. (2.34)

The ratio of the number of condensed particles to the total number of particles, N0/N , is
called the condensate fraction. Observing the equation (2.34) leads to the conclusion that at
absolute zero, T = 0, all particles of the ideal Bose gas will be condensed, while at temperatures
higher than Tc, no particles will be in the condensate. The condensate fraction as a function of
temperature is shown in Figure 2.
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Figure 2: Condensate fraction as a function of temperature for an ideal Bose gas in a box.

2.2 Theory of the Weakly Interacting Bose Gas - Gross-Pitaevskii
equation

The ideal Bose gas lacks particle interactions, which cannot be completely ignored even in
very dilute gases. Traditional perturbation techniques fail, which is why Bogoliubov theory
[9] is used, which introduces an order parameter whose evolution follows the Gross-Pitaevskii
equation [39, 40].

Dilute gases are characterized by the condition

r0 ≪ d, (2.35)

where the range of interatomic forces, r0, is much smaller than the average distance between
the atoms, d. The distance d is determined by the gas density as d = (N/V )−1/3 = n−1/3.
Consequently, out of all possible many-body interactions, only two-body interactions need to
be taken into account.

The large distances between atoms in a dilute gas allow for the use of the asymptotic form of
the wave function for the relative motion of two atoms, determined by the scattering amplitude.
When the condition

pr0
ℏ

≪ 1 (2.36)

is satisfied for all non-negligible momenta, the scattering amplitude becomes independent of
both energy and scattering angle. In this regime, the scattering amplitude can be approximated
by its lowest energy value, which is determined by the s-wave scattering length a.

10
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This single parameter, the s-wave scattering length a, effectively encapsulates all the
interactions’ effects on the physical properties of the gas. The gas is considered weakly
interacting if the gas parameter is small

n|a|3 ≪ 1, (2.37)

which is equivalent to the condition that the scattering length is much smaller than the
interatomic distances

|a| ≪ d. (2.38)

For a proper description of bosons in a dilute gas, the starting point should be their most
general Hamiltonian expressed using the language of quantum field theory

Ĥ =

∫
dr⃗

(
ℏ2

2m
∇Ψ̂†(r⃗)∇Ψ̂(r⃗)

)
+

∫
dr⃗Ψ̂†(r⃗)Vext(r⃗)Ψ̂(r⃗)

+
1

2

∫
dr⃗′dr⃗Ψ̂†(r⃗′)Ψ̂†(r⃗)V (r⃗′ − r⃗)Ψ̂(r⃗′)Ψ̂(r⃗),

(2.39)

where Ψ̂(r⃗) is the field operator, and V (r⃗′− r⃗) is the two-body potential, and Vext(r⃗) the external
potential. The field operators create or annihilate a particle at r⃗, and they obey the following
commutation relations: [

Ψ̂(r⃗), Ψ̂†(r⃗′)
]
= δ(r⃗ − r⃗′), (2.40)

and [
Ψ̂(r⃗), Ψ̂(r⃗′)

]
=

[
Ψ̂†(r⃗), Ψ̂†(r⃗′)

]
= 0. (2.41)

The field operator also defines the one-body density matrix

n(1)(r⃗, r⃗′) =
〈
Ψ̂†(r⃗)Ψ̂(r⃗′)

〉
, (2.42)

which, when r⃗ = r⃗′, becomes the diagonal density of the system n(r⃗). The total number of
particles is then given by

N =

∫
dr⃗n(r⃗). (2.43)

The field operator Ψ̂(r⃗) can be expressed in terms of single-particle states ψi(r⃗) and their
annihilation (creation) operators âi (â†i ) as

Ψ̂(r⃗) =
∑
i

ψi(r⃗)âi, (2.44)

where the operators obey the commutation relations analogous to (2.40) and (2.41):[
âi, â

†
j

]
= δij, (2.45)
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and
[âi, âj] =

[
â†i , â

†
j

]
= 0. (2.46)

Single-particle wave functions ψi(r⃗) form a complete orthonormal set. The expectation value

⟨â†i âi⟩ = Ni (2.47)

gives the occupation number of the i-th single-particle state.

To arrive at an equation for the time evolution of the field, the Heisenberg picture of quantum
mechanics will be employed. In the Heisenberg picture, the equation of motion for the field
operator is

iℏ
∂

∂t
Ψ̂(r⃗, t) =

[
Ψ̂(r⃗, t), Ĥ

]
, (2.48)

which, when taking the Hamiltonian to be (2.39), becomes

iℏ
∂

∂t
Ψ̂(r⃗, t) =

[
− ℏ2

2m
∇2 + Vext(r⃗) +

∫
dr⃗′ Ψ̂†(r⃗′, t)V (r⃗′ − r⃗)Ψ̂(r⃗′, t)

]
Ψ̂(r⃗, t). (2.49)

From this point, Bogoliubov theory enables an effective description of the condensate’s
properties without assumptions about the energy spectrum [9]. Bogoliubov theory boils down
to the following [9]:

a) The microscopic interaction potential V (r⃗′ − r⃗) is replaced by an effective potential Veff, to
which perturbation theory and Born approximation can be applied.

b) The number of condensed particles is much larger than unity, N0 = ⟨â†0â0⟩ ≫ 1, so the
commutation relation [

â0, â
†
0

]
= δ00 = 1, (2.50)

is much smaller than â0 and â†0. Thus, operators â0 and â†0 can be treated as numbers,
â0 =

√
N0, and their non-commutativity ignored.

c) The field operator (2.44) is expressed as

Ψ̂(r⃗) = ψ0(r⃗)â0 +
∑
i>0

ψi(r⃗)âi

= ψ0(r⃗)
√
N0 +

∑
i>0

ψi(r⃗)âi

= Ψ0(r⃗) + δΨ̂(r⃗),

(2.51)

where Ψ0(r⃗) = ψ0(r⃗)
√
N0 represents the macroscopic, condensed component of the field.

Bogoliubov theory works for macroscopic phenomena of Bose-Einstein condensates. One
can think of it as replacing the macroscopic, condensed component of the field operator with a
classical field Ψ0(r⃗), called the order parameter. The order parameter is also known as the wave

12
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function of the condensate. Above the critical temperature for Bose-Einstein condensation,
the order parameter vanishes. Bogoliubov theory is in a way equivalent to the transition from
quantum electrodynamics to classical Maxwell’s theory. The order parameter can be expressed
as

Ψ0(r⃗) = |Ψ0(r⃗)| exp (iS(r⃗)) , (2.52)

where the modulus squared |Ψ0(r⃗)|2 = ρ(r⃗) represents the condensate density, while S(r⃗) is
the phase.

Working within this framework, and assuming that the order parameter varies slowly over
distances comparable to the range of interactions, the equation (2.49) simplifies to the Gross-
Pitaevskii equation (GPE)

iℏ
∂

∂t
Ψ(r⃗, t) =

[
− ℏ2

2m
∇2 + Vext(r⃗) + g|Ψ(r⃗, t)|2

]
Ψ(r⃗, t), (2.53)

where the coupling constant g =
∫
dr⃗Veff =

4πℏ2a
m

characterizes the interaction strength, with a
being the s-wave scattering length. The GPE is a nonlinear Schrödinger equation, reflecting the
interaction between particles in the condensate through the term g|Ψ(r⃗, t)|2, which depends on
the density of the condensate.

2.3 Ground state energy of a Uniform Weakly Interacting Bose Gas

Consider a dilute uniform Bose gas of N particles contained within a box of volume V , with
the Hamiltonian (2.39) without the external potential. In that case, the field operator can be
expressed in terms of momentum state operators

Ψ̂(r⃗) =
∑
p⃗

1

V 1/2
e

i
ℏ p⃗·r⃗âp⃗, (2.54)

where momentum p⃗ satisfies periodic boundary conditions and âp⃗ annihilates a particle in the
state with momentum p⃗. Using this operator, the Hamiltonian (2.39) becomes

Ĥ =
∑
p⃗

p2

2m
â†p⃗âp⃗ +

1

2V

∑
p⃗1,p⃗2,q⃗

Vq⃗â
†
p⃗1+q⃗â

†
p⃗2−q⃗âp⃗1 âp⃗2 , (2.55)

where Vq⃗ is given by

Vq⃗ =

∫
dr⃗V (r⃗)e−

i
ℏ q⃗·r⃗. (2.56)
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2.3.1 Lowest-order approximation: Mean-Field

Following the requirements for the application of Bogoliubov theory, the microscopic
interaction potential V (r⃗) is replaced by an effective potential Veff(r). Since in dilute gases
only small momenta meaningfully contribute — effectively contact interactions —
consideration can be restricted to the q = 0 value of the Fourier transform (2.56), and Vq⃗ in the
Hamiltonian (2.55) can be replaced by V0 given by

V0 =

∫
dr⃗ Veff(r) = g, (2.57)

which corresponds to the interaction strength g. This permits the phrasing of the Hamiltonian
(2.55) as

Ĥ =
∑
p⃗

p2

2m
â†p⃗âp⃗ +

V0
2V

∑
p⃗1,p⃗2,q⃗

â†p⃗1+q⃗â
†
p⃗2−q⃗âp⃗1 âp⃗2 , (2.58)

to which Bogoliubov theory is applied, replacing â0 =
√
N0.

The ground state is a zero-momentum state, p⃗ = 0, and in the first approximation, it contains
all atoms, i.e. N0 = N . Then the ground state energy follows from (2.58) as

E0 =
V0N

2

2V
=

1

2
Ngρ, (2.59)

where ρ = N/V is the gas density. This result is the mean-field (MF) solution.

From the ground state energy (2.59), it follows that the chemical potential is

µ =
∂E0

∂N
= gρ, (2.60)

which is positive even at absolute zero.

The pressure of a Bose gas is found to be

P = −∂E0

∂V
=

1

2
gρ2, (2.61)

while the compressibility is given by
∂ρ

∂P
=

1

gρ
. (2.62)

The sound velocity c can be found using the hydrodynamic relation

1

mc2
=
∂ρ

∂P
, (2.63)

and it works out to be

c =

√
gρ

m
. (2.64)
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Using the sound velocity, the chemical potential of a dilute gas (2.60) can be written as

µ = mc2. (2.65)

2.3.2 Higher-order approximation

To attain higher-order corrections, additional terms must be considered in the Hamiltonian
(2.58), as the approximation N0 = N is not generally true. In the interaction term of the
Hamiltonian, there are four momenta involved, and they can be classified as follows [16]:

a) All momenta equal to 0, with q⃗ = 0. Using only these contributions gives rise to the
aforementioned mean-field result. This scenario takes into account only the condensed
atoms.

b) Two of the momenta equal to 0, i.e., quadratic in âp⃗ for p⃗ ̸= 0. This includes scattering
between atoms in the single-particle ground state and excited states, which are leading-
order corrections beyond the mean-field theory.

c) One of the momenta equal to 0. This contribution is generally negligible.

d) None of the momenta equal to 0. This contribution is also generally negligible.

The first correction to the result (2.59) can be derived by considering the terms quadratic
in âp⃗ for p⃗ ̸= 0 in the Hamiltonian (2.58). This effectively means considering terms where
|q⃗| = |p⃗1| = |p⃗2|. Then the Hamiltonian (2.58) can be expressed as

Ĥ =
∑
p⃗

p2

2m
â†p⃗âp⃗+

V0
2V

â†0â
†
0â0â0+

V0
2V

∑
p⃗ ̸=0

(
4â†0â

†
p⃗â0âp⃗ + â†p⃗â

†
−p⃗â0â0 + â†0â

†
0âp⃗â−p⃗

)
, (2.66)

with
V0 =

∫
dr⃗Veff(r), (2.67)

being the q = 0 value of the Fourier transform (2.56) of the effective potential. The
normalization is given by the condition

â†0â0 +
∑
p⃗ ̸=0

â†p⃗âp⃗ = N, (2.68)

since it is no longer possible to generally approximate N0 = N . Using the above condition, and
neglecting higher order terms results in

N2
0 ≈ N2 − 2N

∑
p⃗ ̸=0

â†p⃗âp⃗, (2.69)

so that when applying Bogoliubov theory in the ground state term â0 =
√
N0 is used. The

second sum in the Hamiltonian (2.66) contains the following contributions:
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• Scattering of one atom from the condensate and one non-condensed atom, which can
occur in four distinct ways.

• Scattering of two atoms with momenta +p⃗ and −p⃗ into the ground state.

• Scattering of two atoms from the ground state, exiting with momenta +p⃗ and −p⃗.

In this sum â0 =
√
N is a valid approximation.

The lowest-order Born approximation for the two-body interaction is not sufficient in this
case, so higher-order perturbation theory is required. It yields

V0 = g

1 +
g

V

∑
p⃗ ̸=0

m

p2

 , (2.70)

where g is the coupling constant given by g = 4πℏ2a
m

. The second term in (2.70) diverges
as p → ∞, since the constant V0 poorly approximates the real Vq⃗ matrix element at larger
momenta.

Using the expressions (2.69) and (2.70), the Hamiltonian (2.66) can be written as

Ĥ =
∑
p⃗

p2

2m
â†p⃗âp⃗ +

gN2

2V
+
gN

2V

∑
p⃗ ̸=0

(
2â†p⃗âp⃗ + â†p⃗â

†
−p⃗ + âp⃗â−p⃗ + gm

N

V

1

p2

)
. (2.71)

This Hamiltonian can be expressed in a symmetrical form

Ĥ =
1

2
gNρ

1 +
g

V

∑
p⃗ ̸=0

m

p2

+
′∑

p⃗ ̸=0

[(
p2

2m
+ gρ

)(
â†p⃗âp⃗ + â†−p⃗â−p⃗

)
+ gρ

(
â†p⃗â

†
−p⃗ + âp⃗â−p⃗

)]
,

(2.72)
where the prime denotes a sum over one half of momentum space and ρ = N/V is gas density.
This Hamiltonian is diagonalizable by a Bogoliubov transformation [37].

2.3.3 Bogoliubov transformation

The Hamiltonian of the form

ĥ = ϵ0

(
â†â+ b̂†b̂

)
+ ϵ1

(
â†b̂† + b̂â

)
, (2.73)

where ϵi are constants, can be diagonalized using a Bogoliubov transformation:

α̂ = uâ+ vb̂†, (2.74)

β̂ = ub̂+ vâ†, (2.75)
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Ivan Poparić: Vortices in squeezed Bose-Bose quantum droplets

where u and v are transformation coefficients, which are taken to be real for simplicity. The
inverse transformation is given by:

â = uα̂− vβ̂†, (2.76)

b̂ = uβ̂ − vα̂†. (2.77)

The new operators α̂ and β̂ satisfy the commutation relations:

[
α̂, α̂†] = [

β̂, β̂†
]
= 1, (2.78)

and [
α̂, β̂†

]
=

[
β̂, α̂†

]
=

[
α̂, β̂

]
=

[
α̂†, β̂†

]
= 0. (2.79)

From these commutation relations, the condition for the coefficients follows

u2 − v2 = 1, (2.80)

which can be satisfied by choosing

u = cosh t, v = sinh t. (2.81)

Substituting the transformation into (2.73) yields

ĥ = 2v2ϵ0 − 2uvϵ1

+
[
ϵ0(u

2 + v2)− 2uvϵ1
]
(α̂†α̂ + β̂†β̂)

+
[
ϵ1(u

2 + v2)− 2uvϵ0
]
(α̂β̂ + β̂†α̂†).

(2.82)

To make the Hamiltonian diagonal, we choose u and v such that the α̂β̂ + β̂†α̂† term vanishes,
which imposes the condition

ϵ1(u
2 + v2)− 2uvϵ0 = 0. (2.83)

Using the expressions (2.81) gives

ϵ1(cosh
2 t+ sinh2 t)− 2ϵ0 sinh t cosh t = 0, (2.84)

from which it follows
tanh 2t =

ϵ1
ϵ0
. (2.85)

The relations (2.81) then yield

u2 =
1

2

(ϵ0
ϵ
+ 1

)
, (2.86)

and
v2 =

1

2

(ϵ0
ϵ
− 1

)
, (2.87)
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with
ϵ =

√
ϵ20 − ϵ21. (2.88)

Thus, the final diagonalization of (2.73) is

ĥ = ϵ(α̂†α̂ + β̂†β̂) + ϵ− ϵ0, (2.89)

with a negative ground state energy given by E0 = ϵ − ϵ0. The operators α̂† and β̂† create
bosonic excitations that have energy ϵ. The system is stable if ϵ is real. On the other hand,
|ϵ1| > |ϵ0| implies imaginary excitation energy and an unstable system.

2.3.4 Lee-Huang-Yang energy

Returning to the study of Bose gases, the Hamiltonian (2.72) is of the form (2.73), with â = âp⃗

and b̂ = â−p⃗. By defining α̂ = α̂p⃗ and β̂ = α̂−p⃗, equation (2.72) can be rewritten as

Ĥ =
1

2
gNρ

1 +
g

V

∑
p⃗ ̸=0

m

p2

+
∑
p⃗ ̸=0

ϵ(p)α̂†
p⃗α̂p⃗ −

1

2

∑
p⃗ ̸=0

(
p2

2m
+ gρ− ϵ(p)

)
, (2.90)

where

ϵ(p) =

√(
p2

2m
+ gρ

)2

− (gρ)2 =

√(
p2

2m

)2

+
gρ

m
p2. (2.91)

Equation (2.91) can be written as

ϵ(p) =
p

2m

√
p2 + (2mc)2, (2.92)

where c =
√
gρ/m is the sound velocity. Equation (2.92) is the Bogoliubov dispersion relation

for elementary excitations.

The Hamiltonian above can be written more neatly as

Ĥ = E0 +
∑
p⃗ ̸=0

ϵ(p)α̂†
p⃗α̂p⃗, (2.93)

where the ground state energy is given by

E0 =
1

2
gNρ

1 +
g

V

∑
p⃗ ̸=0

m

p2

− 1

2

∑
p⃗ ̸=0

(
p2

2m
+ gρ− ϵ(p)

)

=
1

2
gNρ+

1

2

∑
p⃗ ̸=0

[
ϵ(p)− gρ− p2

2m
+m

(
gρ

p2

)2
]
,

(2.94)
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and it corresponds to a vacuum state of quasi-particles created by α̂†
p⃗, for p⃗ ̸= 0.

The ground state energy can be calculated by replacing a sum with an integral and observing
that only values p ≈ √

mgρ have meaningful contributions. The result was calculated by Lee,
Huang, and Yang in [16]

E0 =
1

2
gNρ

[
1 +

128

15
√
π

(
ρa3

) 1
2

]
. (2.95)

The chemical potential µ = ∂E0/∂N is simply given by

µ = gρ

[
1 +

32

3
√
π

(
ρa3

) 1
2

]
. (2.96)

The Bogoliubov spectrum (2.92) exhibits distinct behaviors in the long and short wavelength
limits. When p≫ mc, the excitations behave like free particles, with

ϵ(p⃗) ≈ p2

2m
. (2.97)

In the long wavelength limit, where p≪ mc, the excitation spectrum takes the form of acoustic
waves,

ϵ(p⃗) ≈ cp, (2.98)

where c is the sound velocity, given by

c =

√
gρ

m
. (2.99)
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3 Basic theory of Bose-Bose mixtures and Quantum Droplets

When different species of bosons are mixed, also called components, both intraspecies and
interspecies interactions need to be considered. Intraspecies interactions can be treated on their
own with aformentioned theory, i.e. mean-field with Lee-Huang-Yang corrections (MF+LHY).
Interspecies interactions are usually treated only in the mean field regime (MF). For this
discussion, density functional theory approach is used. This discussion is primarily based on
[36] and [41].

3.1 Mean-field theory of Bose-Bose mixtures

As a first consideration, only MF interactions will be considered. The energy functional of a
two-component (species) mixture reads

E =
∑
i

∫
dr⃗

[
ℏ2

2mi

|∇ψi(r⃗)|2 + Vi, ext.(r⃗)|ψi(r⃗)|2
]

+
1

2

∑
i,j

gij

∫
dr⃗ |ψi(r⃗)|2|ψj(r⃗)|2.

(3.1)

where ψi(r⃗), i = 1, 2, are order parameters - wave functions - of the components, Vi, ext.(r⃗) is
the external potential acting on the i-th component, and coupling constants are
gii = 4πℏ2a11/mi, g12 = g21 = 2πℏ2a12/mr, with mr being reduced mass and aij are s-wave
scattering lengths. Coupling constant gii characterizes the intraspecies interaction between
atoms of the i-th component, while g12 characterizes the interspecies potential. Densities are
analogously to a single-component BEC given by ρi(r⃗) = |ψi(r⃗)|2.

The time evolution of the mixtures is governed by the coupled Gross-Pitaevskii equations,
which can be derived from the variational principle within the framework of Density Functional
Theory (DFT) as

iℏ
∂ψi

∂t
=

δE

δψ∗
i

, (3.2)

where i = 1, 2. The coupled Gross-Pitaevskii Equations (GPEs) are given by

iℏ
∂ψi(r⃗, t)

∂t
=

[
− ℏ2

2m
∇2 + Vi, ext. + gii|ψi(r⃗, t)|2 + gij|ψj(r⃗, t)|2

]
ψi(r⃗, t). (3.3)

Mixtures can exist in two different configurations:

a) Uniform mixture: In this configuration, the wave functions overlap, and the two
components mix within the volume V . The mean-field (MF) energy for this case is given
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by:

Euniform =
1

2
g11

N2
1

V
+

1

2
g22

N2
2

V
+ g12

N1N2

V
. (3.4)

b) Phase-separated configuration: In this configuration, the wave functions do not overlap.
One can visualize this as two blobs next to each other, or with one component forming a
ring around the other. Each component occupies its own volume Vi. The MF energy for this
case is given by:

Ephase-separated =
1

2
g11

N2
1

V1
+

1

2
g22

N2
2

V2
. (3.5)

In the phase-separated case, mechanical equilibrium is determined by the condition

∂

∂V1
Ephase-separated =

∂

∂V2
Ephase-separated, (3.6)

which yields

g11

(
N1

V1

)2

= g22

(
N2

V2

)2

. (3.7)

This permits rephrasing of equation (3.5) in terms of the total volume, V = V1 + V2, as

Ephase-separated =
1

2
g11

N2
1

V
+

1

2
g22

N2
2

V
+
√
g11g22

N1N2

V
. (3.8)

From equations (3.4) and (3.8) , the condition needed to avoid phase separation follows:

g12 <
√
g11g22. (3.9)

In the uniform case, stability against local density fluctuations is determined by the inequality(
∂2

∂N2
1

Euniform

)(
∂2

∂N2
2

Euniform

)
>

(
∂2

∂N1∂N2

Euniform

)2

, (3.10)

which leads to the condition
|g12| <

√
g11g22. (3.11)

Mixtures with attractive intraspecies interactions, i.e., gii < 0, are not stable under local
density variations, as this leads to the collapse of each component into its own self-bound
ground state [41]. Therefore, only mixtures with repulsive intraspecies interactions, gii ≥ 0, are
stable. In the case of attractive interspecies interactions, g12 < 0, the condition (3.11) guarantees
that perturbing the system does not lead to the formation of a self-bound cluster. Conversely,
in the case of repulsive interspecies interactions, g12 > 0, it ensures that the components do not
separate under density perturbations.
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For mixtures with g12 < 0, when g12 = −√
g11g22, the configuration will satisfy

ρ2
ρ1

=

√
g11
g22

, (3.12)

which represents the optimal ratio [41]. When g12 > −√
g11g22, the ground state can either be

a collapsed state or a dense droplet [37].

3.2 Lee-Huang-Yang energy and Gross-Pitaevskii equation

The previous approach based solely on mean-field (MF) theory breaks down as densities
increase and interactions become stronger. Since MF is the lowest-order approximation, a
natural remedy to the theory’s limitations is found in the first correction: the Lee-Huang-Yang
(LHY) term.

Since mixtures are considered within the framework of Density Functional Theory, the LHY
correction to the energy density is given by [42]

ELHY [ρ1, ρ2] =
8

15π2

(m1

ℏ2
) 3

2
(g11ρ1)

3
2f

(
m2

m1

,
g212
g11g22

,
g22ρ2
g11ρ1

)
, (3.13)

where for the case of m1 = m2, the function f(z = 1, u, x) is given by

f(1, u, x) =
1

4
√
2

∑
±

[
1 + x±

√
(1− x)2 + 4ux

] 5
2

. (3.14)

At the mean-field collapse, where g212 = g11g22 or u = 1, this results in [41]

ELHY [ρ1, ρ2] =
8

15π2

(m1

ℏ2
) 3

2
(g11ρ1)

5
2

(
1 +

g22ρ2
g11ρ1

) 5
2

. (3.15)

Equation (3.13) was first derived by Larsen in 1964 [43].

Finally, the density functional of a two-component mixture with mean-field (MF) and Lee-
Huang-Yang (LHY) interactions reads [35]

E =
∑
i

∫
dr⃗

[
ℏ2

2mi

|∇ψi(r⃗)|2 + Vi,ext(r⃗)|ψi(r⃗)|2
]

+
1

2

∑
i,j

gij

∫
dr⃗ |ψi(r⃗)|2|ψj(r⃗)|2

+

∫
dr⃗ ELHY [ρ1, ρ2] ,

(3.16)

where ψi(r⃗), i = 1, 2, are the order parameters of the components. Since this thesis deals
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with potassium mixtures of different hyperfine states, the consideration is further simplified by
observing the case of m1 = m2 = m. From the functional (3.16), one can apply the variational
principle, resulting in a coupled pair of generalized Gross-Pitaevskii equations [35]

iℏ
∂

∂t
ψi(r⃗, t) =

[
− ℏ2

2m
∇2 + Vi, ext. + gii|ψi(r⃗, t)|2 + gij|ψj(r⃗, t)|2 +

∂ELHY

∂ρi

]
ψi(r⃗, t) = Hiψi(r⃗, t).

(3.17)

3.3 Quantum droplets

Quantum droplets are a type of self-bound state that arises in Bose-Bose mixtures where
quantum fluctuations are crucial for system stabilization. Unlike traditional Bose-Einstein
condensates, which are generally confined in traps and described by mean-field (MF)
interactions, quantum droplets are stabilized through the interplay of quantum effects and
mean-field forces.

Dmitri Petrov’s paper [22] established a theoretical framework for understanding these
droplets. Petrov demonstrated that, under specific conditions, the interplay between quantum
fluctuations and mean-field interactions can stabilize a system that would otherwise collapse,
i.e., its energy lacks a stable minimum. For attractive mean-field interactions, the energy
described by (2.59) does not possess a stable minimum due to its linear dependence on the
interactions. However, beyond mean-field effects for repulsive interactions, the
Lee-Huang-Yang (LHY) correction introduces a dependence on ρ3/2, as shown in equation
(2.95), leading to the formation of a stable energy minimum. This stabilization is illustrated in
Figure 3. Essentially, the LHY term counterbalances the residual attractive mean-field
interaction.

In the droplets that are the focus of this thesis, the balance is maintained by repulsive
intraspecies interactions, with a11 > 0 and a22 > 0, and attractive interspecies interactions,
with a12 < 0.
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Figure 3: Graphical illustration of the balance between mean-field (MF) and beyond mean-field (BMF)
effects. Together, they define a region where a self-bound droplet may form.
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4 Theory of Superfluids and their Rotation

Superfluids are a peculiar type of fluid which can flow without energy dissipation, exhibiting
zero shear viscosity. The most well known example is liquid helium-4 below the λ-point. The
phenomenon in helium-4 was discovered by Kapitza [4], Allen, and Misener [5] in 1938, and
was theoretically explained by Landau [8] in 1941. Landau found the criteria for excitation
spectrum of a fluid which result in motion without dissipation. This chapter focuses on
criterion of superfluidity and the rotational properties of superfluids. The discussion is based
on Pitaevskii’s and Stringari’s book [36]

4.1 Basic theory of Superfluidity: Landau’s criterion

In an ordinary fluid, flowing particles scatter on imperfections in the system, resulting in energy
dissipation. This is not the case in superfluids, which can be understood by observing the
acoustic excitation spectrum. Crucial to Landau’s explanation is classical relativity, specifically
Galilean transformations of energy and momentum.

Consider a uniform fluid at T = 0 flowing through a pipe in two reference frames:

a) The rest frame of the fluid S, where the fluid has energy E = E0 + ϵ(p⃗), with E0 being
the ground state energy and ϵ(p⃗) the energy of an excitation with momentum p⃗. Here, p⃗
represents the momentum carried by the fluid.

b) The rest frame of the pipe S ′, moving with velocity −v⃗ relative to S, in which the fluid has
velocity v⃗. In this frame, the fluid’s momentum and energy are given by:

p⃗′ = p⃗+Mv⃗, (4.1)

and
E ′ = E0 + ϵ(p⃗) + p⃗ · v⃗ + Mv2

2
, (4.2)

where M is the total mass of the fluid.

In the system S ′, the appearance of an excitation in a fluid that is otherwise in the ground state
changes the momentum by p⃗ and the energy by ϵ(p⃗) + p⃗ · v⃗. This change corresponds to the
energy of the elementary excitation. Such excitations occur spontaneously if the excitation
reduces the fluid’s energy, i.e.,

ϵ(p⃗) + p⃗ · v⃗ < 0, (4.3)

from which follows the condition
v >

ϵ(p⃗)

p
. (4.4)

If the fluid can transfer momentum to the pipe, this condition guarantees spontaneous
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excitations and, consequently, energy dissipation. On the other hand, the condition (4.4)
establishes a certain minimum, or critical, velocity vc,

vc = min
p⃗

ϵ(p⃗)

p
, (4.5)

such that for v < vc, there will be no spontaneous excitations. This statement,

v < vc = min
p⃗

ϵ(p⃗)

p
, (4.6)

is Landau’s criterion for superfluidity. When this criterion is satisfied, the fluid will exhibit
frictionless flow, stable with respect to the creation of elementary excitations, but metastable in
the full thermodynamic picture.

In the case of an ideal Bose gas, the dispersion relation ϵ(p⃗) = p2

2m
leads to a critical velocity

of zero, meaning that Landau’s criterion (4.6) cannot be satisfied. As a result, ideal Bose gases
are not superfluid. In contrast, a weakly interacting Bose gas exhibits the Bogoliubov dispersion
relation (2.92), which, in the long wavelength limit, allows for a non-zero critical velocity equal
to the sound velocity. Specifically, when ϵ(p) = cp, the critical velocity is given by vc = c.

4.2 Hydrodynamics of superfluids

A common way to describe superfluids is by treating them as a mixture of a "normal" fluid
and a superfluid, which do not experience friction between them. This approach was employed
by Landau in [8]. It is important to note that this model does not imply that the physical
system is composed of two distinct fluids; rather, it provides an elegant description of observed
phenomena.

At a given temperature, the total fluid density is given by

ρ = ρs + ρn, (4.7)

where ρs and ρn represent the superfluid and normal mass1 densities, respectively. The ratio
ρn/ρ is zero at T = 0, and as the temperature increases towards a critical value, this ratio
approaches unity. At the critical temperature, superfluid behavior disappears. In helium, the
critical temperature is associated with the λ-point.

The macroscopic hydrodynamic description of superfluids is based on a set of hydrodynamic
equations [8]:

j⃗ = ρsv⃗s + ρnv⃗n, (4.8)
1Here ρ denotes mass density rather than number density, as is the case in the rest of this thesis.
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∂ρ

∂t
+∇j⃗ = 0, (4.9)

∂j⃗

∂t
+
∑
k

∂Πik

∂xk
= 0, (4.10)

Πik = Pδik + ρsv⃗i,sv⃗k,s + ρnv⃗i,nv⃗k,n, (4.11)

∂v⃗s

∂t
= −∇

[
ϕ+

v2s
2

− ρn

2ρ
(v⃗n − v⃗s)

2

]
, (4.12)

∂sρ

∂t
+∇ (sρv⃗n) = 0. (4.13)

where j⃗ is the mass density flux, P is the pressure, s is the entropy per unit mass, ϕ is the
thermodynamic potential per unit mass, Πik is the momentum flux density tensor, while v⃗n,s is
the velocity field for the normal (superfluid) component with vi,n,s being i-th component. These
equations are analogous to the hydrodynamic equations for ordinary fluids [44], with the key
difference being the absence of viscous terms.

At zero temperature, there are no thermal excitations, and the description of the superfluid
can be given in terms of the density ρ and the superfluid velocity v⃗s. Introducing the order
parameter

ψ =
√
ρeiS, (4.14)

where the superfluid velocity is given by

v⃗s =
ℏ
m
∇S, (4.15)

captures all the relevant variables. The previous set of hydrodynamic equations simplifies to the
following two equations:

∂ρ

∂t
+∇ · j⃗ = 0, (4.16)

m
∂v⃗s

∂t
+∇

(
1

2
mv⃗2s + µ(ρ)

)
= 0. (4.17)

Here, µ(ρ) represents the chemical potential, which depends on the local uniform fluid density.
These equations are essentially the continuity equation and the Euler equation for ideal fluids.

4.3 Rotation of Superfluids

An important property of superfluids is that they do not rotate like ordinary fluids; instead, they
form quantized vortex lines. The study of rotating condensates is typically conducted in the
rotating reference frame, where the energy is given by

Er = E − Ω⃗ · L⃗, (4.18)
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where Ω⃗ is the angular velocity and L⃗ is the angular momentum.

Since the phase of the order parameter is a scalar, the velocity field v⃗s, given by (4.15), obeys

∇× v⃗s = 0. (4.19)

The order parameter must be a single-valued function at every point in space. Consequently,
the phase change around any closed loop must be an integer multiple of 2π. This implies that
the circulation Γ is quantized as

Γ =

∮
d⃗l · v⃗s = 2π

ℏ
m
s, (4.20)

where s is an integer.

Consider a superfluid within a cylindrical vessel, with a straight vortex line running along its
symmetry axis. The velocity field magnitude of that superfluid follows from (4.20)

vs =
ℏ
mr

s, (4.21)

where r is the distance from the vortex line. The angular momentum of that superfluid may
expressed as

Lz =

∫
dr⃗ rρsvs = πR2Lρs

ℏ
m
s, (4.22)

where vs represents the velocity along streamlines, ρs denotes the superfluid density far from
the vortex, L is the length of the vessel, and R is its radius. The energy associated with the
vortex is primarily kinetic and can be formulated as

Ev =

∫ R

rc

dr⃗
1

2
ρsv

2
s = Lπρss

2

(
ℏ
m

)2

ln

(
R

rc

)
, (4.23)

where rc represents the radius of the vortex core. The critical angular velocity Ωc required for
the existence of a stable vortex is determined by the condition that the change in energy due to
rotation equals Ev, hence Ev = ΩcLz. For s = 1 vortices, the critical value is given by

Ωc =
Ev

Lz

=
ℏ

mR2
ln

(
R

rc

)
. (4.24)
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4.4 Bose-Einstein condensate as a superfluid

Bose-Einstein condensates in the absence of external potentials are described by the
Hamiltonian

Ĥ =

∫
dr⃗

(
ℏ2

2m
∇Ψ̂†(r⃗, t)∇Ψ̂(r⃗, t)

)
+

1

2

∫
dr⃗′dr⃗ Ψ̂†(r⃗′, t)Ψ̂†(r⃗, t)V (r⃗′ − r⃗)Ψ̂(r⃗′, t)Ψ̂(r⃗, t),

(4.25)
which is invariant under spatial translations. This, by Noether’s theorem, leads to the
conservation of momentum. The Galilean transformation of the field operator is given by [36]

Ψ̂′(r⃗, t) = Ψ̂ (r⃗ − v⃗t, t) e
i
ℏ(mv⃗·r⃗− 1

2
mv2t), (4.26)

where v⃗ is a constant vector. In the BEC rest frame, the order parameter is

Ψ =
√
ρ0e

− i
ℏµt, (4.27)

while in the reference frame where the BEC moves with velocity v⃗, the order parameter becomes

Ψ =
√
ρeiS =

√
ρ0e

i
ℏ [mv⃗·r⃗−( 1

2
mv2+µ)t]. (4.28)

The superfluid velocity field is given in terms of the phase S as

v⃗s =
ℏ
m
∇S. (4.29)

Since the energy in the rotating frame is given by (4.18), the Gross-Pitaevskii equation in the
rotating frame is expressed as

iℏ
∂

∂t
ψi(r⃗, t) =

[
Ĥi − Ω⃗ · ˆ⃗L

]
ψi(r⃗, t), (4.30)

where ˆ⃗
L is the angular momentum operator. It is customary to choose the rotation axis to be the

z-axis, i.e., Ω⃗ = Ωe⃗z, in which case the Hamiltonian in (4.30) simplifies to

iℏ
∂

∂t
ψi(r⃗, t) =

[
Ĥi − ΩL̂z

]
ψi(r⃗, t), (4.31)

where
L̂z = x̂p̂y − ŷp̂x = −iℏ

(
x̂
∂

∂y
− ŷ

∂

∂x

)
. (4.32)
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5 Numerical method for solving the equations

The Hamiltonian of interest for our systems is

H =
1

2m

(
p2x + p2y + p2z

)
+

1

2
mω2

zz
2 + VMF+LHY − Ω (xpy − ypx) . (5.1)

Note that in this section the hats on operators will be dropped for simplicity. In order to solve it
we will rephrase the Hamiltonian as

H =
1

2m

(
p2x + p2y + p2z

)
+

(
1

2
− 1

2

)
mω2

xy

[
(1 + δ)x2 + (1− δ)y2

]
+
1

2
mω2

zz
2+VMF+LHY−Ω (xpy − ypx) ,

(5.2)
and split it as

H = Hxy −
1

2
mω2

xy

[
(1 + δ)x2 + (1− δ)y2

]
+

1

2m
p2z +

1

2
mω2

zz
2 + VMF+LHY . (5.3)

In these equations a harmonic potential, with the frequency ωxy and anisotropy δ, was
introduced and subsequently subtracted. With this adjustment, the problem becomes solvable
using the method developed by Chin and Krotscheck [45].

5.1 Theoretical derivation

To solve the equation given by (5.3) the method of Oktel, and Chin and Krotscheck from [45, 46]
will be employed. Starting with the Hamiltonian of the form

Hxy =
1

2m

(
p2x + p2y

)
+

1

2
mω2

xy

[
(1 + δ)x2 + (1− δ)y2

]
− Ω (xpy − ypx) (5.4)

the aim is to arrive at at the Hamiltonian

Hxy =
1

2

[
P 2
1 + P 2

2 + Ω2
1Q

2
1 + Ω2

2Q
2
2

]
(5.5)

using a canonical transformation.

Firstly, the Hamiltonian (5.4) is to be expressed in units of ℏ2/(ma211), from which naturally
follow the definitions for coordinates x′ = x/a11 and momenta
p′x = −(i/ℏ)px = −i ∂

∂x′ = −ia11 ∂
∂x

. Momentum can also then be easily expressed in
reciprocal space as p′x = k′x. Hamiltonian in the new units is

H ′
xy =

1

2

(
p′2x + p′2y

)
+

1

2a′4xy

[
(1 + δ)x2 + (1− δ)y2

]
− fΩΩ

(
x′p′y − y′p′x

)
, (5.6)

where a′2xy = a2xy/a
2
11 =

ℏ
mωxya211

and fΩ =
ma211
ℏ .
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Next we define x̃ = x/a2xy and Ω̃ = fΩΩ so that the Hamiltonian becomes

Hxy =
1

2

(
p2x + p2y

)
+

1

2

[
(1 + δ)x̃2 + (1− δ)ỹ2

]
− Ω̃ (xpy − ypx) . (5.7)

Now we can introduce the following linear canonical transformation

Q1 = α1 [cos(ϕ)x̃− sin(ϕ)py] , (5.8)

P1 =
1

α1

[sin(ϕ)ỹ + cos(ϕ)px] , (5.9)

Q2 = α2 [cos(ϕ)ỹ − sin(ϕ)px] , (5.10)

P2 =
1

α2

[sin(ϕ)x̃+ cos(ϕ)py] , (5.11)

with a condition that tan(2ϕ) = 2Ω̃/δ. It can be shown that the commutator is

[Qj, Pk] =
i

a2xy
δjk . (5.12)

Looking at pairs Q1 and P2, as well as Q2 and P1, old canonical variables can be expressed
using new ones as

x̃ =
cos(ϕ)

α1

Q1 + sin(ϕ)α2P2 , (5.13)

px = cos(ϕ)α1P1 −
sin(ϕ)

α2

Q2 , (5.14)

ỹ =
cos(ϕ)

α2

Q2 + sin(ϕ)α1P1 , (5.15)

py = cos(ϕ)α2P2 −
sin(ϕ)

α1

Q1 . (5.16)
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Plugging those back into (5.7) yields

Hxy =
1

2
α2
1P

2
1

[
cos2(ϕ) + sin2(ϕ)(1− δ) + Ω̃ sin(2ϕ)

]
+
1

2
α2
2P

2
2

[
cos2(ϕ) + sin2(ϕ)(1 + δ)− Ω̃ sin(2ϕ)

]
+

1

2α2
1

Q2
1

[
sin2(ϕ) + cos2(ϕ)(1 + δ) + Ω̃ sin(2ϕ)

]
+

1

2α2
2

Q2
2

[
sin2(ϕ) + cos2(ϕ)(1− δ)− Ω̃ sin(2ϕ)

]
−sin(2ϕ)

2

[
α1

α2

P1Q2 +
α2

α1

P2Q1

]
+
sin(2ϕ)

2

[
(1 + δ)

α2

α1

P2Q1 + (1− δ)
α1

α2

P1Q2

]
+cos(2ϕ)Ω̃

[
α1

α2

P1Q2 −
α2

α1

P2Q1

]
.

(5.17)

From (5.17), keeping in mind the goal of reaching (5.5), follow demands that

α2
1

[
cos2(ϕ) + sin2(ϕ)(1− δ) + Ω̃ sin(2ϕ)

]
= 1 , (5.18)

α2
2

[
cos2(ϕ) + sin2(ϕ)(1 + δ)− Ω̃ sin(2ϕ)

]
= 1 , (5.19)

1

α2
1

[
sin2(ϕ) + cos2(ϕ)(1 + δ) + Ω̃ sin(2ϕ)

]
= Ω2

1 , (5.20)

1

α2
2

[
sin2(ϕ) + cos2(ϕ)(1− δ)− Ω̃ sin(2ϕ)

]
= Ω2

2 , (5.21)

and

−sin(2ϕ)

2

[
α1

α2

P1Q2 +
α2

α1

P2Q1

]
+
sin(2ϕ)

2

[
(1 + δ)

α2

α1

P2Q1 + (1− δ)
α1

α2

P1Q2

]
+cos(2ϕ)Ω̃

[
α1

α2

P1Q2 −
α2

α1

P2Q1

]
= 0 .

(5.22)

With the earlier condition that tan(2ϕ) = 2Ω̃/δ (5.22) holds while others simplify to give

1

α2
1

= 1− δ

2
+

1

2

√
δ2 + 4Ω̃2 , (5.23)

1

α2
2

= 1 +
δ

2
− 1

2

√
δ2 + 4Ω̃2 , (5.24)

Ω2
1 =

1

α2
1

(
1 +

δ

2
+

1

2

√
δ2 + 4Ω̃2

)
, (5.25)
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and finally

Ω2
2 =

1

α2
2

(
1− δ

2
− 1

2

√
δ2 + 4Ω̃2

)
. (5.26)

These expressions coincide with those presented in Oktel’s work [46], as well as those found in
the paper by Chin and Krotscheck [45].

5.2 Algorithmic implementation

The aim is to solve the equation

i
∂

∂t
ψ = H ψ , (5.27)

with the Hamiltonian
H = Hxy + V , (5.28)

with Hxy being given by (5.6), and

V = − 1

2a′4xy

[
(1 + δ)x2 + (1− δ)y2

]
+

1

2
p2z +

1

2a′4z
z2 + V ′

MF+LHY . (5.29)

We use a second order algorithm in imaginary time τ = it from [45]

ψ(τ +∆τ) = exp

(
−1

6
∆τV

)
exp

(
−1

2
∆τHxy

)
× exp

(
−2

3
∆τV

)
exp

(
−1

2
∆τHxy

)
exp

(
−1

6
∆τV

)
ψ(τ) .

(5.30)

Evolution with Hxy is done in steps [45]:

a) Starting from ψ(x, y, z) we compute ψ(px, y, z) using a forward one dimensional fast
Fourier transform (FFT) and multiply the result with exp

[
−∆τ

8
(P 2

1 + Ω2
2Q

2
2)
]
.

b) We compute ψ(x, py, z) using a two dimensional FFT and multiply the result with
exp

[
−∆τ

4
(Ω2

1Q
2
1 + P 2

2 )
]
.

c) We compute ψ(px, y, z) using an inverse two dimensional FFT and multiply the result with
exp

[
−∆τ

8
(P 2

1 + Ω2
2Q

2
2)
]
.

d) We compute ψ(x, y, z) using the backward one dimensional inverse FFT.

The algorithm remains stable for Ω/ωxy <
√
1− δ, beyond which the harmonic trap potential

introduced in (5.2) becomes unstable [45]. While the Gross-Pitaevskii equation can support
"overcritical" rotation under sufficiently strong interaction terms, a detailed discussion of this is
outside the scope of this thesis.
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5.3 Angular momentum calculation

The angular momentum operator L̂z is given by

L̂z = −iℏ
(
x
∂

∂y
− y

∂

∂x

)
, (5.31)

and its expectation value is〈
L̂z

〉
= ⟨ψ|L̂z|ψ⟩ =

∫
dr⃗ ψ∗(r⃗)L̂zψ(r⃗). (5.32)

The simplest way to calculate this is by first computing L̂zψ(r⃗) using a numerical derivative,
multiplying by ψ∗(r⃗), and then integrating the result. To perform the numerical differentiation,
one can use finite difference approximations. The approximation with second-order accuracy is

f ′(x) ≈ f(x+ h)− f(x− h)

2h
+ O(h2), (5.33)

and the approximation with fourth-order accuracy is

f ′(x) ≈ −f(x+ 2h) + 8f(x+ h)− 8f(x− h) + f(x− 2h)

12h
+ O(h4). (5.34)

Another approach to this calculation is through Fourier transformations. Specifically, the use
of the the following expression:〈

L̂z

〉
=

1

Nx,py

∫
dxdpy xpy|ψ(x, py, z)|2 +

1

Npx,y

∫
dpxdy ypx|ψ(px, y, z)|2, (5.35)

where the normalization factor Nri,pj is given by

Nri,pj =
1

N

∫
dridpj |ψ(ri, pj)|2. (5.36)
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6 Non-rotating self-bound droplets

The quantum droplets under consideration are binary mixtures of potassium-39 in a magnetic
field of strength 56.337 G, confined along the z-axis. The confinement potential is harmonic,
given by mω2

zz
2/2, where ωz = ℏ/(ma2z). The oscillator length is az = f × 0.639µm. The

scattering lengths for the system are

a11 = 66.619 a0, a22 = 34.369 a0, a12 = −53.386 a0, (6.1)

where a0 is the Bohr radius. The optimal ratio of atom numbers is maintained, although it is not
strictly necessary

N1

N2

=

√
a22
a11

. (6.2)

Since a11 > a22, the more numerous component is N2.

The equation we are solving is an extended Gross-Pitaevskii equation in the rotating reference
frame

iℏ
∂

∂t
ψi(r⃗, t) =

[
− ℏ2

2m
∇2 + Vi + gii|ψi(r⃗, t)|2 + gij|ψj(r⃗, t)|2 +

∂ELHY

∂ρi
− ΩL̂z

]
ψi(r⃗, t).

(6.3)
Taking Ω = 0 reduces the problem to a non-rotating one. For the harmonic potential in the
xy-plane, we take axy = 2µm.

Starting from a broad Gaussian for the wave functions, the aim is to find the ground state
energy and profile. The spatial grid used is 128 × 128 × 64, with the lower discretization
along the z-axis being feasible due to confinement. The size of the simulation box is typically
10000×10000×1280 in a11 units, further adjusted where necessary according to the size of the
system. This setup provides a good resolution for larger systems while maintaining reasonable
simulation duration. The simulation time is generally set to 106 inverse energy units for non-
rotating droplets, with a time step of 200. This time step was choosen as a it offers a balance
between accuracy and computational time. Figure 4 shows that the total simulation time is
sufficiently long for the energy to equilibrate. Notably, regardless of the chosen time step, a
stable energy value is reached after approximately the same total time, t = Nsteps × dt. The
dependence of E on dt is quadratic, as expected. Table 1 summarizes the simulation durations
for total simulation time t = 106 with different different time steps. The smaller dt necessitates
a larger number of steps to reach the same total time, resulting in longer durations for the
calculations.
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(a) Self-bound energy during the simulation with
different time steps. Notably, each choice results in a

stable energy after approximately the same total time, t.

(b) Final values for self-bound energy during the
simulation for different time steps. Dashed line is a

second degree polynomial fit.

Figure 4: Self-bound energy for a system of N = 1 × 105 atoms at confinement f = 0.5. The total
simulation time, t = Nsteps × dt = 106 is consistent across all time step choices. Observe the quadratic
dependence of E on dt.

Time step dt 50 100 150 200 250 300 350

Duration in hours 8.57 4.34 2.66 2.24 1.83 1.55 1.35

Table 1: Simulation durations for different time steps. The total simulation time, t = Nsteps × dt = 106,
is consistent across all time step choices.

The results generally agree well with those in [34], where the single equation for optimal
density was solved without the aforementioned transformations. The comparison of energies is
shown in Table 2, while the comparison of density profiles can be seen in Figure 5 for the case
of 105 atoms at f = 0.50.

The energy plot for a droplet of 105 atoms with a squeezing factor of 0.5 in Figure 6 confirms
the convergence of the results, while the angular momentum oscillations around zero align with
the expectations of numerical noise. Figures 7 and 8 show the density profiles for this droplet.
In the center of the system, the droplet begins to reach a constant bulk density, as expected.
The same behavior is observed with 106 atoms, as seen in Figures 9 and 10, where one can also
observe that additional particles cause the droplet to spread perpendicularly to the squeezing.

When discussing energies, it is useful to subtract the contribution of the squeezing potential

E − EH.O. = E[ψ(r⃗, t)]−
∫

dr⃗
1

2
mω2

zz
2|ψ(r⃗, t)|2 = E[ψ(r⃗, t)]− ℏ2

2ma4z

∫
dr⃗ z2|ψ(r⃗, t)|2,

(6.4)
which allows for a discussion focused on the self-binding energy resulting from interatomic
interactions. Furthermore, examining the energy per particle permits comparisons between
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droplets of different sizes.

N f Epaper [ℏ2/(ma211)] Ethesis [ℏ2/(ma211)]
15000 0.25 3.539 3.543
25000 0.25 5.869 5.876
50000 0.25 11.681 11.695
70000 0.25 16.324 16.343
20000 0.50 1.092 1.092
50000 0.50 2.613 2.612

100000 0.50 5.110 5.108
200000 0.50 10.062 10.059
20000 0.75 0.444 0.444
50000 0.75 0.966 0.966

100000 0.75 1.789 1.787

Table 2: Comparison of calculated total energies. Epaper are results from [34].

Figure 5: Integrated total density of the droplet in the xy-plane; comparison of methods. N = 1× 105,
f = 0.5. ρpaper is the density profile from [34].
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(a) Energy per particle during the simulation. (b) Angular momentum during the simulation.

Figure 6: Energy and angular momentum per particle during the simulation, showing stabilization of
the solution. Droplet with N = 1× 105 atoms at confinement f = 0.5.

(a) Total droplet density in the xy-plane at z = 0. (b) Total droplet density in the xz-plane at y = 0.

Figure 7: Total droplet density ρ = ρ1+ρ2 in scattering length units for a drop with N = 1×105 atoms
at confinement f = 0.5.
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(a) Total droplet density and component densities along
the x-axis in the droplet center.

(b) Total droplet density and component densities along
the z-axis in the droplet center.

Figure 8: Component and total droplet densities in scattering length units for a drop with N = 1× 105

atoms at confinement f = 0.5.

(a) Total droplet density in the xy-plane at z = 0. (b) Total droplet density and component densities along
the z-axis in the droplet center.

Figure 9: Total droplet density in scattering length units for a drop with N = 1 × 106 atoms at
confinement f = 0.5.
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(a) Total droplet density and component densities along
the x-axis in the droplet center.

(b) Total droplet density and component densities along
the z-axis in the droplet center.

Figure 10: Component and total droplet densities in scattering length units for a drop with N = 1×106

atoms at confinement f = 0.5.
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7 Vortices in rotating self-bound droplets

7.1 Angular Momentum

In Section 5.3, various methods for calculating angular momentum were discussed. The results
obtained from these methods are compared in Figure 11. Overall, the results are relatively close,
with the higher-order derivative methodLD: O(h4) and the Fourier transform methodLFT showing
especially close agreement. Between these two, the Fourier transform method is preferred due
to its speed, being approximately 13% faster, as illustrated in Table 3.

(a) Comparison of angular momentum values calculated
using different methods.

(b) Differences between angular momentum values
calculated using different methods.

Figure 11: Calculation of angular momentum using different methods. The value calculated using
Fourier transforms is denoted as LFT, while LD: O(h2) and LD: O(h4) are calculated using numerical
differentiation with precisions of O(h2) and O(h4), respectively.

Method LFT LD: O(h2) LD: O(h4)

Duration in hours 14.91 16.49 17.25

Table 3: Simulation durations for different angular momentum calculation methods. Total simulation
time is t = 107, with the time step dt = 200.

7.2 Droplets with vortices

Working with the same potassium-39 atoms and starting from the previous solutions, a vortex
is introduced in the center as

ψj = ψj,no vortex × exp (iljϕ) , (7.1)
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where ϕ = arctan
(
y
x

)
is the polar angle and lj being the integer quantum number for the vortex

in component j. At the center of the vortex, ψj(0, 0, z) = 0 is set. For all results, the angular
velocity is

Ω = 10× 2π s−1. (7.2)

This value is chosen as it is above the critical velocity for vortices (4.24) and should safely
accommodate a vortex solution. The time step and discretization are kept the same as in the
previous simulations; however, the total simulation time is lengthened to t = 107 since angular
momentum takes longer to fully stabilize. Again, we take axy = 2µm, for which the critical
angular velocity for algorithmic stability works out to Ωc = 64.59× 2π s−1.

Table 4 presents the energy per particle and the angular momentum calculated for several
cases involving different particle numbers, confinement, and vortex configurations. A key
observation from this data is that the angular momentum per particle of the rotating component
is consistently equal to, or just below, 1ℏ across all cases. This precise value is particularly
evident due to rounding effects; without rounding, the ratio approaches 1. The two cases
where the ratio is slightly below 1 exhibited slower convergence due to being on the edge
of stability, but the overall trend clearly indicates convergence towards 1. This outcome aligns
with theoretical expectations, when considering the presence of a centered vortex [37].

Furthermore, decreasing the confinement factor f (i.e., increasing the squeezing) results in
more negative energy, indicating that strongly squeezed configurations are more self-bound.
This trend is clearly visible in Figure 12, regardless of the location of the vortices. This behavior
could be explained by the larger proportion of the droplet being in the bulk density region under
stronger confinement.

Figure 13 presents the same data but grouped in cases of different vortex presence under
the same confinement. It is evident that, generally, it is more energetically favorable for the
vortex to be present in the less numerous species 1, as opposed to species 2 or both species
simultaneously. The presence of the vortex in both species results in the least self-binding,
which is intuitively expected. Considering a hydrodynamic approach to vortex energy, as
was done in [35], the vortex energy is proportional to ρ/m. Thus, it is expected that the
more favorable position for the vortex is in the less numerous component, since ρi ∼ Ni.
Interestingly, at confinement f = 0.25, there appears to be a crossover region that merits further
investigation, although it falls outside the scope of this thesis.
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N N1 N2 f Vi
(E − EH.O.)/N
[ℏ2/(ma211)]

L [ℏ]
L/Ni

[ℏ]
7.000× 104 2.926× 104 4.074× 104 0.25 V1 −9.159× 10−6 2.926× 104 1.000
7.500× 104 3.135× 104 4.365× 104 0.25 V2 −9.154× 10−6 4.365× 104 1.000
9.000× 104 3.762× 104 5.238× 104 0.25 V1 −0.960× 10−5 3.762× 104 1.000
1.000× 105 4.180× 104 5.820× 104 0.25 V1 −0.976× 10−5 4.180× 104 1.000
1.000× 105 4.180× 104 5.820× 104 0.25 V2 −0.968× 10−5 5.820× 104 1.000
1.000× 105 4.180× 104 5.820× 104 0.25 V1,2 −0.953× 10−5 1.000× 105 1.000
1.250× 105 5.225× 104 7.275× 104 0.25 V2 −1.002× 10−5 7.275× 104 1.000
2.000× 105 8.360× 104 1.164× 105 0.25 V1 −1.060× 10−5 8.360× 104 1.000
3.000× 105 1.254× 105 1.746× 105 0.25 V1 −1.095× 10−5 1.254× 105 1.000
1.700× 105 7.106× 104 0.989× 105 0.50 V1 −0.982× 10−5 7.106× 104 1.000
1.750× 105 7.315× 104 1.018× 105 0.50 V1 −0.986× 10−5 7.315× 104 1.000
1.750× 105 7.315× 104 1.018× 105 0.50 V2 −0.976× 10−5 1.018× 105 1.000
2.000× 105 8.360× 104 1.164× 105 0.50 V1 −1.007× 10−5 8.360× 104 1.000
2.000× 105 8.360× 104 1.164× 105 0.50 V2 −0.998× 10−5 1.164× 105 1.000
2.000× 105 8.360× 104 1.164× 105 0.50 V1,2 −0.984× 10−5 1.996× 105 0.998
1.000× 106 4.180× 105 5.820× 105 0.50 V1 −1.158× 10−5 4.180× 105 1.000
1.000× 106 4.180× 105 5.820× 105 0.50 V2 −1.161× 10−5 5.820× 105 1.000
1.000× 106 4.180× 105 5.820× 105 0.50 V1,2 −1.172× 10−5 1.000× 106 1.000
2.400× 105 1.003× 105 1.397× 105 0.75 V1 −0.975× 10−5 1.003× 105 1.000
2.750× 105 1.150× 105 1.600× 105 0.75 V2 −0.987× 10−5 1.600× 105 1.000
3.000× 105 1.254× 105 1.746× 105 0.75 V1 −1.011× 10−5 1.254× 105 1.000
3.000× 105 1.254× 105 1.746× 105 0.75 V1,2 −0.987× 10−5 2.994× 105 0.998

Table 4: Energy per particle and angular momenta for various cases. Vi indicates that the vortex is
present in component i, while Ni is the number of particles of that component. For a vortex in both
Ni = N .

(a) (b) (c)

Figure 12: Energy per particle for different sized droplets at different confinements with a vortex present
in species 1, 2 or both. Dashed lines are a second degree polynomial fit. The fitted curves have limited
validity outside the range defined by the data points.
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(a) (b) (c)

Figure 13: Energy per particle for different sized droplets with a vortex Vi present in component(s) i at
different confinements. Dashed lines are a second degree polynomial fit. The fitted curves have limited
validity outside the range defined by the data points.

In Figure 14, we plot the energy per particle and angular momentum per particle of the species
with the vortex for a droplet containing N = 1.75× 105 atoms at confinement f = 0.5, with a
vortex l1 = 1 in the first species. From this, one can conclude that both the energy and angular
momentum reach equilibrium values and remain stable.

Figures 15 and 16 display the total and component density cross-sections for the same droplet.
In the 2D density plot in the xz-plane and the 1D section along the z-axis, the vortex line is
clearly visible. In the 1D projections along the x-axis, the filling of the vortex core can be
observed. When examining the densities along the z-axis, i.e., the vortex core, it is important to
note that the density of the component with the vortex vanishes in accordance with theoretical
predictions. As a result, the total density in the core equals the non-zero density of the vortex-
free species. Even though the core is filled, the vortex-free component does not possess a flat
profile but experiences a decrease in density. This is due to the vortex-free component being
"dragged" by the component with the vortex, as the system tends toward the optimal density
ratio ρ1/ρ2 =

√
a22/a11.

Figures 17 and 18 are analogous to the previous figures but depict droplets containing N =

1 × 106 atoms. The same conclusions hold, with additional insights possible due to the larger
particle number. Notably, one can observe the attainment of bulk density far from both the
droplet edge and the vortex. The increase in particle number causes the droplet to expand
perpendicularly to the squeezing, within the xy-plane, while maintaining the bulk density. This
behavior mirrors that observed in fully vortex-free droplets. The slight slant seen in the 1D plot
along the x-axis is a direct consequence of the rotation.

Figures 19 and 20 depict a droplet with N = 1.75×105 atoms at confinement f = 0.25, with
a vortex in each component. A droplet of this size cannot sustain a vortex in both species with
f = 0.50, necessitating an increase in confinement. Increased confinement generally allows
vortices to form and persist in smaller droplets, which will be discussed in more detail later.
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Figure 21 illustrates the effect of squeezing on the density profile of a droplet with 3 × 105

atoms, with a vortex in species 1. At stronger squeezing (i.e., lower factor f ), the density is able
to develop a bulk density region. Interestingly, the squeezing does not appear to affect the size
of the vortex core.

Figures 22 further showcase the effect of squeezing on the density with 2D plots. Stronger
squeezing increases the droplet radius in the xy-plane while reducing its thickness in the xz-
plane, as expected.

(a) Energy per particle during the simulation. (b) Angular momentum during the simulation.

Figure 14: Energy and angular momentum per particle during the simulation, showing stabilization of
the solution. Droplet with N = 1.75 × 105 atoms at confinement f = 0.5, with a vortex in the first
species, l1 = 1, and no vortex in the second, l2 = 0.

(a) Total droplet density in the xy-plane at z = 0. (b) Total droplet density in the xz-plane at y = 0.

Figure 15: Total droplet density in scattering length units for a drop with N = 1.75 × 105 atoms at
confinement f = 0.5, with a vortex in the first species, l1 = 1, and no vortex in the second, l2 = 0.
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(a) Total droplet density and component densities along
the x-axis in the droplet center.

(b) Total droplet density and component densities along
the z-axis in the droplet center. Notice that the density of

the second, votrex-free, component overlaps the total
density.

Figure 16: Component and total droplet densities in scattering length units for a drop with N = 1.75×
105 atoms at confinement f = 0.5, with a vortex in the first species, l1 = 1, and no vortex in the second,
l2 = 0.

(a) Total droplet density in the xy-plane at z = 0. (b) Total droplet density in the xz-plane at y = 0.

Figure 17: Total droplet density in scattering length units for a drop with N = 1 × 106 atoms at
confinement f = 0.5, with a vortex in the first species, l1 = 1, and no vortex in the second, l2 = 0.
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(a) Total droplet density and component densities along
the x-axis in the droplet center.

(b) Total droplet density and component densities along
the z-axis in the droplet center. Notice that the density of

the second, votrex-free, component overlaps the total
density.

Figure 18: Component and total droplet densities in scattering length units for a drop with N = 1×106

atoms at confinement f = 0.5, with a vortex in the first species, l1 = 1, and no vortex in the second,
l2 = 0.

(a) Total droplet density in the xy-plane at z = 0. (b) Total droplet density in the xz-plane at y = 0.

Figure 19: Total droplet density in scattering length units for a drop with N = 1.75 × 105 atoms at
confinement f = 0.25, with a vortex in both components, l1 = 1, l2 = 1.
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(a) Total droplet density and component densities along
the x-axis in the droplet center.

(b) Total droplet density and component densities along
the z-axis in the droplet center. Notice that the densities
both components are within numerical uncertanties zero

(check order of magnitude).

Figure 20: Component and total droplet densities in scattering length units for a drop with N = 1.75×
105 atoms at confinement f = 0.25, with a a vortex in both components, l1 = 1, l2 = 1.

Figure 21: Effect of squeezing on the total droplet density along the x-axis in the droplet center. Droplet
with N = 3× 105 at three confinements, f = 0.25, 0.50, 0.75, with a vortex in the first species, l1 = 1,
and no vortex in the second, l2 = 0.
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(a) Total droplet density in the xy-plane at z = 0. (b) Total droplet density in the xz-plane at y = 0.

(c) Total droplet density in the xy-plane at z = 0. (d) Total droplet density in the xz-plane at y = 0.

(e) Total droplet density in the xy-plane at z = 0. (f) Total droplet density in the xz-plane at y = 0.

Figure 22: Effect of squeezing on the total droplet density in the xy- and xz-planes. Droplet with
N = 3 × 105 at various confinements, with a vortex in the first species, l1 = 1, and no vortex in the
second, l2 = 0. The size of the simulation box is slightly larger in the case of strongest squeezing,
f = 0.25.
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7.3 Critical atom number for vortex hosting

The critical atom number typically refers to the minimum number of atoms required for a
droplet to be self-bound. This concept is particularly useful in experiments, as working with
smaller droplets — i.e., with fewer atoms — is generally more practical. While all the droplets
considered in this thesis are self-bound, not all of them can sustain a vortex. There is a minimum
number of atoms required for a vortex state to be a stable ground state, which we denote as the
critical atom number Nc, v. Table 5 presents our findings. Contrary to what the extrapolation
of the fits in Figures 12 and 13 might suggest, droplets do not exhibit stable vortex states for
arbitrarily low numbers of atoms.

The stability of vortices was tested with size increments of 104 atoms for a vortex in the
less numerous species 1, and 2.5 × 104 atoms for a vortex in species 2 or vortices in both
species. Based on the binding energy results, it was expected that vortices could be sustained in
smaller droplets when present in the less numerous species, species 1. Our findings confirm this
expectation. The critical atom number is slightly lower for a vortex in species 1 compared to a
vortex in species 2. Achieving a stable vortex in both components requires the largest number
of atoms, though this number is still less than the sum of the critical numbers for each individual
species.

Furthermore, when examining different confinements, it was observed that as the droplet
becomes more squeezed, fewer atoms are required to sustain a vortex. This result is intuitive,
as increased squeezing not only brings the system closer to a quasi-2D configuration, but also
strengthens the self-binding of the droplet. Consequently, such systems become easier to realize
experimentally.

Figure 23 illustrates the angular momentum per atom of the vortex component at squeezing
f = 0.50, with a vortex in species 2, close to the edge of vortex stability and the case of vortex
expulsion, which may lead to the droplet’s breakup. When N < Nc, v, the angular momentum
rapidly converges to zero, indicating the instability of the vortex state.

Confinement factor f = 0.25 f = 0.50 f = 0.75

Vortex in 1 7.00× 104 1.70× 105 2.40× 105

Vortex in 2 7.50× 104 1.75× 105 2.75× 105

Vortex in both 1.0× 105 2.00× 105 3.00× 105

Table 5: Critical atom number Nc, v for vortex states at different confinements f .
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(a) Simulation near the critical atom number. Number of
atoms in the droplet is N = 1.75× 105.

(b) Simulation below the critical atom number. Number
of atoms in the droplet is N = 1.50× 105.

Figure 23: Angular momentum per particle of the species with the vortex during the simulation, showing
stabilization of the solution and vortex expulsion. Droplet confined at f = 0.5, with no vortex in the first
species l1 = 0 and a vortex of charge l2 = 1 in the second species.

7.4 Larger quantization vortex

Higher quantization vortices are generally less energetically favorable. This can be understood
from equation (4.23), which shows that the energy depends on l2 (denoted as s2 in the equation).
This implies that it is more favorable to have two vortices of quantum number l = 1 rather than a
single vortex with l = 2. Figure 24 compares the density profiles for a droplet withN = 1×106

atoms at confinement f = 0.25, featuring an l = 1 vortex in the first species and an l = 2 vortex
in either species.

Interestingly, droplets with an l = 2 vortex do not break down as might be expected. The
emergence of l = 2 vortices warrants further and more time-consuming investigation to confirm
the results, including smaller time steps and finer discretization. If the large vortex breaks down
into two smaller vortices, they wouldn’t be centered, but rather offset. This posits the question
of whether there is space to facilitate such configurations. The stability of the l = 2 vortex
might be a finite-size effect that would disappear for a larger droplet.

Another noteworthy observation is that in the presence of an l = 2 vortex, there seems to be
minimal vortex core filling, while the droplet radius remains roughly the same. However, the
vortex core radius is significantly larger. Figures 25 and 26 display the 2D and 1D density
profiles, respectively. We observe that the vortex core filling is present but two orders of
magnitude smaller than that of l = 1 vortices (Figure 18).

Table 6 summarizes the energies, revealing that the higher quanta vortex state appears to be
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more self-bound. This observation requires further investigation. One possibility is that the state
is metastable and, under real-world conditions, would quickly break down. A first step in further
research would be to test this solution in real-time simulations and assess its robustness against
small perturbations. Angular momentum behaves in accordance with expectations, reaching a
value of 2ℏ per particle of the component with the vortex.

Figure 24: Comparison of the total droplet density along the x-axis in the droplet center. Droplet with
N = 1× 106 atoms at confinement f = 0.25, with a l1 = 1 vortex in the first species and cases of l = 2
vortex in the first or second species.

(a) Total droplet density in the xy-plane at z = 0. (b) Total droplet density in the xz-plane at y = 0.

Figure 25: Total droplet density in scattering length units for a drop with N = 1 × 106 atoms at
confinement f = 0.25, with a higher quanta vortex in the first species, l1 = 2, and no vortex in the
second, l2 = 0.
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(a) Total droplet density and component densities along
the x-axis in the droplet center.

(b) Total droplet density and component densities along
the z-axis in the droplet center. Notice that the density of

the second, votrex-free, component overlaps the total
density.

Figure 26: Component and total droplet densities in scattering length units for a drop with N = 1×106

atoms at confinement f = 0.25, with a higher quanta vortex in the first species, l1 = 2, and no vortex in
the second, l2 = 0.

N N1 N2 f Vi
(E − EH.O.)/N

[ℏ2/(ma211)]
L [ℏ]

L/Ni

[ℏ]

1.000× 106 4.180× 105 5.820× 105 0.25 V1, l1 = 1 −1.157× 10−5 4.180× 105 1.000

1.000× 106 4.180× 105 5.820× 105 0.25 V1, l1 = 2 −1.162× 10−5 8.360× 105 2.000

1.000× 106 4.180× 105 5.820× 105 0.25 V2, l2 = 2 −1.172× 10−5 1.164× 106 2.000

Table 6: Energy per particle and angular momenta for a droplet with N = 1×106 atoms at confinement
f = 0.25, with a l1 = 1 vortex in the first species and cases of l = 2 vortex in the first or second
species. Vi indicates that the vortex is present in component i, while Ni is the number of particles of that
component.
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8 Conclusion

This thesis investigated quantum droplets composed of two hyperfine states of potassium-39,
confined along one axis. The interactions were modeled using Density Functional Theory
(DFT) to account for both mean-field and Lee-Huang-Yang (LHY) contributions. The extended
Gross-Pitaevskii equation in the rotating frame was solved in imaginary time to perform the
calculations.

For non-rotating vortex-free droplets, the density profiles and energies were consistent with
previous calculations conducted using different methods. As demonstrated in that earlier
research [34], stronger squeezing results in a larger droplet area perpendicular to the squeezing
axis and a smaller one along it. Additionally, increasing the number of atoms causes the
droplet to expand perpendicularly to the squeezing, while maintaining bulk density.

We also explored various methods for calculating angular momentum. The computationally
fastest approach was found to be the use of Fast Fourier Transforms (FFT), which maintains a
level of accuracy comparable to that of directly implementing L̂z using numerical differentiation
with fourth-order accuracy O(h4).

When examining droplets with vortices, it was observed that placing a vortex in the less
numerous component of the mixture results in a more strongly bound droplet. In contrast, the
droplet is least bound when a vortex is present in both species, as expected. Stronger squeezing
leads to more strongly bound droplets. The angular momentum per atom in the species with
the vortex is 1ℏ, consistent with theoretical predictions. Vortex core filling by the vortex-free
species was observed, in line with expectations and previous studies [42, 47].

The critical number of atoms required for vortex stability was determined with precision
of 104 for the vortex in the less numerous, energetically favourable species, and 2.5 × 104

for other configurations. Consistent with expectations, a vortex can be sustained in the less
numerous component in smaller droplets. Higher confinement makes it easier to sustain a
vortex, potentially bringing such systems within the reach of experimental research.

Interestingly, vortices with larger quantization appear to be stable and more self-bound.
However, this result warrants further investigation, as it may be an artifact of the numerical
method used for the chosen parameters. It is possible that this vortex would break down if real
time propagation were used, rather than imaginary.

Overall, our findings suggest several potential avenues for future research. Refining this
approach in more confined quasi-2D systems could provide experimentally feasible setups for
studying vortices in self-bound quantum droplets, due to the increased stability of vortices in
highly confined systems. This would not only facilitate the exploration of vortex arrays but also
open up the potential for studying vortex-antivortex pairs with quantum numbers ±1. Another
avenue would be to further study the current setup, extending the consideration to real time
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propagation. The controlled creation and manipulation of vortices in droplets could be utilized
to simulate complex quantum systems or to develop new sensing techniques based on the precise
control of quantum states.

Additionally, vortices of higher quanta might be attainable in squeezed quantum droplets;
however, this requires further research to eliminate the possibility of a numerical artifact.
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Ivan Poparić: Vortices in squeezed Bose-Bose quantum droplets

301–304, 2018. doi: 10.1126/science.aao5686. URL
https://www.science.org/doi/abs/10.1126/science.aao5686.

[24] G. Semeghini, G. Ferioli, L. Masi, C. Mazzinghi, L. Wolswijk, F. Minardi, M. Modugno,
G. Modugno, M. Inguscio, and M. Fattori. Self-Bound Quantum Droplets of Atomic
Mixtures in Free Space. Phys. Rev. Lett., 120:235301, Jun 2018. doi:
10.1103/PhysRevLett.120.235301. URL
https://link.aps.org/doi/10.1103/PhysRevLett.120.235301.

[25] Russell J. Donnelly and Carlo F. Barenghi. The Observed Properties of Liquid Helium at
the Saturated Vapor Pressure. Journal of Physical and Chemical Reference Data, 27(6):
1217–1274, 11 1998. ISSN 0047-2689. doi: 10.1063/1.556028. URL
https://doi.org/10.1063/1.556028.

[26] D.R. Lide. CRC Handbook of Chemistry and Physics, 85th Edition. Number s. 85 in
CRC Handbook of Chemistry and Physics, 85th Ed. Taylor & Francis, 2004. ISBN
9780849304859. URL https://books.google.hr/books?id=WDll8hA006AC.

[27] Cheng Chin, Rudolf Grimm, Paul Julienne, and Eite Tiesinga. Feshbach resonances in
ultracold gases. Rev. Mod. Phys., 82:1225–1286, Apr 2010. doi:
10.1103/RevModPhys.82.1225. URL
https://link.aps.org/doi/10.1103/RevModPhys.82.1225.

[28] Igor Ferrier-Barbut, Holger Kadau, Matthias Schmitt, Matthias Wenzel, and Tilman Pfau.
Observation of Quantum Droplets in a Strongly Dipolar Bose Gas. Phys. Rev. Lett., 116:
215301, May 2016. doi: 10.1103/PhysRevLett.116.215301. URL
https://link.aps.org/doi/10.1103/PhysRevLett.116.215301.

[29] Matthias Schmitt, Matthias Wenzel, Fabian Böttcher, Igor Ferrier-Barbut, and Tilman
Pfau. Self-bound droplets of a dilute magnetic quantum liquid. Nature, 539(7628):
259–262, November 2016. ISSN 1476-4687. doi: 10.1038/nature20126. URL
http://doi.org/10.1038/nature20126.

[30] D. Baillie, R. M. Wilson, R. N. Bisset, and P. B. Blakie. Self-bound dipolar droplet: A
localized matter wave in free space. Phys. Rev. A, 94:021602, Aug 2016. doi:
10.1103/PhysRevA.94.021602. URL
https://link.aps.org/doi/10.1103/PhysRevA.94.021602.

[31] Fabian Böttcher, Jan-Niklas Schmidt, Matthias Wenzel, Jens Hertkorn, Mingyang Guo,
Tim Langen, and Tilman Pfau. Transient Supersolid Properties in an Array of Dipolar
Quantum Droplets. Phys. Rev. X, 9:011051, Mar 2019. doi:
10.1103/PhysRevX.9.011051. URL
https://link.aps.org/doi/10.1103/PhysRevX.9.011051.

58

https://www.science.org/doi/abs/10.1126/science.aao5686
https://link.aps.org/doi/10.1103/PhysRevLett.120.235301
https://doi.org/10.1063/1.556028
https://books.google.hr/books?id=WDll8hA006AC
https://link.aps.org/doi/10.1103/RevModPhys.82.1225
https://link.aps.org/doi/10.1103/PhysRevLett.116.215301
http://doi.org/10.1038/nature20126
https://link.aps.org/doi/10.1103/PhysRevA.94.021602
https://link.aps.org/doi/10.1103/PhysRevX.9.011051
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