
Object tracking and detection with YOLOv8 and
StrongSORT algorithms captured by drone

Farkaš, Luka

Master's thesis / Diplomski rad

2023

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of
Split, Faculty of Science / Sveučilište u Splitu, Prirodoslovno-matematički fakultet

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:166:238937

Rights / Prava: Attribution-NonCommercial 4.0 International / Imenovanje-Nekomercijalno 4.0
međunarodna

Download date / Datum preuzimanja: 2024-05-15

Repository / Repozitorij:

Repository of Faculty of Science

https://urn.nsk.hr/urn:nbn:hr:166:238937
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://repozitorij.pmfst.unist.hr
https://zir.nsk.hr/islandora/object/pmfst:1694
https://repozitorij.svkst.unist.hr/islandora/object/pmfst:1694
https://dabar.srce.hr/islandora/object/pmfst:1694

University of Split

Faculty of Science

GRADUATE THESIS

OBJECT TRACKING AND DETECTION WITH

YOLOV8 AND STRONGSORT ALGORITHMS

CAPTURED BY DRONE

Luka Farkaš

Split, August 2023.

Basic documentation card

Graduate thesis

University of Split

Faculty of Science

Department of Computer Science

Ruđera Boškovića 33, 21000 Split, Croatia

Object tracking and detection with YOLOv8 and

StrongSORT algorithms captured by drone

Luka Farkaš

Abstract

The popularity of computer vision tasks inspires the community to develop diverse

object detection and multiple object tracking algorithms. This work is mainly based on

the newest technologies in object detection (YOLOv8) and multiple object tracking

(StrongSORT). The evolution of YOLOv8 and StrongSORT is reviewed, and

algorithms are implemented into a unified model that detects and tracks objects in real-

time. To enhance this work, we proposed EL-YOLOv8 to improve object detection on

the VisDrone dataset which is a demanding object detection dataset for crowded and

small object scenarios. The thesis also contains detailed dataset methodology, training

approach, results, and model developed in Python.

Keywords: Object detection, object tracking, YOLOv8, StrongSORT, VisDrone,

small objects

Graduate thesis deposited in library of Faculty of science, University of Split

Thesis consists of: 39 pages, 27 figures, 5 tables and 70 references

Original language: English

Mentor: Saša Mladenović Ph.D. Full Professor, Faculty of Science, University

of Split

Reviewers: Saša Mladenović Ph.D. Full Professor, Faculty of Science, University

of Split

Goran Zaharija, Ph.D. Assistant Professor, Faculty of Science,

University of Split

Dino Nejašmić, Lecturer, Faculty of Science, University of Split

Thesis accepted: August 2023

Temeljna dokumentacijska kartica

Diplomski rad

Sveučilište u Splitu

Prirodoslovno-matematički fakultet

Odjel za informatiku

Ruđera Boškovića 33, 21000 Split, Croatia

Praćenje i detekcija objekata pomoću YOLOv8 i

StrongSORT algoritama snimanih dronom

Luka Farkaš

Sažetak

Popularnost zadataka računalnog vida nadahnjuje zajednicu da razvijaju raznovrsne

algoritme za detekciju i praćenje objekata. Ovaj rad je temeljen na najnovijim

tehnologijama u području detekcije objekata (YOLOv8) i praćenju objekata

(StrongSORT). Evolucija YOLOv8 i StrongSORT-a je istražena i algoritmi su

implementirani u jedinstven model za koji detektira i prati objekte u realnom vremenu.

Kako bi unaprijedili ovaj rad, predložili smo EL-YOLOv8 za poboljšanje detekcije na

VisDrone skupu podataka koji je zahtjevan skup podataka za detekciju objekata u

scenarijima gužve i detekcije malih objekata. Ovaj rad sadrži i detaljnu metodologiju

na skupu podataka, pristup uvježbavanju, rezultate i model razvijen u Pythonu.

Ključne riječi: detekcija objekata, praćenje objekata, YOLOv8, StrongSORT,

VisDrone, objekti malih dimenzija

Rad je pohranjen u knjižnici Prirodoslovno-matematičkog fakulteta, Sveučilišta u

Splitu

Rad sadrži: 39 stranica, 27 grafičkih prikaza, 5 tablica i 70 literaturnih navoda

Izvornik je na engleskom jeziku.

Mentor: Dr. sc. Saša Mladenović, redoviti profesor, Prirodoslovno-

matematički fakultet, Sveučilište u Splitu

Ocjenjivači: Dr. sc. Saša Mladenović, redoviti profesor, Prirodoslovno-

matematički fakultet, Sveučilište u Splitu

Dr. sc. Goran Zaharija, docent, Prirodoslovno-matematički fakultet,

Sveučilište u Splitu

Dino Nejašmić, predavač, Prirodoslovno-matematički fakultet,

Sveučilište u Splitu

Rad je prihvaćen: kolovoz 2023

Contents

Introduction ... 1

1. Literature review.. 2

1.1. Object detection ... 2

1.2. Multiple object tracking... 8

1.3. The dataset ... 13

1.3.1. Pre-trained checkpoints – MS COCO dataset ... 13

2. Technical overview of chosen algorithms and dataset .. 15

2.1. Object detection ... 15

2.1.1. YOLOv8 .. 15

2.1.2. CSP backbone .. 16

2.1.3. Head ... 17

2.1.4. The proposed model .. 18

2.2. Multiple object tracking... 20

2.2.1. SORT – simple online and real-time tracking ... 20

2.2.2. DeepSORT – simple online and real-time tracking with a deep association

metric ... 21

2.2.3. StrongSORT: Make DeepSORT Great Again ... 23

2.3. VisDrone 2019 ... 24

3. The dataset methodology ... 26

3.1. The dataset – VisDrone 2019 .. 26

4. The experiment .. 28

4.1. Training approach .. 28

4.2. Results ... 29

4.3. Model for object detection and tracking .. 34

Conclusion ... 39

Literature ... 40

List of figures .. 46

Declaration

of the independent preparation of the graduate thesis

I declare under full material and moral responsibility that I have independently

created this work and that it does not contain copied or duplicated parts of text from

the works of others, unless appropriately marked as quotations with the specified

source from which they were taken.

In Split, 25.08.2023. Luka Farkaš

 (student)

1

Introduction

Computer vision tasks, such as object detection and multiple object tracking rapidly grown

in recent years. Driven by advancements in deep learning, increased computational power,

and the growing field of application domains, these tasks have evolved into dynamic areas

of study and innovations. Thanks to the open-source community, we have an opportunity to

test algorithms and enhance their performance, both in general and for specific purposes.

This thesis relies on multiple object detection and tracking with an emphasis on real-time

processing. Drone imagery is also a fast-growing field in recent years, and it opens

opportunities to automate and speed up tasks that are demanding for people. By combining

computer vision algorithms and the possibilities of drone cameras, we take a step further

toward this goal. According to this, we reviewed the relevant literature and chose algorithms

to perform real-time multiple object detection and tracking. We selected the VisDrone

dataset, known for its complexity and demanding characteristics, to thoroughly evaluate the

effectiveness of our chosen algorithms in tackling the problems of small object detection and

tracking. Chosen algorithms and dataset are additionally reviewed in the section Technical

overview of the selected algorithms and dataset. To improve small object detection, we

proposed a new model based on YOLOv8. Additionally, we describe our dataset

methodology, training approach, and results. As a result of this thesis, we build the real-time

multiple object tracking model that is publicly available in [66]. The main idea of the

proposed model is to utilize it as a backbone for real-time multiple object tracking

applications.

2

1. Literature review

A search strategy of the literature was conducted to identify all previously published

literature review studies reporting on object detection and multiple object tracking, following

the recommendations of preferred reporting items for systematic reviews and meta-analyses

(PRISMA) [1]. Since the research resulted in studies published in 2022. and 2021. with a

total of 238 citations and 183 citations respectively, citations were analyzed following the

inclusion and exclusion criteria written in Table 1.1:

Exclusion criteria Inclusion criteria

Traditional methods and algorithms Deep learning-based approach

Not publicly available papers State-of-the-art algorithms

Publications before 2014. Algorithms and techniques

Algorithms for less common purposes Real-time processing

/ Performance evaluation and comparison

Table 1.1 Exclusion and inclusion criteria for literature review based on relevant articles.

The following section reviews the literature for object detection and multiple object tracking

(MOT) according to state-of-the-art approaches and techniques. This thesis is based on deep

learning detection and tracking, so the literature review includes deep learning-based

detection and tracking. Single object tracking is not considered as a separate problem but

MOT includes single object tracking when only one object is on scene. This modular

literature review approach provides a better insight into the algorithms and leads to simple

reproductivity with the possibility of expanding the review for a specific purpose. We select

relevant articles for the mentioned tasks and follow their literature as a backbone to review

state-of-the-art object detection and MOT.

1.1. Object detection

Object detection is the most crucial and challenging computer vision task which has gained

a rapidly increasing amount of attention in recent years. It is the basis for many other

computer vision tasks such as image segmentation, pose estimation, object tracking, etc.

3

Zhengxia Zou et al. proposed “Object Detection in 20 Years: A Survey” [2], which reviews

the light technical evolution, key technologies, and recent state-of-the-arts of object

detection from the 1990s to 2022. A comprehensive analysis of detection speed-up

techniques is also obtained in the survey. This section reviews state-of-the-art deep object

detectors. Traditional object detection methods are not included. Convolutional neural

networks (CNNs) showed the best performance for computer vision tasks, especially object

detection. Processing spatial relationships in images and extracting feature maps leads to

accurate detection and classification. Accordingly, CNN is the main architecture in which

we are interested.

The year 2014 is a milestone in CNN based on two-stage detectors at the occurrence of

region-based CNN (R-CNN). Ross Girshick et al. presented “Rich feature hierarchies for

accurate object detection and semantic segmentation” [3] that outperform competitors on

VOC 2012 dataset [4]. R-CNN is divided into three modules:

1. Region proposals: extracting category-independent regions that contain a set of

candidate detections.

2. Feature extraction: extracts 4096-dimensional feature vector from proposed regions.

This is accomplished by CNN with five convolutional and two fully connected layers.

The input is a 227x227 RGB image.

3. Classification: class-specific linear support vector machine algorithms are used to

classify each region. Finally, greedy non-maximum suppression fixes overlap with

undesirable Intersection over union (IoU) scoring.

Figure 1.1.1 describes the above-mentioned R-CNN modules.

Figure 1.1.1 Region-based object detection (two-stage object detection).

Since then, object detection has started to evolve rapidly. A high number of overlapped

proposals (over 2000 boxes) causes extremely slow detection. In a spatial pyramid pooling

network (SPPNet), He et al. [5] approach that problem by eliminating the fixed-size image

4

input. Feature maps are only once computed from the entire image. Furthermore, features

are pooled and prepared for training the detectors. This procedure is 20x faster than the R-

CNN approach with the same mean average precision (mAP) score. Fast R-CNN [6] comes

with recent innovations which speed up training and detection with significantly increasing

detection accuracy. Fast R-CNN utilizes very deep convolutional neural network (VGG16)

[7]. The faster R-CNN [8] finally presents a unified network that proposes regions and

performs detections. The proposed network is called the region proposal network (RPN).

RPN takes an image of any size as an input and outputs a set of proposals by utilizing a

sliding window approach. Each sliding window predicts region proposals mapped into a

fully connected layer. The fully connected layer is divided into regression and classification

layers. Moreover, anchor boxes are situated in region proposals in different scales and aspect

ratios. The described two-stage paradigm fixes the speed bottleneck of Fast R-CNN and

achieves state-of-the-art detection accuracy and speed using 300 proposals per image. The

mentioned CNN-based models utilize only the network’s top-layer features without

considering the deeper layers. Therefore, Lin et al. (2017) proposed “Feature Pyramid

Networks for Object Detection” (FPN) [9]. FPN is a top-down architecture with lateral

connections at all scales. It outputs feature maps at multiple levels using a fully convolutional

approach. Figure 1.1.2 illustrates the comparison between vanilla CNN and the idea of the

FPN approach for object detection. Faster R-CNN achieves state-of-the-art by utilizing FPN

as a building block.

Figure 1.1.2 Vanilla CNN and FPN for object detection

Feature pyramid representations were previously avoided because of time consumption and

memory costs. Meager speed performance and computational complexity of previously

5

mentioned two-stage object detectors are not desirable among engineering problems. A new

milestone occurred in 2015 with the advent of one-stage CNN-based detectors. You Only

Look Once (YOLO) is the first one-stage object detector proposed by Joseph Redmon et al.

(2015) [10]. The main advancement in YOLO is the detection speed, which is in real-time.

The fastest version of the YOLO algorithm reaches up to 155 frames per second (FPS) and

52.7% mAP on VOC07. The one-stage paradigm processes the entire image at once in a

single CNN, as shown in Figure 1.1.3.

Figure 1.1.3 One-stage object detection based on the YOLO network.

Due to real-time inference, prediction accuracy drops by a few percent in contrary to two-

stage object detectors. Additionally, YOLO became a popular framework for object

detection and Redmon et al. propose three versions of the YOLO altogether [10, 11, 12]. The

network is composed of 24 convolutional layers with max-pooling layers followed by 2 fully

connected layers. The input image is resized to 448x448 and processed in one step. After

Redmon dismissed the research on YOLO, the popularity of the YOLO algorithm continued.

Bochkovskiy et al. (2020) [13] proposed YOLOv4 as an optimal speed and accurate object

detector where recent improvements and augmentations enhance detection performance.

Test results showed that the cross-stage partial network (CSPNet) [14] is an optimal

backbone for the proposed object detector. YOLOv5 [15] appeared in the same year and

brought new improvements with faster training and inference. G. Jocher et al. built YOLOv5

in the PyTorch framework [67] and proposed a pre-trained model on the MS COCO [16]

dataset. The YOLOv5 framework is designed as an easy-to-use framework with lightweight

models optimized for real-time inference with high accuracy. The popularity of the YOLO

framework continued with YOLOv6 [17], YOLOv7[18], and YOLOv8 [19]. YOLOv6 is

intended as an industrial single-stage object detector proposed by Chuyi Li et al. (2022).

Wang, C.Y. et al. put more focus on training tips and tricks to improve detector performance

in YOLOv7 [18]. To sum up the YOLO story, G. Jochner et al. proposed YOLOv8 [19],

which presents an upgraded YOLOv5 with state-of-the-art object detection improvements.

6

A detailed comparison of YOLOv5 and YOLOv8 can be found in the section Technical

overview of the chosen algorithms.

Besides the YOLO algorithms, a Single-shot multi-box detector (SSD) [20] was also

presented in 2015 by Liu et al. VGG16 [7], an SSD backbone, outperforms YOLO in

inference speed and accuracy on the VOC07 dataset [4]. SSD network is based on multi-

scale feature maps, leading to better accuracy in small object detection scenarios. Due to the

trade-off between speed and accuracy, Lin et al. (2020) suggested a one-stage object detector

with an improved loss function. The proposed detector called RetinaNet [21] utilizes FPN

[9] as a backbone for the extraction of rich multiscale features. Focal loss is a novel loss

function that is an extension of cross-entropy loss. The proposed loss function handles large

class imbalances by focusing on misclassified objects. The so far mentioned detectors mostly

use anchor boxes to generate candidates for bounding boxes. Generating a huge amount of

anchor boxes is time-consuming due to the different anchor box scales. YOLOv5

implements an algorithm to calculate appropriate anchor box dimensions that additionally

extend training time. Hence, CornerNet [22] and CenterNet [23] advent to replace the anchor

box paradigm with the points paradigm. Law G. et Dend J. proposed CornerNet, which

predicts bounding boxes by top-left and bottom-right corners. Furthermore, a new pooling

layer, corner pooling, is designed for corner point localization. Zhou X. et al. (2019) have

gone a step further and proposed the detection of objects by single-point and then regress

other objects' properties like dimension, 3D location, orientation, and pose. CenterNet

achieves the best speed and accuracy tradeoff among one-stage object detectors on MS

COCO [16] dataset. Unlike CornerNet, CenterNet does not require a separate stage after

points estimation that combines groups of key points. The center point is predicted directly,

without any post-processing. Figure 1.1.4 shows the difference between anchor-based

predictions, corner-based predictions, and center-based predictions.

Figure 1.1.4 a) Anchor-based predictions – anchors with a sufficiently high IoU (green dashed box)

are candidates according to ground truth (black box). b) Corner points bounding box prediction. c)

Center-based bounding box prediction.

7

The key point object detection paradigm simplifies the repurpose of the object detection task

to pose estimation, 3D location, etc. Detection transformer (DETR) [24] presents a new

object detection approach with transformer neural network models. Transformers [25] are

mainly presented as a new architecture for machine translation tasks. Carion N. et al. (2020)

proposed an end-to-end object detection with transformers that combines CNN-based

backbone and transformer encoder-decoder architecture to predict objects. Figure 1.1.5

illustrates previously described architecture.

Figure 1.1.5 Transformer-based object detection.

This approach presents a new era in object detection without anchor boxes or the prediction

of anchor points. Deformable DETR was proposed by X. Zhu et al. in 2020 with deformable

attention modules. Test results have shown state-of-the-art performance on the MS COCO

dataset [16], especially in the detection of small objects.

Having explored the realm of state-of-the-art object detection algorithms, we now transition

our focus to deep learning MOT. MOT naturally follows the investigation of object

detection, as the detections are the crucial input for effective object tracking.

8

1.2. Multiple object tracking

Object detection provides information about the location and class of an image. According

to that, more complex tasks like crowd counting, distance and speed estimation, etc. are not

possible to accomplish. Upgrading the computer vision task to object tracking enables object

identification through frames, leading to considerably more possibilities for object

measuring and manipulation. Moreover, multiple object tracking (MOT) handles missing

detection through frames that complement object detection tasks. This section reviews state-

of-the-art deep-based MOT based on S. Pal et al. [26] (2021) “Deep learning in multi-object

detection and tracking: state of the art”. This thesis is primarily focused on detection-based

tracking so detection-free tracking will be excluded.

The detection-based tracking (DBT) (or tracking-by-detection) paradigm demands

detections to link them into trajectories. Hence, DBT relies on object detection quality. We

distinguishes between two modes of object tracking:

1. Online mode: frames are processed by only using current and previous frame data.

2. Offline mode: frames are processed by using arbitrary batches of frames.

Offline object tracking will not be considered. In recent years, deep architecture-based MOT

has become a popular approach. S. Pal et al. [26] classify them into three categories:

1. Deep network features-based MOT enhancement.

2. Deep network embedding.

3. Deep network (end-to-end) learning.

Multiple hypothesis tracking (MHT) (2015) is an example of the first category. MHT

utilizes features extracted from deep CNN and structures them into a hypothesis tree where

a scoring function determines the best hypothesis for the detected object [27]. A re-

identification approach is proposed in DeepSORT [28] where the Mahalonobis distance and

the minimum cosine distance determine which track corresponds to detection. DeepSORT

is explained in the section Technical overview of chosen algorithms. Furthermore, Siamese

CNN [29] was proposed in 2016 to determine finer similarities between the tracks and

detections. Two-stage feature learning with a combination of gradient boosting achieves

state-of-the-art performance in pedestrian tracking scenarios. Siamese CNN-based

architectures can also learn optical flow features, which are effective for improving the

performance of object tracking. Figure 1.2.1 shows the MOT approach by using Siamese

CNN.

9

Figure 1.2.1 MOT approach with Siamese CNN.

Tang S. et al. [30] have implemented a lifted multicut framework for graph-based

formulations that links person hypotheses with a re-identification to achieve state-of-the-art

performance in people tracking scenarios. Lifted multicut framework introduced lifted edges

whose task is to distinguish persons of similar appearance and enable long-range

information. By combining lifted and regular edges, two people far apart in time who have

similar appearances will be assigned as one if there exists a path along the regular edges.

VGG 16-based architecture is utilized to extract different body parts and then symmetrical

body parts scores are combined.

The second category contains deep CNNs as a core part of the entire tracking framework.

The main task of deep CNNs is to determine whether the detections belong to the same object

or not. L. Chen et al. [31] proposed a novel online MOT framework that utilizes deep CNN

to differentiate categories. Different layers extract features from different levels in CNN.

Top layer features provide rich information about categories, while lower layers usually

distinguish instances from the same category more accurately. The proposed framework

achieves state-of-the-art online tracking performance by combining category and instance

classifiers through a particle filter. Firstly, the location of each object is estimated by a

particle filter and appearance model for each frame. Secondly, a detection that does not

overlap with the tracked object is used to initialize the new object and retrieve the missing

object. Similarly to [31], Chu Q. et al. (2017) [32] proposed an MOT online tracker with a

spatial-temporal attention mechanism. The mentioned tracker handles occlusion with

10

learned spatial features using convolution and fully connected layers. Regions of interest are

shared with the classifier instead of the entire image to reduce computational complexity.

Furthermore, Pal, S. K. et al. [26] focus on multi-class deep SORT [33] as a deep metric-

based tracker that enhances the possibilities of deep SORT [28]. The main modification is

that the association of an object with tracks is limited within the same class. Objects of the

same class are obtained from the region-of-interest maps generated from G-RCNN [33].

Generally, associating detections with the track of the same class reduces computational

complexity and enhances tracking accuracy. MOT with quadruplet CNNs [34] utilize

Siamese and triplet networks to present quadruplet loss function. The proposed loss enforces

additional constraints within temporary close-located detections unlike the ones with

temporary gaps. The inputs in the proposed quadruplet CNN are four image patches and the

next step is distance measuring between these four patches. CNN for appearance feature

learning is based on AlexNet [35] with custom layers. A novel trajectory processing

approach was proposed by Ma C. et al. [36] in 2018. Features are extracted by RNN and

CNN, resulting in high-confidence tracklet candidates. Furthermore, tracklets from different

objects are split by the bi-directional gated recurrent unit (GRU) into several sub-tracklets.

The splitting (or cleaveining) step is illustrated in Figure 1.2.2.

Figure 1.2.2 Cleavening step with bi-directional GRU.

Then, the Siamese GRU-based reconnection method is utilized to link previously cut sub-

tracklets that belong to the same object. The described approach achieves state-of-the-art

11

performance by generating tracklet candidates and reconnecting them unlike previously

mentioned MOT approaches, where the main problem is to link detection to tracklet.

Generative learning-based MOT is utilized for parameter estimation to increase tracking

performance. Fang K. et al. (2018) proposed the MOT approach by using recurrent

autoregressive networks (RAN) [37]. The primary goal of RAN is to memorize the

characteristics of the tracked object. Multiple RANs are utilized to compute association

metrics between tracked objects and generated candidate detections with respect to

previously calculated motion and appearance features. GRU is embedded into RAN to

estimate recurrent parameters. Describing each object with a RAN that combines internal

and external memory, Fang K. et al. achieve state-of-the-art MOT performance. A novel

generative-based deep MOT is introduced in [70]. Fernando T. et al. proposed a lightweight

sequential generative adversarial network architecture for person localization. The first step

is to generate probability maps that classify the likelihood of each pixel from the input frame.

Then, the watershed segmentation technique [38] is utilized to segment out each connected

component. The next step is to predict the short-term and long-term trajectories. Short-term

trajectories are used for data association while long-term predictions update objects to handle

occlusions during the rendering of trajectories. The described long short-term memory

(LSTM) approach replaces the computationally expensive re-identification step and

outperforms deep learning-based approaches.

The third category includes end-to-end deep learning approaches where all stages are

included in a single framework. "In 2016, Milan A. et al. presented a fully deep learning-

based framework for Multiple Object Tracking (MOT) using Recurrent Neural Networks

(RNN) [39]." The main problem is divided into two blocks: a state prediction and update

block and a data association block. The first block is RNN based, capable of learning a

dynamic model of targets, correcting state distribution, and learning to identify or terminate

tracks based on state. The second block is LSTM based, and it calculates a matching matrix

between tracklets and detections. The limitations of the mentioned end-to-end deep-base

MOT are the lack of training images for the proposed model, only motion information being

taken into consideration, and tracklet initialization and termination which do not consider

context information. Therefore, Sadeghian A. et al. (2017) proposed “Tracking The

Untrackable” [40]. The proposed approach utilizes recurrent neural networks (RNNs) to

combine multiple clues for predicting long-term features. The RNN relies on appearance,

motion, and interaction feature extractors whose outputs are combined through another

12

RNN. The combined features are fed into a fully connected layer where the softmax classifier

determines whether the detections correspond to the tracklets. The mentioned MOT tracking

approach is presented in Figure 1.2.3.

Figure 1.2.3 MOT with three feature extractors.

In [41], the authors offer insights into the performance of the appearance feature descriptor

concerning the re-identification task. Kim C. et al. (2018) proposed an improved version of

[40] by utilizing bilinear LSTM. Unlike in [40], gating networks are introduced as input

feature extractors [41]. Gating is a type of selection where existing track proposals are not

updated with all of the newly arrived detections. Motion gating utilizes vanilla LSTM for

storing sequence information in a hidden state in which output is further processed into a

fully connected layer. Appearance gating utilizes LSTM, whose hidden state becomes a

weight factor for the appearance model of the specific object. The third model is a

combination of motion and appearance gating that additionally enhances the process.

Schulter S. et al. (2019) presented a solution to improve the association problem with the

network flows for MOT [42]. The solution is presented by a directed graph where each

detection is represented by two nodes and the edge between them. Additionally, in order to

initialize and terminate tracklets, a source node and a second node are introduced for each

tracklet. Each variable in the network is associated with a cost - the most crucial part which

interacts between initialization, existence, termination, and the association of detections.

As we move forward, our study introduces the VisDrone [43] dataset to measure the

performance of the selected algorithms with emphasis on small objects.

13

1.3. The dataset

Small object detection is the most challenging task in object detection. Due to the dimensions

of small objects, which are additionally resized for real-time processing, CNNs have

problems extracting these small-sized features. VisDrone is a dataset just like that, recorded

in crowded areas with a high number of instances per image. The dataset is taken from the

drone, which additionally aggravates the situation due to its moving camera. Drone imagery

could become helpful for various problems like traffic supervision, monitoring of hard-to-

reach areas, finding lost people in mountain areas, etc. We consider the VisDrone dataset as

a convenient one for traffic supervision and hope that real-time object tracking with drones

can open a lot of opportunities to improve, at least, traffic quality. When we are talking about

object detection datasets, Microsoft Common Objects in Context (MS COCO) [16] must be

mentioned as a standard to evaluate the performance of the object detection algorithm.

YOLOv8 models are publicly available and pre-trained on this dataset. Due to similarities

between classes in VisDrone and MS COCO, we will take into consideration pre-trained

models. The following section reviews the MS COCO and pre-trained models.

1.3.1. Pre-trained checkpoints – MS COCO dataset

The proposed Ultralytics YOLOv8 models are pre-trained on the MS COCO [16]. Pre-

trained models enable faster training on custom datasets with already learned features. The

MS COCO dataset contains 80 classes, including vehicles, people, animals, everyday

objects, etc. With more than 330,000 images and 1.5 million object instances, MS COCO is

the standard for performance evaluation on object detection algorithms. Tasks such as object

segmentation and key point detection are also included in the dataset [16]. The SUN [44]

and ImageNet [45] datasets have more categories, while MS COCO contains more instances

per category, which authors hypothesize as being more useful for learning complex models

with precise location determination. The main emphasis of the MS COCO dataset is on

objects in real contexts. The PASCAL VOC [46] and ImageNet [45] have less than 2

categories and 3 instances per image; MS COCO has on average 3.5 categories and 7.7

instances per image. Such distribution of instances demands more robust models for rich

feature extraction and localization [16]. The following pictures in Figure 1.3.1.1 present

ground truth (green bounding boxes) and predictions on the YOLOv8x pre-trained model

(colored bounding boxes with class and confidence scores).

14

Figure 1.3.1.1 Comparison between ground truth and YOLOv8x predictions (pre-trained on MS

COCO) on arbitrarily selected pictures from the VisDroneDET-2019 validation set.

Predictions from the extra-large model provide acceptable results in vehicle prediction.

However, in situations where objects are smaller and further away from the camera, the

results are disappointing. MS COCO pre-trained weights provide satisfactory detections on

traffic cameras for detecting vehicles. Hence, images and videos captured by drones demand

additional training data due to camera position and angle.

In this literature review, we have journeyed through the evolution of the state-of-the-art

object detector and multiple object trackers. Among the diverse algorithms of choice, we

have chosen to explore the capabilities of YOLOv8 and StrongSORT. Both selected

algorithms have evolved and been refined over time, representing the recent advancements

in the computer vision world. In the technical overview of the chosen algorithms, we delve

into the technical aspects of these two chosen components. Additionally, the section reviews

the VisDrone dataset that is selected to evaluate the efficiency of the selected algorithms and

YOLOv8 pre-trained weights on the MS COCO dataset.

15

2. Technical overview of chosen algorithms and

dataset

The previous section reviews the literature of deep learning-based object detectors and

trackers with a brief review of the technical aspects of each detector or tracker. Accordingly,

we additionally review the main methods that are utilized in this work with emphasis on

technical aspects. The following sections review YOLOv8 [19] by comparing it with

YOLOv5 and the evolution of SORT algorithms through DeepSORT and StrongSORT.

Additionally, to improve small object detection, we proposed a modified YOLOv8 model to

achieve better performance in small object detection scenarios. This section also includes a

technical overview of the VisDrone dataset and pre-trained YOLOv8 checkpoints.

2.1. Object detection

YOLO framework is popular and widespread since its presence in 2015. Fast and accurate

detections in one-stage bring opportunities to fine-tune models and utilize them in various

aspects of object detection problems. YOLOv8 as a currently last version of the YOLO

framework achieves state-of-the-art performance on the MS COCO dataset in terms of speed

and accuracy. The biggest advantage of the YOLOv8 is a rich framework that enables faster

workflow. Augmentations, hyperparameter tuning, automated dataset annotation, fast

training, simple installation and reproductivity, exports to other network formats, etc. are

features that stand out YOLOv8 from the other object detection frameworks. YOLOv5 also

contains the most of mentioned features but architectural improvements on YOLOv8 lead to

more accurate detections. Hence, we chose YOLOv8 for this thesis although it is still in

development.

2.1.1. YOLOv8

YOLOv8 (You Only Look Once version eight) is the eighth version of the YOLO algorithm

presented by Ultralytics. It comes in five different models, from nano to extra-large, as well

as YOLOv5. However, YOLOv8 supports object detection, image classification, instance

segmentation, and pose estimation, which is not supported in YOLOv5. The advantage of

the YOLOv8 is that it comes under the Ultralytics package where YOLOv3, v5, and v8 are

16

supported, while v8 is the only version that supports all four computer vision tasks. YOLOv8

consists of a backbone and head. The backbone is built from cross-stage partial (CSP) blocks,

similar to blocks in v5. The idea of the CSP blocks is to reduce computation by combining

features positioned at the beginning of the CSP block with features at the end of the block.

V5 and v8 models are popular for being accurate and real-time object detection models,

which CSP backbone is responsible for. The CSP blocks:

1. Strengthen the learning capability of the lightweight YOLOv8 models.

2. Remove computational bottlenecks which result in faster inference. Tests on

YOLOv3-based models show that CSP networks reduce 80% of computational

bottlenecks.

3. CSP architecture also reduces the utilization of RAM, which enables the utilization of

small CNN models on edge devices like Nvidia Jetson and similar [14].

The above mentioned advantages of the CSP backbone in v5 and v8 models make them

popular and widespread in computer vision tasks. The following comparison is mainly

related to the official YOLOv5 (7.0 version) [15] and Ultralytics (YOLOv8 – 8.0.106

version) [19] GitHub repositories.

2.1.2. CSP backbone

YOLOv5 utilizes a C3 bottleneck with 3 convolutional layers similar to YOLOv8 C2f

bottleneck with 2 convolutional layers. Convolutional layers are identical with sigmoid

linear units (SiLU), also called the swish activation. Despite YOLOv8 utilizing CSP blocks

with one less convolutional layer, it also has fewer CSP blocks in the stage. There is also a

split function that divides the tensor after convolution in the C2f block into 2 chunks. One

chunk is sent through the bottleneck, while the other just waits for concatenation with the

first one after the bottleneck. Comparison of the CSP blocks is in Figure 2.1.2.1.

17

Figure 2.1.2.1 C2f and C3 building CSP blocks of the YOLOv8 and YOLOv5.

YOLOv8 has 3,6,6,3 repeats of the CSP blocks in contrary to 3,6,9,3 in YOLOv5. These

stages present different levels of features called path aggregation networks (PANet) [47].

Furthermore, the last part of the backbone is the spatial pyramid pooling fast (SPPF), a

modified version of the spatial pyramid pooling network (SPP). The idea of SPP is to

compute feature maps from the entire image in one step and then crate the pooling step. This

method outperforms the R-CNN method on Pascal VOC 2007 [48]. SPPF is a faster version

of SPP due to fewer kernel sizes and fewer hidden channels. Both YOLOv5 and YOLOv8

are using the SPPF module as proposed by Glenn Jocher, CEO of Ultralytics. Figure 2.1.2.2

illustrates the SPPF module.

Figure 2.1.2.2 SPFF module.

2.1.3. Head

The first layer of the head in the YOLOv8 YAML () configuration file is the upsampling,

unlike YOLOv5 which has another convolutional layer before upsampling in the first two

stages of the head. The YOLOv8 head utilizes an anchor-free approach which directly

predicts the center of the bounding box. Anchor-free detections reduce the number of

generated prediction boxes that speed up the non-maximum suppression algorithm [49].

18

Objectness loss is no more part of the head in YOLOv8. The head consists of regression and

classification branches with the distributed focal loss (DFL) for regression (localization) and

binary cross-entropy (BCE) loss for classification [50]. DFL is intended for one-stage object

detectors with individual branches for localization and classification to improve detection

performance. DFL pushes the network to focus on the values near the ground truth label by

modeling box locations as general distributions [51]. Furthermore, the YOLOv8 head

utilizes a task-aligned assigner that combines both classification and localization information

to assign ground truth objects to predicted bounding boxes [50, 52].

2.1.4. The proposed model

The proposed model is based on the efficient-lightweight YOLO (EL-YOLO) [53]

architecture invented to improve the detection of small objects. Hu M. et al. (2023) designed

three models based on YOLOv5. These models have modified SPPF, called efficient SPP

(ESPP), and a new loss function, called an alpha-complete intersection over the union.

Figure 2.1.4.1 illustrates the ESPP module.

Figure 2.1.4.1 ESSP module proposed in EL-YOLO.

EL-YOLO achieves better performance on VisDrone than basic YOLOv5. The main idea is

to give a chance to initial features that could be lost in deeper stages. Generally, YOLOv8

takes P3, P4, and P5 pyramidal stages into further upsampling and concatenation. P1 and P2

as initial feature stages are not taken into further concatenation. VisDrone contains high-

resolution pictures (1920x1080) that are resized to 640x640 before the training step. Hence,

19

features from small objects can easily disappear. By including these pyramidal stages in

further computation, the chance to keep small object features is increased. Our model based

on the EL-YOLO contains the ESPP and EL-YOLO backbone. The proposed loss function

is not implemented in this architecture. The EL-YOLOv8 (ours) architecture is presented in

Figure 2.1.4.2.

Figure 2.1.4.2 EL-YOLOv8 architecture.

The model is implemented into the Ultralytics framework by adding the ESPP block and

changing the configuration file for the YOLOv8 models. As the source code for the EL-

YOLOv5 proposed in [53] is not publicly available, we implement our code based on

network visualization and description in [53]. With the proposed model we are ending the

technical overview of object detection and moving to MOT.

20

2.2. Multiple object tracking

Nowadays, fast and accurate tracking in real-time is accomplished with deep learning-based

trackers. Hardware improvements enable fast processing even with more neural networks

for one task. Therefore, we chose the StrongSORT tracker which is an improved DeepSORT.

Due to YOLOv8 possibilities to fine-tune detection, we select a tracker with a tracking-by-

detection paradigm. This approach is modular, and each component has an opportunity to

adapt to the desired task. We believe that the StrongSORT tracking approach is adaptable to

the various problems because of its re-identification metric which can be additionally fine-

tuned.

2.2.1. SORT – simple online and real-time tracking

SORT [54] was initially proposed by Alex Bewley et al. as a pragmatic approach to multiple

object tracking (MOT). With a combination of Kalman filtering [55] techniques and

Hungarian algorithms [56] as main tracking components, it outperforms other state-of-the-

art online trackers. SORT is mainly focused on frame-to-frame tracking, which means that

it considers only the current and previous frames to achieve tracking. The proposed object

tracker is based on detection quality, and its main task is to associate corresponding bounding

boxes on the current frame by adding an ID. The center and the aspect ratio of the detected

bounding box are the principal information for estimating velocity components via the

Kalman filter. To assign detections to existing targets, SORT calculates intersection-over-

union (IOU) distance for optimally assigning new predictions to existing targets. Occluded

objects that are not detected will lose their identity until being detected again. Due to poor

re-identification possibility, occluded objects will probably appear with new IDs. According

to the [54] benchmark, SORT outperforms online MOT competitors mostly by MOT

accuracy, false alarm per frame (FAF), the number of mostly lost trajectories, and the

number of false detections. An overview of the SORT MOT is in Figure 2.2.1.1.

21

Figure 2.2.1.1 SORT multiple object tracking approach.

2.2.2. DeepSORT – simple online and real-time tracking with a

deep association metric

N. Wojke et al. (2018) expand SORT algorithms with appearance information [28].

Appearance information enables the tracking of objects through longer periods of occlusions

and reduces the number of generated identities. Due to the high number of identity switches

caused by high estimation uncertainty, the association metric is replaced. Upgraded metric

relies on a convolutional neural network (CNN) trained on motion analysis and re-

identification dataset (MARS) [57]. MARS is a large-scale person re-identification dataset

that contains 1,261 identities and around 20,000 tracks. This approach brings more

information by combining motion and appearance information. The Kalman filtering

framework is almost the same as in SORT [54]. The main idea is to count the number of

frames while the track has not been associated with a measurement. Tracks that pass the pre-

defined maximum age are considered left from the scene and deleted from the track set.

Initialized tracks must be successfully associated with a measurement within the first three

frames, for they will otherwise be deleted. To overcome a conventional way to solve the

association between the predicted Kalman states and newly arrived measurements, authors

incorporate the squared Mahalonobis distance:

𝑑(1)(𝑖, 𝑗) = (𝑑𝑗 − 𝑦𝑖)
𝑇

𝑆𝑖
−1(𝑑𝑗 − 𝑦𝑖)

where the i-th track distribution is projected into measurement space by (𝑦𝑖, 𝑆𝑖) and j-th

bounding box by dj. The Mahalonobis distance measures how many standard deviations are

a detection away from the mean of track. Furthermore, associations that are unlikely are

excluded by thresholding the Mahalonobis distance at a 95% confidence interval of the

22

inverse χ2 distribution. Due to limitations caused by rapid displacements, N Wojke et al.

integrated the second metric into the assignment problem. The second metric is called

appearance descriptor, calculated from the detection bounding box. For each bounding box,

the proposed CNN calculates the appearance descriptor by generating a 128-dimensional

feature map. The feature map is preceded by a CNN consisting of two convolutional layers,

six residual blocks [58], and a dense layer. Due to this output vector, the smallest cosine

distance between tracks and new detections will determine which new detection corresponds

to the past track. Tracks that have disappeared for some frames, but are still less than the

maximum age, can thereby be correctly re-identified as existing ones. Figure 2.2.2.1

illustrates the flow of input image through an object detector whose output generates the

appearance feature descriptor through a simple CNN model [28].

Figure 2.2.2.1 Computing the appearance feature descriptor by pre-trained CNN.

To conclude the assignment problem, the Mahalonobis distance and cosine distance of

appearance feature descriptors are combined into a weighted sum:

𝑐𝑖,𝑗 = 𝜆𝑑(1)(𝑖, 𝑗) + (1 − 𝜆)𝑑(2)(𝑖, 𝑗)

where d(1) is squared Mahalonobis distance and d(2) is the cosine distance of appearance

feature descriptors. 𝜆 is a hyperparameter that controls the influence of each metric. The

testing result shows that DeepSORT outperforms competitors mostly in identity switches

and mostly lost (ML) which is the percentage of ground truth tracks that are tracked for at

most 20% of their lifetime. More detailed descriptions of networks, improvements, and

default tracking parameters are found in [28].

23

2.2.3. StrongSORT: Make DeepSORT Great Again

The domination of the MOT tracking-by-detection approach inspired Yunhao Du et al.

(2022) to improve the standard DeepSORT (StrongSORT) and propose novel and

lightweight algorithms (StrongSORT++) [59]. Due to outdated techniques, DeepSORT

underperformed its state-of-the-art competitors in the past. The simple CNN model is

replaced by BoT [60] with ResNeSt50 [61] as the backbone, and it was pre-trained on the

Duke University multi-target multi-camera reidentification dataset (DukeMTCM-reID) [62].

ResNetSt (Hang Zhang et al., 2020) is presented as a modularized network structure that

applies channel-wise attention through different network branches. This approach allows for

capturing cross-feature interactions and learning diverse representations [61]. MTMC re-ID

consists of more than 2,700 identities within 85 minutes through multi-camera, leading to

more distinctive features. Furthermore, the appearance state is updated in an exponential

moving average (EMA) manner that also reduces the time consumption, unlike the feature

bank mechanism that utilizes features of last 100 frames. The enhanced correlation

coefficient (ECC) [63] is adopted to fix camera motion compensation. The ECC is a low

computational complexity solution for more accurate alignments under noisy conditions and

photometric distortions. The vanilla Kalman filter is replaced by the noise scale adaptive

(NSA) Kalman algorithm proposed in [64] due to its susceptibility to low-quality detections

to low-quality detections. The NSA Kalman algorithm adaptively updates the noise

covariance k:

Ŕ𝑘 = (1 − c𝑘)R𝑘

where Rk is the measurement covariance and ck is the detection confidence score at state k.

During the matching, both appearances cost Aa and motion cost Am are being considered into

cost matrix C as a weighted sum as follows:

𝐶 = 𝜆𝐴𝑎 + (1 − 𝜆)𝐴𝑚

𝜆 is a weight factor set to 0.98. To make the tracker stronger and more robust, the matching

cascade is replaced by vanilla global linear assignment. StrongSORT++ brings new

algorithms such as the appearance-free link (AFLink,) which stands for the first global link

model without appearance information, and Gaussian-smoothed interpolation (GSI) which

deals with missing detections. A more detailed description of StrongSORT++ is referenced

in [59]. The framework comparison is in Figure 2.2.3.1.

24

Figure 2.2.3.1 DeepSORT and StrongSORT MOT framework comparison.

2.3. VisDrone 2019

The dataset chosen for multiple object tracking purposes is VisDrone 2019. VisDrone 2019

dataset contains 288 videos, 261,908 frames, and 10,209 static images. The dataset is

captured by various drone cameras in 14 different cities in China by the AISKYEYE team.

Frames are manually annotated with more than 2.6 million bounding boxes. The dataset is

focused on pedestrians and vehicles divided into 10 classes: pedestrian, person, car, van, bus,

truck, motor, bicycle, awning tricycle, and tricycle. Pedestrians are humans who maintain a

standing pose or walk while others are considered as class people.

VisDroneDET – 2019 is the dataset prepared for the object detection tasks we are interested

in. It consists of 8,599 images with more than 540,000 bounding boxes. The training set

consists of 6,471 images, the validation set contains 548 images, and 1580 images are

intended for the test set [43]. The fact that the number of images in the test set is almost three

times higher than in the validation set may indicate that VisDroneDET – 2019 is designed

for challenge purposes. Figure 2.3.1 illustrates a histogram of VisDroneDET 2019 instances

per class [43].

25

Figure 2.3.1 Instances of VisDroneDET-2019 detection dataset generated at the start of the training

by the YOLOv8.

26

3. The dataset methodology

The dataset methodology includes a sampling approach to demonstrate models’ behavior on

the dataset samples. Sampling is needed to facilitate the process of selecting the most suitable

models for the training on the entire dataset. This methodology approach is mainly chosen

to enable reproductivity of the entire experiment.

3.1. The dataset – VisDrone 2019

VisDrone 2019 object detection dataset is selected because of its availability. The latest

versions, such as VisDrone 2021, demand registration on the main page, which is avoided

due to the reproducibility of the experiment. The dataset is downloaded from the official

GitHub repository [43]. The downloaded dataset contains annotations in VisDrone format

which need to be converted into YOLOv8 format, where each file represents normalized

annotations on the corresponding image. Fortunately, Ultralytics provides Python scripts for

downloading and converting VisDrone annotations into YOLOv8 format [19]. Due to

hardware constraints, the train set is randomly divided into a base sample and five secondary

samples. Each sample contains 10% of the train set, randomly selected by the Python random

module [65]. Train samples enable faster training leading to a higher possibility of tuning

hyperparameters. Metrics comparison in Figure 3.1.1 shows that each sample is a

representative sample for experiments.

Figure 3.1.1 Histogram of metric comparison for the base sample and secondary samples.

Hence, we can assume that samples are representative samples of the dataset.

27

The command line code in Code 3.1.1 is used to train each sample for 20 epochs:

yolo detect train data="data_yaml_path" model=yolov8s.pt

epochs=20 imgsz=640 batch=-1 project="VisDrone" name=sampleN

seed=123 val=false cache=true workers=3

 Code 3.1.1 – Command line code used for the sample training.

The parameter val=False will validate the best weights after the training. The number of

epochs is 20 due to the pre-trained yolov8s.pt model that enables fast convergence. The batch

size is set to be automatically calculated and the batch size of 16 is the most suitable for used

GPU (T4 with 15GB in Google Colaboratory). The next section describes the experiment

which includes training, results, and the final model for real-time detection and tracking.

28

4. The experiment

After selecting the candidate models, the experiment section contains an explanation of the

training approach for the selected models. The results sections compare the efficiency of the

validation set with metrics and examples. The last section presents an approach to building

a model that detects and tracks objects in real-time. The programming language,

frameworks, packages, and modules are contained in the last section.

4.1. Training approach

Due to the easy-to-use Ultralytics framework containing configuration files for YOLOv8

models, three models are trained to achieve the MOT tracking model:

1. Pre-trained MS COCO weights: pre-trained models enable fast convergence due to

already learned features from MS COCO classes. Training on base and secondary

samples shows that the model achieves the best results within 20 epochs.

2. EL-YOLOv8s (ours): our model achieves slightly worse results than the pre-trained

YOLOv8s model through 100 epochs on the base sample. Due to that, we trained our

model for an additional 100 epochs and presented performance in the results section.

3. YOLOv8-p2 + ESPP: we modified YOLOv8 which includes the p2 stage into further

computation as EL-YOLO but blocks and modules are constructed as a basic

YOLOv8. Additionally, we implement ESPP into YOLOv8-p2 and test it on the base

sample. This model is also trained for 100 + 100 epochs.

The YOLOv8 (ultralytics) framework is still under development so the training is not

optimized. RTX 3060 (6GB) mobile can handle batch of size 8 and more than 30 minutes is

required per epoch which is extremely slow. Training in Google Colaboratory brings new

types of problems like constant GPU memory problems. Free T4 with 15 GB cannot handle

a batch of size greater than 6, although setting batch=-1 parameter calculates a batch size of

32 as ideal for the proposed GPU. Gradient Paperspace also provides GPUs within

notebooks similar to Google Colaboratory. Hence, the third option for training is via gradient

notebooks. The standard YOLOv8s model with pre-trained weights is trained in Google

Colaboratory while models that demand training from scratch are trained in Gradient

notebooks.

29

Code 4.1.1 is used to train the models.

yolo detect train model=model.yaml/model.pt data="data.yaml"

epochs=100 imgsz=640 batch=16 project="Drone" name="name"

seed=123 cache=True

 Code 4.1.1 – Command line code for training models in Gradient Paperspace terminal.

4.2. Results

Training results show the performance of the YOLOv8 and its modified versions. Table 4.2.1

contains data about modified network layers, parameters, and results.

 Metric

Model

Precision
(%)

Recall

(%)

mAP50

(%)

mAP50:95

(%)
Layers

Parameters
(M)

YOLOv8s 55.3 42.0 44.4 27.1 225 11.1

YOLOv8s-P2 +
ESPP

52.2 42.3 42.9 26.2 279 11.7

EL-YOLOv8s 49.5 40.2 41.3 25.2 274 9.5

Table 4.2.1 YOLOv8s-based architecture summary and metrics.

Results are evaluated on the validation set after 100 epochs. The model with pre-trained

weights outperforms the proposed models. According to parameters in the network, EL-

YOLOv8s has a slightly faster inference speed.

Figure 4.2.1 mAP50 metric comparison with peak value (green dot and red value)

30

Figure 4.2.1 shows slightly higher mAP50 peaks due to the fitness function that determines

the best model weights as shown in Code 4.2.1.

def fitness(self):

w = [0.0, 0.0, 0.1, 0.9]# weights for [P, R, mAP@0.5,

mAP@0.5:0.95]

 return (np.array(self.mean_results()) * w).sum()

Code 4.2.1 YOLOv8 fitness function that determines the best weights.

Consequently, mAP50 contributes 10% while mAP50:95 contributes 90% to the combined

evaluation. Furthermore, EL-YOLOv8s and YOLOv8s-p2 + ESPP are trained for an

additional 100 epochs due to the previous training from scratch. Additional training is started

with pre-trained weights for each model with the same training strategy. Results are

presented in Figure 4.2.2.

Figure 4.2.2 Training on EL-YOLOv8s and YOLOv8s-p2+ESPP for additional 100 epochs.

The experiments with YOLOv8-based models have no significant difference in metrics. The

efficiency of the proposed EL-YOLOv8s and YOLOv8-ps + ESPP got closer to the basic

pre-trained YOLOv8s model. Results with an additional 100 epoch are in table 4.2.2.

 Metric

Model

Precision
(%)

Recall

(%)

mAP50

(%)

mAP50:95

(%)
Layers

Parameters
(M)

YOLOv8s 55.3 42.0 44.4 27.1 225 11.1

YOLOv8s-P2 +
ESPP

54.6 42.7 44.3 26.9 279 11.7

EL-YOLOv8s 51.0 42.2 43.8 26.5 274 9.5

Table 4.2.2 Results after additional 100 epochs of training for EL-YOLOv8s and YOLOv8s-p2 +

ESPP.

31

Although EL-YOLOv8s has the lowest value for mAP50:95, it has approximately 1.6 million

parameters less than the other proposed models. Accordingly, EL-YOLOv8s is selected for

further experiments for real-time MOT. Table 4.2.3 presents metrics evaluated for selected

EL-YOLOv8 for each class.

 Class

Metric
All Pedestrian People Bicycle Car Van Truck Tricycle

Awning-
tricycle

Bus Motor

Precision
(%)

51.0 54.1 54.4 28.7 75.1 52.9 46.1 44.5 27.7 69.6 57.2

Recall
(%)

43.2 48.6 38.1 17.0 82.6 51.0 39.2 32.7 20.1 53.4 49.0

mAP50
(%)

48.3 50.1 40.7 14.9 85.5 50.4 37.1 31.6 16.1 61.5 50.5

mAP50:95
(%)

26.5 23.9 16.6 6.7 62.2 36.1 24.4 18.2 9.6 44.1 23.5

Table 4.2.3 Metric evaluated for each class in the dataset with the EL-YOLOv8s model.

According to Table 4, the class bicycle and awning-tricycle ruin the performance of the

model. Tricycle is a bit strange class and awning-tricycle sounds like a subclass of tricycle.

The VisDrone [43] dataset is captured in China, and we believe these classes are specific to

this country. Therefore, we decided to merge bicycle, tricycle, and awning-tricycle into a

single-class bicycle. The model with 10 classes where two classes have significantly lower

scores leads to less accurate detections. Mentioned classes are also less presented in the

dataset (Figure 15). Additionally, these classes are not the most significant in drone traffic

detection scenarios. Classes pedestrian and people are obvious classes that share the same

features but in different contexts in traffic scenarios. Due to that, we repeat the same training

strategy with the dataset where tricycle and awning-tricycle labels are mapped into class

bicycle and class people is mapped into class pedestrian. The results are in Table 4.2.4.

32

 Class

Metric
All Pedestrian Bicycle Car Van Truck Bus Motor

Precision
(%)

61.8 64.5 46.8 78.0 56.1 50.7 74.3 62.5

Recall
(%)

49.1 51.3 26.8 80.7 49.7 39.6 50.2 45.4

mAP50
(%)

52.8 56.2 28.6 84.0 50.1 38.5 61.8 50.5

mAP50:95
(%)

33.0 24.9 15.6 61.3 36.0 25.3 44.3 23.6

Table 4.2.4 Metric evaluated on the EL-YOLOv8s with classes tricycle and awning-tricycle

merged into the class bicycle.

Now the model evaluates higher mAP50:95 for 4.0% overall classes and bicycle is still the

class with the lowest metrics. To summarize the Results section, Figure 4.2.3 visualizes

feature maps generated by the SPPF and ESPP blocks.

Figure 4.2.3 a) input image from the VisDroneDET-2019 validation set. b) SPPF feature maps

(YOLOv8s). c) ESPP feature maps (EL-YOLOv8s).

33

SPPF output feature maps put focus on wider area of object features while ESPP relies on

searching for individual small object features. A few predictions on the test set, that is not

utilized for training or metrics evaluation, are shown in Figure 4.2.4.

Figure 4.2.4 Predictions on test set images with EL-YOLOv8s which has merged classes.

34

4.3. Model for object detection and tracking

This work is publicly available in [66]. Python is the most popular programming language,

especially in the Machine learning field and it is selected for this purpose. YOLOv8 and

StrongSORT are implemented in Python, so there is no need for additional implementation.

The main python libraries and frameworks utilized for this purpose are:

• Ultralytics [19] contains YOLOv8 models with corresponding scripts for training,

validation, test etc. It enables computer vision workflow in Python code or by using

command-line interface (CLI). Besides object detections, the Ultralytics framework

provides the possibility to try diverse computer vision tasks such as instance

segmentation, object tracking, pose estimation and image classification. The

framework also contains YOLOv5 and YOLOv3 models and it is implemented in

PyTorch.

• PyTorch is a framework that accelerates deep learning on the graphics processing unit

(GPU). Having Nvidia GPU which supports the Cuda toolkit is necessary to utilize

GPU acceleration. By installing the Ultralytics package, PyTorch is contained in

dependencies, and modules for the CPU will be installed. According to that, PyTorch

for GPU should be installed first [67].

• Boxmot is a collection of state-of-the-art object trackers which includes various

trackers for the tracking-by-detection paradigm. It simplifies utilizing trackers such as

StrongSORT with YOLOv8 due to the number of algorithms and additional neural

networks for re-identification purposes. This work is mainly focused on StrongSORT

object tracking, though utilizing other trackers would not be complicated [68].

• OpenCV is the computer vision and machine learning library that provides common

infrastructures for applications. It provides classes and functions to struggle with the

streams and videos that are necessary for end-to-end object detection and tracking

[69].

Detailed installation instructions are in [66]. After preparing a virtual environment with

necessary dependencies, the object-oriented paradigm is chosen as a programming approach

in Python. Simple and straightforward object detection and tracking contain only one main

class ObjectDetection(). This class contains the basic functions for model loading and

prediction, VideoCapture(), and tracker initialization. The idea is to construct a simple

general object detection and tracking model that could be easily upgraded for a specific

purpose. We use the built-in __call__() function that handles the model pipeline. Firstly,

35

ObjectDetection() initializes the model and tracker with corresponding weights for detection

and re-identification. Re-identification weights can be found on the Boxmot GitHub page in

the ReID model zoo section. When the tracker and detector are ready, VideoCapture() opens

the received video file, and inference starts. We detect objects for each frame that is

successfully loaded by VideoCapture() and prepare data for the tracker. The tracker joins

IDs to the bounding boxes and then draws them on the frame. To measure the performance,

we calculated the time needed to load the frame, do detections and tracking on the frame,

and visualize bounding boxes. Furthermore, time calculated by the Python performance

counter is converted into frames per second FPS. Figure 4.3.1 shows a straightforward object

detection and tracking approach with FPS calculation.

Figure 4.3.1 The pipeline of the object detection and tracking model with main hyperparameters.

To validate our model on videos we downloaded the VisDrone 2019 detection in videos

validation set which contains 8 folders with sequences from the video. Sequences are

converted to video by merging frame by frame with OpenCV’s VideoWriter() class by using

FPS rate of 20 and the same video resolution as image dimensions. FPS of 20 produces the

most realistic objects movement speed and we chose it without additional testing. The reason

why we are not training the model on this dataset is because of the images and label structure.

Ground truth labels are in a single textual file for each sequence. Sequence consists of

multiple images so searching for corresponding labels could be demanding. MOT metrics

are not evaluated because we want to achieve real-time object detection and tracking in

general instead of outperforming competitors on VisDrone tracking. The following figures

show tracking results on the VisDrone videos:

36

Figure 4.3.2 10th frame extracted from the video1.

Figure 4.3.3 150th frame extracted from the video 1.

37

Figure 4.3.4 10th frame from the video 2.

Figure 4.3.5 150th frame from video 2.

38

As we can see, calculated FPS (top left corner) is not so real-time, but it depends mostly on

the hardware. For the inference on videos, we utilize:

• Intel(R) Core (TM) i7-11800H @ 2.30GHz

• NVIDIA GeForce RTX 3060 Laptop GPU, 6GB

• 16,0 GB RAM

• CUDA Version: 12.2

• Windows 10 Education

Speed inference also depends on the number of objects that need to be further processed.

The traffic situation in China usually with a high number of vehicles and other traffic

scenarios with a lower number of objects leads to a higher FPS rate. According to Figures

4.3.2, 4.3.3, 4.3.4, and 4.3.5, we can conclude that YOLOv8 and StrongSORT detect and

track most objects even in drone-moving scenarios. Re-identification has difficulties with

similar objects that overlap in video. Due to that, some objects could be misidentified.

Frames are in high resolution and traffic is crowded, so it would be exhausting to comment

on each trajectory.

39

Conclusion

Reviewing the literature, we adopted the YOLOv8 algorithm and a StrongSORT framework

as the most suitable to achieve the goal of this study: Real-time multiple object tracking for

the objects captured by drone. With the help of the VisDrone 2019 dataset, we prepare

weights for our goal. We additionally proposed a new EL-YOLOv8 model that unfortunately

did not outperform the basic YOLOv8 algorithm in metrics. The difference in mAP50:95 is

only 0.6%, but our model has 1.6 million parameters less (~15% less). Hence, we chose EL-

YOLOv8 as a model to accomplish real-time tracking. It is important to note that pre-trained

YOLOv8 models demonstrate a considerably faster convergence than the models trained

from scratch. Therefore, our model required additional time to achieve the best

performances. To present our overall real-tracking model, we built it in Python and measured

how much time the model needs to process in the period of loading a frame, object detection,

and tracking step, and the period ends after bounding boxes visualization on the frame. The

metric is additionally converted to frames per second and visualized on each frame. During

the testing phase on VisDrone videos, the model's performance was notable in identifying

challenges posed by crowded scenarios. However, it is anticipated that an increase in

processing demands for detection, tracking, and visualization tasks could result in a potential

slowdown of the model's overall performance. To conclude this thesis, we added some

crowded scenario images and briefly described them. Due to the high image resolution and

crowded scenario, our model is not the fastest one, but we believe that less crowded

situations and hardware more powerful than mobile GPU would speed up inference.

Therefore, our model is publicly available, and everyone can test their own weights and

trackers and improve the model with even more computer vision tasks.

40

Literature

[1] Systematic Reviews (OPEN ACCESS) Page MJ, McKenzie JE, Bossuyt PM,

Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an

updated guideline for reporting systematic reviews. Systematic Reviews 2021;10:89

[2] Zou, Z., Chen, K., Shi, Z., Guo, Y., & Ye, J. (2023). Object Detection in 20 Years: A

Survey. Proceedings of the IEEE, 111(3), 257–276.

https://doi.org/10.1109/JPROC.2023.3238524

[3] Girshick, R., Donahue, J., Darrell, T., & Malik, J. (2014). Rich feature hierarchies for

accurate object detection and semantic segmentation. Proceedings of the IEEE

Computer Society Conference on Computer Vision and Pattern Recognition, 580–

587. https://doi.org/10.1109/CVPR.2014.81

[4] Everingham, M., Eslami, S. M. A., van Gool, L., Williams, C. K. I., Winn, J., &

Zisserman, A. (2015). The Pascal Visual Object Classes Challenge: A Retrospective.

International Journal of Computer Vision, 111(1), 98–136.

https://doi.org/10.1007/s11263-014-0733-5

[5] He, K., Zhang, X., Ren, S., & Sun, J. (2014). LNCS 8691 - Spatial Pyramid Pooling

in Deep Convolutional Networks for Visual Recognition.

http://arxiv.org/abs/1406.4729v1.

[6] R. Girshick, “Fast R-CNN,” in Proc. IEEE Int. Conf. Comput. Vis. (ICCV), Dec.

2015, pp. 1440–1448.

[7] Simonyan, K., & Zisserman, A. (2014). Very Deep Convolutional Networks for

Large-Scale Image Recognition. http://arxiv.org/abs/1409.1556

[8] S. Ren, K. He, R. Girshick and J. Sun, "Faster R-CNN: Towards Real-Time Object

Detection with Region Proposal Networks," in IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. 39, no. 6, pp. 1137-1149, 1 June 2017, doi:

10.1109/TPAMI.2016.2577031.

[9] T. -Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan and S. Belongie, "Feature

Pyramid Networks for Object Detection," 2017 IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 2017, pp. 936-944,

doi: 10.1109/CVPR.2017.106.

[10] J. Redmon, S. Divvala, R. Girshick and A. Farhadi, "You Only Look Once: Unified,

Real-Time Object Detection," 2016 IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), Las Vegas, NV, USA, 2016, pp. 779-788, doi:

10.1109/CVPR.2016.91.

[11] J. Redmon and A. Farhadi, "YOLO9000: Better, Faster, Stronger," 2017 IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI,

USA, 2017, pp. 6517-6525, doi: 10.1109/CVPR.2017.690.

[12] Redmon, J. & Farhadi, A. (2018). YOLOv3: An Incremental Improvement (cite

arxiv:1804.02767 Comment: Tech Report)

[13] Bochkovskiy, A., Wang, C.-Y., & Liao, H.-Y. M. (2020). YOLOv4: Optimal Speed

and Accuracy of Object Detection. http://arxiv.org/abs/2004.10934

https://systematicreviewsjournal.biomedcentral.com/
https://systematicreviewsjournal.biomedcentral.com/articles/10.1186/s13643-021-01626-4
https://doi.org/10.1109/JPROC.2023.3238524
https://doi.org/10.1109/CVPR.2014.81
https://doi.org/10.1007/s11263-014-0733-5
http://arxiv.org/abs/1406.4729v1
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/2004.10934

41

[14] Wang, C. Y., Mark Liao, H. Y., Wu, Y. H., Chen, P. Y., Hsieh, J. W., & Yeh, I. H.

(2020). CSPNet: A new backbone that can enhance learning capability of CNN.

IEEE Computer Society Conference on Computer Vision and Pattern Recognition

Workshops, 2020-June, 1571–1580.

https://doi.org/10.1109/CVPRW50498.2020.00203

[15] Jocher, G. (2020). Ultralytics YOLOv5 (Version 7.0) [Software]. AGPL-3.0.

https://github.com/ultralytics/yolov5. doi: 10.5281/zenodo.3908559

[16] Lin, TY. et al. (2014). Microsoft COCO: Common Objects in Context. In: Fleet, D.,

Pajdla, T., Schiele, B., Tuytelaars, T. (eds) Computer Vision – ECCV 2014. ECCV

2014. Lecture Notes in Computer Science, vol 8693. Springer, Cham.

https://doi.org/10.1007/978-3-319-10602-1_48

[17] Li, C., Li, L., Jiang, H., Weng, K., Geng, Y., Li, L., Ke, Z., Li, Q., Cheng, M., Nie,

W., Li, Y., Zhang, B., Liang, Y., Zhou, L., Xu, X., Chu, X., Wei, X., & Wei, X.

(2022). YOLOv6: A Single-Stage Object Detection Framework for Industrial

Applications. http://arxiv.org/abs/2209.02976

[18] Wang, C.-Y., Bochkovskiy, A., & Liao, H.-Y. M. YOLOv7: Trainable bag-of-

freebies sets new state-of-the-art for real-time object detectors. 2022,

arXiv:2207.02696. https://github.com/

[19] Jocher, G., Chaurasia, A., & Qiu, J. (2023). Ultralytics YOLOv8 (Version 8.0.0)

[Software]. AGPL-3.0. https://github.com/ultralytics/ultralytics.

[20] Liu, W. et al. (2016). SSD: Single Shot MultiBox Detector. In: Leibe, B., Matas, J.,

Sebe, N., Welling, M. (eds) Computer Vision – ECCV 2016. ECCV 2016. Lecture

Notes in Computer Science(), vol 9905. Springer, Cham.

https://doi.org/10.1007/978-3-319-46448-0_2

[21] Lin, T. Y., Goyal, P., Girshick, R., He, K., & Dollar, P. (2020). Focal Loss for Dense

Object Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence,

42(2), 318–327. https://doi.org/10.1109/TPAMI.2018.2858826

[22] H. Law and J. Deng, “CornerNet: Detecting objects as paired keypoints,” in Proc.

Eur. Conf. Comput. Vis. (ECCV), Sep. 2018, pp. 734–750.

[23] Zhou, X., Wang, D., & Krähenbühl, P. (2019). Objects as Points.

http://arxiv.org/abs/1904.07850

[24] N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and S. Zagoruyko, “End-

to-end object detection with transformers,” in Proc. Eur. Conf. Comput. Vis. Cham,

Switzerland: Springer, 2020, pp. 213–229

[25] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,

L., Polosukhin, I.: Attention is all you need. In: NeurIPS (2017)

[26] Pal, S. K., Pramanik, A., Maiti, J., & Mitra, P. (2021). Deep learning in multi-object

detection and tracking: state of the art. Applied Intelligence, 51(9), 6400–6429.

https://doi.org/10.1007/s10489-021-02293-7

[27] Kim, C., Li, F., Ciptadi, A., & Rehg, J. M. (2015). Multiple Hypothesis Tracking

Revisited. 2015 IEEE International Conference on Computer Vision (ICCV), 4696–

4704. https://doi.org/10.1109/ICCV.2015.533

https://doi.org/10.1109/CVPRW50498.2020.00203
https://github.com/ultralytics/yolov5
http://arxiv.org/abs/2209.02976
https://github.com/
https://github.com/ultralytics/ultralytics
https://doi.org/10.1109/TPAMI.2018.2858826
http://arxiv.org/abs/1904.07850
https://doi.org/10.1007/s10489-021-02293-7
https://doi.org/10.1109/ICCV.2015.533

42

[28] N. Wojke, A. Bewley and D. Paulus, "Simple online and realtime tracking with a

deep association metric," 2017 IEEE International Conference on Image Processing

(ICIP), Beijing, China, 2017, pp. 3645-3649, doi: 10.1109/ICIP.2017.8296962.

[29] Leal-Taix´e L, Canton-Ferrer C, Schindler K (2016) Learning by tracking: Siamese

cnn for robust target association. In: Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition Workshops, pp 33–40

[30] Tang S, Andriluka M, Andres B, Schiele B (2017) Multiple people tracking by lifted

multicut and person re-identification. In: Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pp 3539–3548

[31] L. Chen, H. Ai, C. Shang, Z. Zhuang, and B. Bai, "Online multi-object tracking with

convolutional neural networks," 2017 IEEE International Conference on Image

Processing (ICIP), Beijing, China, 2017, pp. 645-649, doi:

10.1109/ICIP.2017.8296360.

[32] Chu Q, Ouyang W, Li H, Wang X, Liu B, Yu N (2017) Online multi-object tracking

using cnn-based single object tracker with spatial-temporal attention mechanism. In:

Proceedings of the IEEE International Conference on Computer Vision, pp 4836–

4845

[33] A. Pramanik, S. K. Pal, J. Maiti and P. Mitra, "Granulated RCNN and Multi-Class

Deep SORT for Multi-Object Detection and Tracking," in IEEE Transactions on

Emerging Topics in Computational Intelligence, vol. 6, no. 1, pp. 171-181, Feb.

2022, doi: 10.1109/TETCI.2020.3041019.

[34] Son J, Baek M, Cho M, Han B (2017) Multi-object tracking with quadruplet

convolutional neural networks. In: Proceedings of the IEEE conference on computer

vision and pattern recognition, pp 5620–5629

[35] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep

convolutional neural networks. In NIPS, 2012.

[36] Ma C, Yang C, Yang F, Zhuang Y, Zhang Z, Jia H, Xie X (2018) Trajectory factory:

Tracklet cleaving and re-connection by deep siamese bi-gru for multiple object

tracking. In: 2018 IEEE International Conference on Multimedia and Expo (ICME).

IEEE, pp 1–6

[37] Fang, K., Xiang, Y., Li, X., & Savarese, S. (2018). Recurrent Autoregressive

Networks for Online Multi-object Tracking. Proceedings - 2018 IEEE Winter

Conference on Applications of Computer Vision, WACV 2018, 2018-January, 466–

475. https://doi.org/10.1109/WACV.2018.00057

[38] L. Shafarenko, M. Petrou and J. Kittler, "Automatic watershed segmentation of

randomly textured color images," in IEEE Transactions on Image Processing, vol. 6,

no. 11, pp. 1530-1544, Nov. 1997, doi: 10.1109/83.641413.

[39] Milan, A., Rezatofighi, S. H., Dick, A., Reid, I., & Schindler, K. (2017). Online

multi-target tracking using recurrent neural networks. 31st AAAI Conference on

Artificial Intelligence, AAAI 2017, 4225–4232.

https://doi.org/10.1609/aaai.v31i1.11194

[40] Sadeghian A, Alahi A, Savarese S (2017) Tracking the untrackable: Learning to

track multiple cues with long-term dependencies. In: Proceedings of the IEEE

International Conference on Computer Vision, pp 300–311

https://doi.org/10.1109/WACV.2018.00057
https://doi.org/10.1609/aaai.v31i1.11194

43

[41] Kim C, Li F, Rehg JM (2018) Multi-object tracking with neural gating using bilinear

lstm. In: Proceedings of the European Conference on Computer Vision (ECCV), pp

200–215

[42] Schulter S, Vernaza P, Choi W, Chandraker M (2017) Deep network flow for multi-

object tracking. In: Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pp 6951–6960

[43] D. Du et al., "VisDrone-DET2019: The Vision Meets Drone Object Detection in

Image Challenge Results," 2019 IEEE/CVF International Conference on Computer

Vision Workshop (ICCVW), Seoul, Korea (South), 2019, pp. 213-226, doi:

10.1109/ICCVW.2019.00030.

[44] J. Xiao, J. Hays, K. A. Ehinger, A. Oliva and A. Torralba, "SUN database: Large-

scale scene recognition from abbey to zoo," 2010 IEEE Computer Society

Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA,

2010, pp. 3485-3492, doi: 10.1109/CVPR.2010.5539970.

[45] J. Deng, W. Dong, R. Socher, L. -J. Li, Kai Li and Li Fei-Fei, "ImageNet: A large-

scale hierarchical image database," 2009 IEEE Conference on Computer Vision and

Pattern Recognition, Miami, FL, USA, 2009, pp. 248-255, doi:

10.1109/CVPR.2009.5206848.

[46] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zis-serman, “The

PASCAL visual object classes (VOC) challenge,” IJCV, vol. 88, no. 2, pp. 303–338,

Jun. 2010.

[47] S. Liu, L. Qi, H. Qin, J. Shi and J. Jia, "Path Aggregation Network for Instance

Segmentation," 2018 IEEE/CVF Conference on Computer Vision and Pattern

Recognition, Salt Lake City, UT, USA, 2018, pp. 8759-8768, doi:

10.1109/CVPR.2018.00913.

[48] Everingham, M., Van~Gool, L., Williams, C. K. I., Winn, J., & Zisserman, A.

(2007). The Pascal Visual Object Classes Challenge 2007 (VOC2007) Results.

Retrieved from http://www.pascal-

network.org/challenges/VOC/voc2007/workshop/index.html

[49] Roboflow. What's New in YOLOv8. Roboflow Blog. URL:

https://blog.roboflow.com/whats-new-in-yolov8/

[50] Ju, R.-Y., & Cai, W. (2023). Fracture Detection in Pediatric Wrist Trauma X-ray

Images Using YOLOv8 Algorithm. http://arxiv.org/abs/2304.05071

[51] Li, X., Lv, C., Wang, W., Li, G., Yang, L., & Yang, J. (2023). Generalized Focal

Loss: Towards Efficient Representation Learning for Dense Object Detection. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 45(3), 3139–3153.

https://doi.org/10.1109/TPAMI.2022.3180392

[52] Feng, C., Zhong, Y., Gao, Y., Scott, M. R., & Huang, W. (2021). TOOD: Task-

aligned One-stage Object Detection. In Proceedings of the IEEE International

Conference on Computer Vision (ICCV).

[53] Hu, M., Li, Z., Yu, J., Wan, X., Tan, H., & Lin, Z. (2023). Efficient-Lightweight

YOLO: Improving Small Object Detection in YOLO for Aerial Images. Sensors,

23(14), 6423. https://doi.org/10.3390/s23146423

http://www.pascal-network.org/challenges/VOC/voc2007/workshop/index.html
http://www.pascal-network.org/challenges/VOC/voc2007/workshop/index.html
https://blog.roboflow.com/whats-new-in-yolov8/
http://arxiv.org/abs/2304.05071
https://doi.org/10.1109/TPAMI.2022.3180392
https://doi.org/10.3390/s23146423

44

[54] A. Bewley, Z. Ge, L. Ott, F. Ramos and B. Upcroft, "Simple online and realtime

tracking," 2016 IEEE International Conference on Image Processing (ICIP), Phoenix,

AZ, USA, 2016, pp. 3464-3468, doi: 10.1109/ICIP.2016.7533003.

[55] R. Kalman, “A New Approach to Linear Filtering and Prediction Problems, ”Journal

of Basic Engineering, vol. 82, no. Series D, pp. 35–45, 1960

[56] H. W. Kuhn, “The Hungarian method for the assignment problem,” Naval Research

Logistics Quarterly, vol. 2, pp. 83–97, 1955.

[57] Zheng, L., Bie, Z., Sun, Y., Wang, J., Su, C., Wang, S., & Tian, Q. (2016). Mars: A

video benchmark for large-scale person re-identification. Lecture Notes in Computer

Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture

Notes in Bioinformatics), 9910 LNCS, 868–884. https://doi.org/10.1007/978-3-319-

46466-4_52

[58] S. Zagoruyko and N. Komodakis, “Wide residual networks,” in BMVC, 2016, pp. 1–

12.

[59] Du, Y., Zhao, Z., Song, Y., Zhao, Y., Su, F., Gong, T., & Meng, H. (2023).

Strongsort: Make deepsort great again. IEEE Transactions on Multimedia, Publisher:

IEEE.

[60] Luo, H., Jiang, W., Gu, Y., Liu, F., Liao, X., Lai, S., Gu, J.: A strong baseline and

batch normalization neck for deep person re-identification. IEEE Transactions on

Multimedia 22(10), 2597–2609 (2019)

[61] Zhang, H., Wu, C., Zhang, Z., Zhu, Y., Lin, H., Zhang, Z., Sun, Y., He, T., Mueller,

J., Manmatha, R., Li, M., & Smola, A. (2020). ResNeSt: Split-Attention Networks.

http://arxiv.org/abs/2004.08955

[62] Ristani, E., Solera, F., Zou, R., Cucchiara, R., Tomasi, C.: Performance measures

and a data set for multi-target, multi-camera tracking. In: European conference on

computer vision. pp. 17–35. Springer (2016)

[63] Evangelidis, G. D., & Psarakis, E. Z. (2008). Parametric image alignment using

enhanced correlation coefficient maximization. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 30(10), 1858–1865.

https://doi.org/10.1109/TPAMI.2008.113

[64] Du, Y., Wan, J., Zhao, Y., Zhang, B., Tong, Z., Dong, J.: Giaotracker: A

comprehensive framework for mcmot with global information and optimizing

strategies in visdrone 2021. In: Proceedings of the IEEE/CVF International

Conference on Computer Vision. pp. 2809–2819 (2021)

[65] Python Software Foundation. "random — Generate pseudo-random numbers."

Python 3.10.6 Documentation. Available online:

https://docs.python.org/3/library/random.html

[66] Farkas, L. (2023). Realtime Object Detection and Tracking with YOLOv8 and

StrongSORT [GitHub repository]. Available online:

https://github.com/lakyfarky/Realtime-object-detection-and-tracking-with-YOLOv8-

and-StrongSORT

[67] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., … Chintala, S.

(2019). PyTorch: An Imperative Style, High-Performance Deep Learning Library.

In Advances in Neural Information Processing Systems 32 (pp. 8024–8035). Curran

http://arxiv.org/abs/2004.08955
https://doi.org/10.1109/TPAMI.2008.113
https://docs.python.org/3/library/random.html
https://github.com/lakyfarky/Realtime-object-detection-and-tracking-with-YOLOv8-and-StrongSORT
https://github.com/lakyfarky/Realtime-object-detection-and-tracking-with-YOLOv8-and-StrongSORT

45

Associates, Inc. Retrieved from http://papers.neurips.cc/paper/9015-pytorch-an-

imperative-style-high-performance-deep-learning-library.pdf

[68] Broström, M. BoxMOT: A collection of SOTA real-time, multi-object trackers for

object detectors (Version 10.0.18) [Computer software].

https://doi.org/https://zenodo.org/record/7629840

[69] Bradski, G. (2000). The OpenCV Library. Dr. Dobb's Journal of Software Tools

[70] Fernando, T., Denman, S., Sridharan, S., & Fookes, C. (2018). Tracking by

Prediction: A Deep Generative Model for Mutli-person Localisation and Tracking.

Proceedings - 2018 IEEE Winter Conference on Applications of Computer Vision,

WACV 2018, 2018-January, 1122–1132. https://doi.org/10.1109/WACV.2018.00128

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/https:/zenodo.org/record/7629840
https://doi.org/10.1109/WACV.2018.00128

46

List of figures

[1] Input image for Figures 1.1.1, 1.1.3, 1.1.5, 1.2.1 -

https://pixabay.com/photos/highway-road-trucks-vehicles-3392100/

[2] Base image for Figure 1.1.4 - https://www.pexels.com/photo/blue-mini-cooper-

11572937/

[3] Figure 1.2.2 is derived and modified based on the Fig. 3 found in [36]

[4] Figure 1.2.3 is derived and modified based on the Fig. 2 found in [40]

[5] Figure 2.1.4.1 is derived and modified based on the Fig. 5 found in [53]

[6] Figure 2.1.4.2 is derived and modified based on the Fig. 1 found in [53]

[7] Figure 2.2.3.1 is derived and modified based on the Fig. 2 found in [59]

[8] Figures 2.3.1 and 4.2.4 are generated by the Ultralytics framework [19]

https://pixabay.com/photos/highway-road-trucks-vehicles-3392100/
https://www.pexels.com/photo/blue-mini-cooper-11572937/
https://www.pexels.com/photo/blue-mini-cooper-11572937/

