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Introduction 

Computer vision tasks, such as object detection and multiple object tracking rapidly grown 

in recent years. Driven by advancements in deep learning, increased computational power, 

and the growing field of application domains, these tasks have evolved into dynamic areas 

of study and innovations. Thanks to the open-source community, we have an opportunity to 

test algorithms and enhance their performance, both in general and for specific purposes. 

This thesis relies on multiple object detection and tracking with an emphasis on real-time 

processing. Drone imagery is also a fast-growing field in recent years, and it opens 

opportunities to automate and speed up tasks that are demanding for people. By combining 

computer vision algorithms and the possibilities of drone cameras, we take a step further 

toward this goal. According to this, we reviewed the relevant literature and chose algorithms 

to perform real-time multiple object detection and tracking. We selected the VisDrone 

dataset, known for its complexity and demanding characteristics, to thoroughly evaluate the 

effectiveness of our chosen algorithms in tackling the problems of small object detection and 

tracking. Chosen algorithms and dataset are additionally reviewed in the section Technical 

overview of the selected algorithms and dataset. To improve small object detection, we 

proposed a new model based on YOLOv8. Additionally, we describe our dataset 

methodology, training approach, and results. As a result of this thesis, we build the real-time 

multiple object tracking model that is publicly available in [66]. The main idea of the 

proposed model is to utilize it as a backbone for real-time multiple object tracking 

applications. 
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1. Literature review  

A search strategy of the literature was conducted to identify all previously published 

literature review studies reporting on object detection and multiple object tracking, following 

the recommendations of preferred reporting items for systematic reviews and meta-analyses 

(PRISMA) [1]. Since the research resulted in studies published in 2022. and 2021. with a 

total of 238 citations and 183 citations respectively, citations were analyzed following the 

inclusion and exclusion criteria written in Table 1.1: 

Exclusion criteria Inclusion criteria 

Traditional methods and algorithms Deep learning-based approach 

Not publicly available papers State-of-the-art algorithms 

Publications before 2014. Algorithms and techniques 

Algorithms for less common purposes Real-time processing 

/ Performance evaluation and comparison 

Table 1.1 Exclusion and inclusion criteria for literature review based on relevant articles. 

The following section reviews the literature for object detection and multiple object tracking 

(MOT) according to state-of-the-art approaches and techniques. This thesis is based on deep 

learning detection and tracking, so the literature review includes deep learning-based 

detection and tracking. Single object tracking is not considered as a separate problem but 

MOT includes single object tracking when only one object is on scene. This modular 

literature review approach provides a better insight into the algorithms and leads to simple 

reproductivity with the possibility of expanding the review for a specific purpose. We select 

relevant articles for the mentioned tasks and follow their literature as a backbone to review 

state-of-the-art object detection and MOT.  

1.1. Object detection  

Object detection is the most crucial and challenging computer vision task which has gained 

a rapidly increasing amount of attention in recent years. It is the basis for many other 

computer vision tasks such as image segmentation, pose estimation, object tracking, etc. 
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Zhengxia Zou et al. proposed “Object Detection in 20 Years: A Survey” [2], which reviews 

the light technical evolution, key technologies, and recent state-of-the-arts of object 

detection from the 1990s to 2022. A comprehensive analysis of detection speed-up 

techniques is also obtained in the survey. This section reviews state-of-the-art deep object 

detectors. Traditional object detection methods are not included. Convolutional neural 

networks (CNNs) showed the best performance for computer vision tasks, especially object 

detection. Processing spatial relationships in images and extracting feature maps leads to 

accurate detection and classification. Accordingly, CNN is the main architecture in which 

we are interested. 

The year 2014 is a milestone in CNN based on two-stage detectors at the occurrence of 

region-based CNN (R-CNN). Ross Girshick et al. presented “Rich feature hierarchies for 

accurate object detection and semantic segmentation” [3] that outperform competitors on 

VOC 2012 dataset [4]. R-CNN is divided into three modules: 

1. Region proposals: extracting category-independent regions that contain a set of 

candidate detections. 

2. Feature extraction: extracts 4096-dimensional feature vector from proposed regions. 

This is accomplished by CNN with five convolutional and two fully connected layers. 

The input is a 227x227 RGB image. 

3. Classification: class-specific linear support vector machine algorithms are used to 

classify each region. Finally, greedy non-maximum suppression fixes overlap with 

undesirable Intersection over union (IoU) scoring. 

Figure 1.1.1 describes the above-mentioned R-CNN modules. 

 

Figure 1.1.1 Region-based object detection (two-stage object detection). 

Since then, object detection has started to evolve rapidly. A high number of overlapped 

proposals (over 2000 boxes) causes extremely slow detection. In a spatial pyramid pooling 

network (SPPNet), He et al. [5] approach that problem by eliminating the fixed-size image 
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input. Feature maps are only once computed from the entire image. Furthermore, features 

are pooled and prepared for training the detectors. This procedure is 20x faster than the R-

CNN approach with the same mean average precision (mAP) score. Fast R-CNN [6] comes 

with recent innovations which speed up training and detection with significantly increasing 

detection accuracy. Fast R-CNN utilizes very deep convolutional neural network (VGG16) 

[7]. The faster R-CNN [8] finally presents a unified network that proposes regions and 

performs detections. The proposed network is called the region proposal network (RPN). 

RPN takes an image of any size as an input and outputs a set of proposals by utilizing a 

sliding window approach. Each sliding window predicts region proposals mapped into a 

fully connected layer. The fully connected layer is divided into regression and classification 

layers. Moreover, anchor boxes are situated in region proposals in different scales and aspect 

ratios. The described two-stage paradigm fixes the speed bottleneck of Fast R-CNN and 

achieves state-of-the-art detection accuracy and speed using 300 proposals per image. The 

mentioned CNN-based models utilize only the network’s top-layer features without 

considering the deeper layers. Therefore, Lin et al. (2017) proposed “Feature Pyramid 

Networks for Object Detection” (FPN) [9].  FPN is a top-down architecture with lateral 

connections at all scales. It outputs feature maps at multiple levels using a fully convolutional 

approach. Figure 1.1.2 illustrates the comparison between vanilla CNN and the idea of the 

FPN approach for object detection. Faster R-CNN achieves state-of-the-art by utilizing FPN 

as a building block.  

 

Figure 1.1.2 Vanilla CNN and FPN for object detection 

Feature pyramid representations were previously avoided because of time consumption and 

memory costs. Meager speed performance and computational complexity of previously 
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mentioned two-stage object detectors are not desirable among engineering problems. A new 

milestone occurred in 2015 with the advent of one-stage CNN-based detectors. You Only 

Look Once (YOLO) is the first one-stage object detector proposed by Joseph Redmon et al. 

(2015) [10]. The main advancement in YOLO is the detection speed, which is in real-time. 

The fastest version of the YOLO algorithm reaches up to 155 frames per second (FPS) and 

52.7% mAP on VOC07. The one-stage paradigm processes the entire image at once in a 

single CNN, as shown in Figure 1.1.3.  

 

Figure 1.1.3 One-stage object detection based on the YOLO network. 

Due to real-time inference, prediction accuracy drops by a few percent in contrary to two-

stage object detectors. Additionally, YOLO became a popular framework for object 

detection and Redmon et al. propose three versions of the YOLO altogether [10, 11, 12]. The 

network is composed of 24 convolutional layers with max-pooling layers followed by 2 fully 

connected layers. The input image is resized to 448x448 and processed in one step. After 

Redmon dismissed the research on YOLO, the popularity of the YOLO algorithm continued. 

Bochkovskiy et al. (2020) [13] proposed YOLOv4 as an optimal speed and accurate object 

detector where recent improvements and augmentations enhance detection performance. 

Test results showed that the cross-stage partial network (CSPNet) [14] is an optimal 

backbone for the proposed object detector. YOLOv5 [15] appeared in the same year and 

brought new improvements with faster training and inference. G. Jocher et al. built YOLOv5 

in the PyTorch framework [67] and proposed a pre-trained model on the MS COCO [16] 

dataset. The YOLOv5 framework is designed as an easy-to-use framework with lightweight 

models optimized for real-time inference with high accuracy. The popularity of the YOLO 

framework continued with YOLOv6 [17], YOLOv7[18], and YOLOv8 [19]. YOLOv6 is 

intended as an industrial single-stage object detector proposed by Chuyi Li et al. (2022). 

Wang, C.Y. et al. put more focus on training tips and tricks to improve detector performance 

in YOLOv7 [18]. To sum up the YOLO story, G. Jochner et al. proposed YOLOv8 [19], 

which presents an upgraded YOLOv5 with state-of-the-art object detection improvements. 
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A detailed comparison of YOLOv5 and YOLOv8 can be found in the section Technical 

overview of the chosen algorithms. 

Besides the YOLO algorithms, a Single-shot multi-box detector (SSD) [20] was also 

presented in 2015 by Liu et al. VGG16 [7], an SSD backbone, outperforms YOLO in 

inference speed and accuracy on the VOC07 dataset [4]. SSD network is based on multi-

scale feature maps, leading to better accuracy in small object detection scenarios. Due to the 

trade-off between speed and accuracy, Lin et al. (2020) suggested a one-stage object detector 

with an improved loss function. The proposed detector called RetinaNet [21] utilizes FPN 

[9] as a backbone for the extraction of rich multiscale features. Focal loss is a novel loss 

function that is an extension of cross-entropy loss. The proposed loss function handles large 

class imbalances by focusing on misclassified objects. The so far mentioned detectors mostly 

use anchor boxes to generate candidates for bounding boxes. Generating a huge amount of 

anchor boxes is time-consuming due to the different anchor box scales. YOLOv5 

implements an algorithm to calculate appropriate anchor box dimensions that additionally 

extend training time. Hence, CornerNet [22] and CenterNet [23] advent to replace the anchor 

box paradigm with the points paradigm. Law G. et Dend J. proposed CornerNet, which 

predicts bounding boxes by top-left and bottom-right corners. Furthermore, a new pooling 

layer, corner pooling, is designed for corner point localization. Zhou X. et al. (2019)  have 

gone a step further and proposed the detection of objects by single-point and then regress 

other objects' properties like dimension, 3D location, orientation, and pose. CenterNet 

achieves the best speed and accuracy tradeoff among one-stage object detectors on MS 

COCO [16] dataset. Unlike CornerNet, CenterNet does not require a separate stage after 

points estimation that combines groups of key points. The center point is predicted directly, 

without any post-processing. Figure 1.1.4 shows the difference between anchor-based 

predictions, corner-based predictions, and center-based predictions. 

 

Figure 1.1.4 a) Anchor-based predictions – anchors with a sufficiently high IoU (green dashed box) 

are candidates according to ground truth (black box). b) Corner points bounding box prediction. c) 

Center-based bounding box prediction. 
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The key point object detection paradigm simplifies the repurpose of the object detection task 

to pose estimation, 3D location, etc. Detection transformer (DETR) [24] presents a new 

object detection approach with transformer neural network models. Transformers [25] are 

mainly presented as a new architecture for machine translation tasks. Carion N. et al. (2020) 

proposed an end-to-end object detection with transformers that combines CNN-based 

backbone and transformer encoder-decoder architecture to predict objects. Figure 1.1.5 

illustrates previously described architecture.  

 

Figure 1.1.5 Transformer-based object detection. 

This approach presents a new era in object detection without anchor boxes or the prediction 

of anchor points. Deformable DETR was proposed by X. Zhu et al. in 2020 with deformable 

attention modules. Test results have shown state-of-the-art performance on the MS COCO 

dataset [16], especially in the detection of small objects. 

Having explored the realm of state-of-the-art object detection algorithms, we now transition 

our focus to deep learning MOT. MOT naturally follows the investigation of object 

detection, as the detections are the crucial input for effective object tracking.  
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1.2. Multiple object tracking  

Object detection provides information about the location and class of an image. According 

to that, more complex tasks like crowd counting, distance and speed estimation, etc. are not 

possible to accomplish. Upgrading the computer vision task to object tracking enables object 

identification through frames, leading to considerably more possibilities for object 

measuring and manipulation. Moreover, multiple object tracking (MOT) handles missing 

detection through frames that complement object detection tasks. This section reviews state-

of-the-art deep-based MOT based on S. Pal et al. [26] (2021) “Deep learning in multi-object 

detection and tracking: state of the art”. This thesis is primarily focused on detection-based 

tracking so detection-free tracking will be excluded. 

The detection-based tracking (DBT) (or tracking-by-detection) paradigm demands 

detections to link them into trajectories. Hence, DBT relies on object detection quality. We 

distinguishes between two modes of object tracking:  

1. Online mode: frames are processed by only using current and previous frame data. 

2. Offline mode: frames are processed by using arbitrary batches of frames. 

Offline object tracking will not be considered.  In recent years, deep architecture-based MOT 

has become a popular approach. S. Pal et al. [26] classify them into three categories: 

1. Deep network features-based MOT enhancement. 

2. Deep network embedding. 

3. Deep network (end-to-end) learning. 

Multiple hypothesis tracking (MHT) (2015) is an example of the first category. MHT 

utilizes features extracted from deep CNN and structures them into a hypothesis tree where 

a scoring function determines the best hypothesis for the detected object [27]. A re-

identification approach is proposed in DeepSORT [28] where the Mahalonobis distance and 

the minimum cosine distance determine which track corresponds to detection. DeepSORT 

is explained in the section Technical overview of chosen algorithms. Furthermore, Siamese 

CNN [29] was proposed in 2016 to determine finer similarities between the tracks and 

detections. Two-stage feature learning with a combination of gradient boosting achieves 

state-of-the-art performance in pedestrian tracking scenarios. Siamese CNN-based 

architectures can also learn optical flow features, which are effective for improving the 

performance of object tracking. Figure 1.2.1 shows the MOT approach by using Siamese 

CNN. 
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Figure 1.2.1 MOT approach with Siamese CNN. 

Tang S. et al. [30] have implemented a lifted multicut framework for graph-based 

formulations that links person hypotheses with a re-identification to achieve state-of-the-art 

performance in people tracking scenarios. Lifted multicut framework introduced lifted edges 

whose task is to distinguish persons of similar appearance and enable long-range 

information. By combining lifted and regular edges, two people far apart in time who have 

similar appearances will be assigned as one if there exists a path along the regular edges. 

VGG 16-based architecture is utilized to extract different body parts and then symmetrical 

body parts scores are combined. 

The second category contains deep CNNs as a core part of the entire tracking framework. 

The main task of deep CNNs is to determine whether the detections belong to the same object 

or not. L. Chen et al. [31] proposed a novel online MOT framework that utilizes deep CNN 

to differentiate categories. Different layers extract features from different levels in CNN. 

Top layer features provide rich information about categories, while lower layers usually 

distinguish instances from the same category more accurately. The proposed framework 

achieves state-of-the-art online tracking performance by combining category and instance 

classifiers through a particle filter. Firstly, the location of each object is estimated by a 

particle filter and appearance model for each frame. Secondly, a detection that does not 

overlap with the tracked object is used to initialize the new object and retrieve the missing 

object. Similarly to [31], Chu Q. et al. (2017) [32] proposed an MOT online tracker with a 

spatial-temporal attention mechanism. The mentioned tracker handles occlusion with 
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learned spatial features using convolution and fully connected layers. Regions of interest are 

shared with the classifier instead of the entire image to reduce computational complexity. 

Furthermore, Pal, S. K. et al. [26] focus on multi-class deep SORT [33] as a deep metric-

based tracker that enhances the possibilities of deep SORT [28]. The main modification is 

that the association of an object with tracks is limited within the same class. Objects of the 

same class are obtained from the region-of-interest maps generated from G-RCNN [33]. 

Generally, associating detections with the track of the same class reduces computational 

complexity and enhances tracking accuracy. MOT with quadruplet CNNs [34] utilize 

Siamese and triplet networks to present quadruplet loss function. The proposed loss enforces 

additional constraints within temporary close-located detections unlike the ones with 

temporary gaps. The inputs in the proposed quadruplet CNN are four image patches and the 

next step is distance measuring between these four patches. CNN for appearance feature 

learning is based on AlexNet [35] with custom layers. A novel trajectory processing 

approach was proposed by Ma C. et al. [36] in 2018. Features are extracted by RNN and 

CNN, resulting in high-confidence tracklet candidates. Furthermore, tracklets from different 

objects are split by the bi-directional gated recurrent unit (GRU) into several sub-tracklets. 

The splitting (or cleaveining) step is illustrated in Figure 1.2.2.  

 

Figure 1.2.2 Cleavening step with bi-directional GRU. 

Then, the Siamese GRU-based reconnection method is utilized to link previously cut sub-

tracklets that belong to the same object. The described approach achieves state-of-the-art 
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performance by generating tracklet candidates and reconnecting them unlike previously 

mentioned MOT approaches, where the main problem is to link detection to tracklet. 

Generative learning-based MOT is utilized for parameter estimation to increase tracking 

performance. Fang K. et al. (2018) proposed the MOT approach by using recurrent 

autoregressive networks (RAN) [37]. The primary goal of RAN is to memorize the 

characteristics of the tracked object. Multiple RANs are utilized to compute association 

metrics between tracked objects and generated candidate detections with respect to 

previously calculated motion and appearance features. GRU is embedded into RAN to 

estimate recurrent parameters. Describing each object with a RAN that combines internal 

and external memory, Fang K. et al. achieve state-of-the-art MOT performance. A novel 

generative-based deep MOT is introduced in [70]. Fernando T. et al. proposed a lightweight 

sequential generative adversarial network architecture for person localization. The first step 

is to generate probability maps that classify the likelihood of each pixel from the input frame. 

Then, the watershed segmentation technique [38] is utilized to segment out each connected 

component. The next step is to predict the short-term and long-term trajectories. Short-term 

trajectories are used for data association while long-term predictions update objects to handle 

occlusions during the rendering of trajectories. The described long short-term memory 

(LSTM) approach replaces the computationally expensive re-identification step and 

outperforms deep learning-based approaches. 

The third category includes end-to-end deep learning approaches where all stages are 

included in a single framework. "In 2016, Milan A. et al. presented a fully deep learning-

based framework for Multiple Object Tracking (MOT) using Recurrent Neural Networks 

(RNN) [39]." The main problem is divided into two blocks: a state prediction and update 

block and a data association block. The first block is RNN based, capable of learning a 

dynamic model of targets, correcting state distribution, and learning to identify or terminate 

tracks based on state. The second block is LSTM based, and it calculates a matching matrix 

between tracklets and detections. The limitations of the mentioned end-to-end deep-base 

MOT are the lack of training images for the proposed model, only motion information being 

taken into consideration, and tracklet initialization and termination which do not consider 

context information. Therefore, Sadeghian A. et al. (2017) proposed “Tracking The 

Untrackable” [40]. The proposed approach utilizes recurrent neural networks (RNNs) to 

combine multiple clues for predicting long-term features. The RNN relies on appearance, 

motion, and interaction feature extractors whose outputs are combined through another 
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RNN. The combined features are fed into a fully connected layer where the softmax classifier 

determines whether the detections correspond to the tracklets. The mentioned MOT tracking 

approach is presented in Figure 1.2.3. 

 

Figure 1.2.3 MOT with three feature extractors. 

In [41], the authors offer insights into the performance of the appearance feature descriptor 

concerning the re-identification task. Kim C. et al. (2018) proposed an improved version of 

[40] by utilizing bilinear LSTM. Unlike in [40], gating networks are introduced as input 

feature extractors [41]. Gating is a type of selection where existing track proposals are not 

updated with all of the newly arrived detections. Motion gating utilizes vanilla LSTM for 

storing sequence information in a hidden state in which output is further processed into a 

fully connected layer. Appearance gating utilizes LSTM, whose hidden state becomes a 

weight factor for the appearance model of the specific object. The third model is a 

combination of motion and appearance gating that additionally enhances the process. 

Schulter S. et al. (2019) presented a solution to improve the association problem with the 

network flows for MOT [42]. The solution is presented by a directed graph where each 

detection is represented by two nodes and the edge between them. Additionally, in order to 

initialize and terminate tracklets, a source node and a second node are introduced for each 

tracklet. Each variable in the network is associated with a cost - the most crucial part which 

interacts between initialization, existence, termination, and the association of detections.  

As we move forward, our study introduces the VisDrone [43] dataset to measure the 

performance of the selected algorithms with emphasis on small objects.   
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1.3. The dataset 

Small object detection is the most challenging task in object detection. Due to the dimensions 

of small objects, which are additionally resized for real-time processing, CNNs have 

problems extracting these small-sized features. VisDrone is a dataset just like that, recorded 

in crowded areas with a high number of instances per image. The dataset is taken from the 

drone, which additionally aggravates the situation due to its moving camera. Drone imagery 

could become helpful for various problems like traffic supervision, monitoring of hard-to-

reach areas, finding lost people in mountain areas, etc. We consider the VisDrone dataset as 

a convenient one for traffic supervision and hope that real-time object tracking with drones 

can open a lot of opportunities to improve, at least, traffic quality. When we are talking about 

object detection datasets, Microsoft Common Objects in Context (MS COCO) [16] must be 

mentioned as a standard to evaluate the performance of the object detection algorithm. 

YOLOv8 models are publicly available and pre-trained on this dataset. Due to similarities 

between classes in VisDrone and MS COCO, we will take into consideration pre-trained 

models. The following section reviews the MS COCO and pre-trained models. 

1.3.1. Pre-trained checkpoints – MS COCO dataset 

The proposed Ultralytics YOLOv8 models are pre-trained on the MS COCO [16]. Pre-

trained models enable faster training on custom datasets with already learned features. The 

MS COCO dataset contains 80 classes, including vehicles, people, animals, everyday 

objects, etc. With more than 330,000 images and 1.5 million object instances, MS COCO is 

the standard for performance evaluation on object detection algorithms. Tasks such as object 

segmentation and key point detection are also included in the dataset [16]. The SUN [44] 

and ImageNet [45] datasets have more categories, while MS COCO contains more instances 

per category, which authors hypothesize as being more useful for learning complex models 

with precise location determination. The main emphasis of the MS COCO dataset is on 

objects in real contexts. The PASCAL VOC [46] and ImageNet [45] have less than 2 

categories and 3 instances per image; MS COCO has on average 3.5 categories and 7.7 

instances per image. Such distribution of instances demands more robust models for rich 

feature extraction and localization [16].  The following pictures in Figure 1.3.1.1 present 

ground truth (green bounding boxes) and predictions on the YOLOv8x pre-trained model 

(colored bounding boxes with class and confidence scores). 
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Figure 1.3.1.1 Comparison between ground truth and YOLOv8x predictions (pre-trained on MS 

COCO) on arbitrarily selected pictures from the VisDroneDET-2019 validation set. 

Predictions from the extra-large model provide acceptable results in vehicle prediction. 

However, in situations where objects are smaller and further away from the camera, the 

results are disappointing. MS COCO pre-trained weights provide satisfactory detections on 

traffic cameras for detecting vehicles. Hence, images and videos captured by drones demand 

additional training data due to camera position and angle. 

In this literature review, we have journeyed through the evolution of the state-of-the-art 

object detector and multiple object trackers. Among the diverse algorithms of choice, we 

have chosen to explore the capabilities of YOLOv8 and StrongSORT. Both selected 

algorithms have evolved and been refined over time, representing the recent advancements 

in the computer vision world. In the technical overview of the chosen algorithms, we delve 

into the technical aspects of these two chosen components. Additionally, the section reviews 

the VisDrone dataset that is selected to evaluate the efficiency of the selected algorithms and 

YOLOv8 pre-trained weights on the MS COCO dataset. 
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2. Technical overview of chosen algorithms and 

dataset 

The previous section reviews the literature of deep learning-based object detectors and 

trackers with a brief review of the technical aspects of each detector or tracker. Accordingly, 

we additionally review the main methods that are utilized in this work with emphasis on 

technical aspects. The following sections review YOLOv8 [19] by comparing it with 

YOLOv5 and the evolution of SORT algorithms through DeepSORT and StrongSORT. 

Additionally, to improve small object detection, we proposed a modified YOLOv8 model to 

achieve better performance in small object detection scenarios. This section also includes a 

technical overview of the VisDrone dataset and pre-trained YOLOv8 checkpoints. 

2.1. Object detection 

YOLO framework is popular and widespread since its presence in 2015. Fast and accurate 

detections in one-stage bring opportunities to fine-tune models and utilize them in various 

aspects of object detection problems. YOLOv8 as a currently last version of the YOLO 

framework achieves state-of-the-art performance on the MS COCO dataset in terms of speed 

and accuracy. The biggest advantage of the YOLOv8 is a rich framework that enables faster 

workflow. Augmentations, hyperparameter tuning, automated dataset annotation, fast 

training, simple installation and reproductivity, exports to other network formats, etc. are 

features that stand out YOLOv8 from the other object detection frameworks. YOLOv5 also 

contains the most of mentioned features but architectural improvements on YOLOv8 lead to 

more accurate detections. Hence, we chose YOLOv8 for this thesis although it is still in 

development. 

2.1.1. YOLOv8 

YOLOv8 (You Only Look Once version eight) is the eighth version of the YOLO algorithm 

presented by Ultralytics. It comes in five different models, from nano to extra-large, as well 

as YOLOv5. However, YOLOv8 supports object detection, image classification, instance 

segmentation, and pose estimation, which is not supported in YOLOv5. The advantage of 

the YOLOv8 is that it comes under the Ultralytics package where YOLOv3, v5, and v8 are 
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supported, while v8 is the only version that supports all four computer vision tasks. YOLOv8 

consists of a backbone and head. The backbone is built from cross-stage partial (CSP) blocks, 

similar to blocks in v5. The idea of the CSP blocks is to reduce computation by combining 

features positioned at the beginning of the CSP block with features at the end of the block. 

V5 and v8 models are popular for being accurate and real-time object detection models, 

which CSP backbone is responsible for. The CSP blocks:  

1. Strengthen the learning capability of the lightweight YOLOv8 models. 

2. Remove computational bottlenecks which result in faster inference. Tests on 

YOLOv3-based models show that CSP networks reduce 80% of computational 

bottlenecks. 

3. CSP architecture also reduces the utilization of RAM, which enables the utilization of 

small CNN models on edge devices like Nvidia Jetson and similar [14]. 

The above mentioned advantages of the CSP backbone in v5 and v8 models make them 

popular and widespread in computer vision tasks. The following comparison is mainly 

related to the official YOLOv5 (7.0 version) [15] and Ultralytics (YOLOv8 – 8.0.106 

version) [19] GitHub repositories. 

2.1.2. CSP backbone 

YOLOv5 utilizes a C3 bottleneck with 3 convolutional layers similar to YOLOv8 C2f 

bottleneck with 2 convolutional layers. Convolutional layers are identical with sigmoid 

linear units (SiLU), also called the swish activation. Despite YOLOv8 utilizing CSP blocks 

with one less convolutional layer, it also has fewer CSP blocks in the stage. There is also a 

split function that divides the tensor after convolution in the C2f block into 2 chunks. One 

chunk is sent through the bottleneck, while the other just waits for concatenation with the 

first one after the bottleneck. Comparison of the CSP blocks is in Figure 2.1.2.1. 
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Figure 2.1.2.1 C2f and C3 building CSP blocks of the YOLOv8 and YOLOv5. 

YOLOv8 has 3,6,6,3 repeats of the CSP blocks in contrary to 3,6,9,3 in YOLOv5. These 

stages present different levels of features called path aggregation networks (PANet) [47]. 

Furthermore, the last part of the backbone is the spatial pyramid pooling fast (SPPF), a 

modified version of the spatial pyramid pooling network (SPP). The idea of SPP is to 

compute feature maps from the entire image in one step and then crate the pooling step. This 

method outperforms the R-CNN method on Pascal VOC 2007 [48]. SPPF is a faster version 

of SPP due to fewer kernel sizes and fewer hidden channels. Both YOLOv5 and YOLOv8 

are using the SPPF module as proposed by Glenn Jocher, CEO of Ultralytics. Figure 2.1.2.2 

illustrates the SPPF module.  

 

Figure 2.1.2.2 SPFF module. 

2.1.3. Head  

The first layer of the head in the YOLOv8 YAML () configuration file is the upsampling, 

unlike YOLOv5 which has another convolutional layer before upsampling in the first two 

stages of the head. The YOLOv8 head utilizes an anchor-free approach which directly 

predicts the center of the bounding box. Anchor-free detections reduce the number of 

generated prediction boxes that speed up the non-maximum suppression algorithm [49]. 
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Objectness loss is no more part of the head in YOLOv8. The head consists of regression and 

classification branches with the distributed focal loss (DFL) for regression (localization) and 

binary cross-entropy (BCE) loss for classification [50]. DFL is intended for one-stage object 

detectors with individual branches for localization and classification to improve detection 

performance. DFL pushes the network to focus on the values near the ground truth label by 

modeling box locations as general distributions [51].  Furthermore, the YOLOv8 head 

utilizes a task-aligned assigner that combines both classification and localization information 

to assign ground truth objects to predicted bounding boxes [50, 52]. 

2.1.4. The proposed model 

The proposed model is based on the efficient-lightweight YOLO (EL-YOLO) [53] 

architecture invented to improve the detection of small objects. Hu M. et al. (2023) designed 

three models based on YOLOv5. These models have modified SPPF, called efficient SPP 

(ESPP), and a new loss function, called an alpha-complete intersection over the union. 

Figure 2.1.4.1 illustrates the ESPP module.  

 

Figure 2.1.4.1 ESSP module proposed in EL-YOLO. 

 

EL-YOLO achieves better performance on VisDrone than basic YOLOv5. The main idea is 

to give a chance to initial features that could be lost in deeper stages. Generally, YOLOv8 

takes P3, P4, and P5 pyramidal stages into further upsampling and concatenation. P1 and P2 

as initial feature stages are not taken into further concatenation. VisDrone contains high-

resolution pictures (1920x1080) that are resized to 640x640 before the training step. Hence, 
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features from small objects can easily disappear. By including these pyramidal stages in 

further computation, the chance to keep small object features is increased. Our model based 

on the EL-YOLO contains the ESPP and EL-YOLO backbone. The proposed loss function 

is not implemented in this architecture. The EL-YOLOv8 (ours) architecture is presented in 

Figure 2.1.4.2. 

 

Figure 2.1.4.2 EL-YOLOv8 architecture. 

The model is implemented into the Ultralytics framework by adding the ESPP block and 

changing the configuration file for the YOLOv8 models. As the source code for the EL-

YOLOv5 proposed in [53] is not publicly available, we implement our code based on 

network visualization and description in [53]. With the proposed model we are ending the 

technical overview of object detection and moving to MOT. 
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2.2. Multiple object tracking 

Nowadays, fast and accurate tracking in real-time is accomplished with deep learning-based 

trackers. Hardware improvements enable fast processing even with more neural networks 

for one task. Therefore, we chose the StrongSORT tracker which is an improved DeepSORT. 

Due to YOLOv8 possibilities to fine-tune detection, we select a tracker with a tracking-by-

detection paradigm. This approach is modular, and each component has an opportunity to 

adapt to the desired task. We believe that the StrongSORT tracking approach is adaptable to 

the various problems because of its re-identification metric which can be additionally fine-

tuned. 

2.2.1. SORT – simple online and real-time tracking 

SORT [54] was initially proposed by Alex Bewley et al. as a pragmatic approach to multiple 

object tracking (MOT). With a combination of Kalman filtering [55] techniques and 

Hungarian algorithms [56] as main tracking components, it outperforms other state-of-the-

art online trackers. SORT is mainly focused on frame-to-frame tracking, which means that 

it considers only the current and previous frames to achieve tracking. The proposed object 

tracker is based on detection quality, and its main task is to associate corresponding bounding 

boxes on the current frame by adding an ID. The center and the aspect ratio of the detected 

bounding box are the principal information for estimating velocity components via the 

Kalman filter. To assign detections to existing targets, SORT calculates intersection-over-

union (IOU) distance for optimally assigning new predictions to existing targets. Occluded 

objects that are not detected will lose their identity until being detected again. Due to poor 

re-identification possibility, occluded objects will probably appear with new IDs. According 

to the [54] benchmark, SORT outperforms online MOT competitors mostly by MOT 

accuracy, false alarm per frame (FAF), the number of mostly lost trajectories, and the 

number of false detections. An overview of the SORT MOT is in Figure 2.2.1.1. 
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Figure 2.2.1.1 SORT multiple object tracking approach. 

2.2.2. DeepSORT – simple online and real-time tracking with a 

deep association metric 

N. Wojke et al. (2018) expand SORT algorithms with appearance information [28]. 

Appearance information enables the tracking of objects through longer periods of occlusions 

and reduces the number of generated identities. Due to the high number of identity switches 

caused by high estimation uncertainty, the association metric is replaced. Upgraded metric 

relies on a convolutional neural network (CNN) trained on motion analysis and re-

identification dataset (MARS) [57]. MARS is a large-scale person re-identification dataset 

that contains 1,261 identities and around 20,000 tracks. This approach brings more 

information by combining motion and appearance information. The Kalman filtering 

framework is almost the same as in SORT [54]. The main idea is to count the number of 

frames while the track has not been associated with a measurement. Tracks that pass the pre-

defined maximum age are considered left from the scene and deleted from the track set. 

Initialized tracks must be successfully associated with a measurement within the first three 

frames, for they will otherwise be deleted. To overcome a conventional way to solve the 

association between the predicted Kalman states and newly arrived measurements, authors 

incorporate the squared Mahalonobis distance: 

𝑑(1)(𝑖, 𝑗) = (𝑑𝑗 − 𝑦𝑖)
𝑇

𝑆𝑖
−1(𝑑𝑗 − 𝑦𝑖) 

where the i-th track distribution is projected into measurement space by (𝑦𝑖, 𝑆𝑖) and j-th 

bounding box by dj. The Mahalonobis distance measures how many standard deviations are 

a detection away from the mean of track. Furthermore, associations that are unlikely are 

excluded by thresholding the Mahalonobis distance at a 95% confidence interval of the 
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inverse χ2 distribution. Due to limitations caused by rapid displacements, N Wojke et al. 

integrated the second metric into the assignment problem. The second metric is called 

appearance descriptor, calculated from the detection bounding box. For each bounding box, 

the proposed CNN calculates the appearance descriptor by generating a 128-dimensional 

feature map. The feature map is preceded by a CNN consisting of two convolutional layers, 

six residual blocks [58], and a dense layer. Due to this output vector, the smallest cosine 

distance between tracks and new detections will determine which new detection corresponds 

to the past track. Tracks that have disappeared for some frames, but are still less than the 

maximum age, can thereby be correctly re-identified as existing ones. Figure 2.2.2.1 

illustrates the flow of input image through an object detector whose output generates the 

appearance feature descriptor through a simple CNN model [28].  

 

Figure 2.2.2.1 Computing the appearance feature descriptor by pre-trained CNN. 

To conclude the assignment problem, the Mahalonobis distance and cosine distance of 

appearance feature descriptors are combined into a weighted sum: 

𝑐𝑖,𝑗 = 𝜆𝑑(1)(𝑖, 𝑗) + (1 − 𝜆)𝑑(2)(𝑖, 𝑗) 

where d(1) is squared Mahalonobis distance and d(2) is the cosine distance of appearance 

feature descriptors. 𝜆 is a hyperparameter that controls the influence of each metric. The 

testing result shows that DeepSORT outperforms competitors mostly in identity switches 

and mostly lost (ML) which is the percentage of ground truth tracks that are tracked for at 

most 20% of their lifetime. More detailed descriptions of networks, improvements, and 

default tracking parameters are found in [28].  
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2.2.3. StrongSORT: Make DeepSORT Great Again 

The domination of the MOT tracking-by-detection approach inspired Yunhao Du et al. 

(2022) to improve the standard DeepSORT (StrongSORT) and propose novel and 

lightweight algorithms (StrongSORT++) [59]. Due to outdated techniques, DeepSORT 

underperformed its state-of-the-art competitors in the past. The simple CNN model is 

replaced by BoT [60] with ResNeSt50 [61] as the backbone, and it was pre-trained on the 

Duke University multi-target multi-camera reidentification dataset (DukeMTCM-reID) [62]. 

ResNetSt (Hang Zhang et al., 2020) is presented as a modularized network structure that 

applies channel-wise attention through different network branches. This approach allows for 

capturing cross-feature interactions and learning diverse representations [61]. MTMC re-ID 

consists of more than 2,700 identities within  85 minutes through multi-camera, leading to 

more distinctive features. Furthermore, the appearance state is updated in an exponential 

moving average (EMA) manner that also reduces the time consumption, unlike the feature 

bank mechanism that utilizes features of last 100 frames. The enhanced correlation 

coefficient (ECC) [63] is adopted to fix camera motion compensation. The ECC is a low 

computational complexity solution for more accurate alignments under noisy conditions and 

photometric distortions. The vanilla Kalman filter is replaced by the noise scale adaptive 

(NSA) Kalman algorithm proposed in [64] due to its susceptibility to low-quality detections 

to low-quality detections. The NSA Kalman algorithm adaptively updates the noise 

covariance k:  

Ŕ𝑘 = (1 − c𝑘)R𝑘  

where Rk is the measurement covariance and ck is the detection confidence score at state k. 

During the matching, both appearances cost Aa and motion cost Am are being considered into 

cost matrix C as a weighted sum as follows: 

𝐶 = 𝜆𝐴𝑎 + (1 − 𝜆)𝐴𝑚 

𝜆 is a weight factor set to 0.98. To make the tracker stronger and more robust, the matching 

cascade is replaced by vanilla global linear assignment. StrongSORT++ brings new 

algorithms such as the appearance-free link (AFLink,) which stands for the first global link 

model without appearance information, and Gaussian-smoothed interpolation (GSI) which 

deals with missing detections. A more detailed description of StrongSORT++ is referenced 

in [59]. The framework comparison is in Figure 2.2.3.1. 
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Figure 2.2.3.1 DeepSORT and StrongSORT MOT framework comparison. 

2.3. VisDrone 2019  

The dataset chosen for multiple object tracking purposes is VisDrone 2019. VisDrone 2019 

dataset contains 288 videos, 261,908 frames, and 10,209 static images. The dataset is 

captured by various drone cameras in 14 different cities in China by the AISKYEYE team. 

Frames are manually annotated with more than 2.6 million bounding boxes. The dataset is 

focused on pedestrians and vehicles divided into 10 classes: pedestrian, person, car, van, bus, 

truck, motor, bicycle, awning tricycle, and tricycle. Pedestrians are humans who maintain a 

standing pose or walk while others are considered as class people.  

VisDroneDET – 2019 is the dataset prepared for the object detection tasks we are interested 

in. It consists of 8,599 images with more than 540,000 bounding boxes. The training set 

consists of 6,471 images, the validation set contains 548 images, and 1580 images are 

intended for the test set [43]. The fact that the number of images in the test set is almost three 

times higher than in the validation set may indicate that VisDroneDET – 2019 is designed 

for challenge purposes. Figure 2.3.1 illustrates a histogram of VisDroneDET 2019 instances 

per class [43]. 
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Figure 2.3.1 Instances of VisDroneDET-2019 detection dataset generated at the start of the training 

by the YOLOv8. 
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3. The dataset methodology 

The dataset methodology includes a sampling approach to demonstrate models’ behavior on 

the dataset samples. Sampling is needed to facilitate the process of selecting the most suitable 

models for the training on the entire dataset. This methodology approach is mainly chosen 

to enable reproductivity of the entire experiment. 

3.1. The dataset – VisDrone 2019 

VisDrone 2019 object detection dataset is selected because of its availability. The latest 

versions, such as VisDrone 2021, demand registration on the main page, which is avoided 

due to the reproducibility of the experiment. The dataset is downloaded from the official 

GitHub repository [43]. The downloaded dataset contains annotations in VisDrone format 

which need to be converted into YOLOv8 format, where each file represents normalized 

annotations on the corresponding image. Fortunately, Ultralytics provides Python scripts for 

downloading and converting VisDrone annotations into YOLOv8 format [19]. Due to 

hardware constraints, the train set is randomly divided into a base sample and five secondary 

samples. Each sample contains 10% of the train set, randomly selected by the Python random 

module [65]. Train samples enable faster training leading to a higher possibility of tuning 

hyperparameters. Metrics comparison in Figure 3.1.1 shows that each sample is a 

representative sample for experiments.  

 

Figure 3.1.1 Histogram of metric comparison for the base sample and secondary samples. 

Hence, we can assume that samples are representative samples of the dataset.  
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The command line code in Code 3.1.1 is used to train each sample for 20 epochs: 

yolo detect train data="data_yaml_path" model=yolov8s.pt 

epochs=20 imgsz=640 batch=-1 project="VisDrone" name=sampleN 

seed=123 val=false cache=true workers=3 

 Code 3.1.1 – Command line code used for the sample training. 

The parameter val=False will validate the best weights after the training. The number of 

epochs is 20 due to the pre-trained yolov8s.pt model that enables fast convergence. The batch 

size is set to be automatically calculated and the batch size of 16 is the most suitable for used 

GPU (T4 with 15GB in Google Colaboratory). The next section describes the experiment 

which includes training, results, and the final model for real-time detection and tracking. 



 

28 

4. The experiment 

After selecting the candidate models, the experiment section contains an explanation of the 

training approach for the selected models. The results sections compare the efficiency of the 

validation set with metrics and examples. The last section presents an approach to building 

a model that detects and tracks objects in real-time. The programming language, 

frameworks, packages, and modules are contained in the last section. 

4.1. Training approach 

Due to the easy-to-use Ultralytics framework containing configuration files for YOLOv8 

models, three models are trained to achieve the MOT tracking model:  

1. Pre-trained MS COCO weights: pre-trained models enable fast convergence due to 

already learned features from MS COCO classes. Training on base and secondary 

samples shows that the model achieves the best results within 20 epochs.  

2. EL-YOLOv8s (ours): our model achieves slightly worse results than the pre-trained 

YOLOv8s model through 100 epochs on the base sample. Due to that, we trained our 

model for an additional 100 epochs and presented performance in the results section. 

3. YOLOv8-p2 + ESPP: we modified YOLOv8 which includes the p2 stage into further 

computation as EL-YOLO but blocks and modules are constructed as a basic 

YOLOv8. Additionally, we implement ESPP into YOLOv8-p2 and test it on the base 

sample. This model is also trained for 100 + 100 epochs. 

 

The YOLOv8 (ultralytics) framework is still under development so the training is not 

optimized. RTX 3060 (6GB) mobile can handle batch of size 8 and more than 30 minutes is 

required per epoch which is extremely slow. Training in Google Colaboratory brings new 

types of problems like constant GPU memory problems. Free T4 with 15 GB cannot handle 

a batch of size greater than 6, although setting batch=-1 parameter calculates a batch size of 

32 as ideal for the proposed GPU. Gradient Paperspace also provides GPUs within 

notebooks similar to Google Colaboratory. Hence, the third option for training is via gradient 

notebooks. The standard YOLOv8s model with pre-trained weights is trained in Google 

Colaboratory while models that demand training from scratch are trained in Gradient 

notebooks.  
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Code 4.1.1 is used to train the models.  

yolo detect train model=model.yaml/model.pt data="data.yaml" 

epochs=100 imgsz=640 batch=16 project="Drone" name="name" 

seed=123 cache=True 

 Code 4.1.1 – Command line code for training models in Gradient Paperspace terminal. 

4.2. Results 

Training results show the performance of the YOLOv8 and its modified versions. Table 4.2.1 

contains data about modified network layers, parameters, and results. 

                Metric 

Model 

Precision 
(%) 

Recall 

(%) 

mAP50 

(%) 

mAP50:95 

(%) 
Layers 

Parameters 
(M) 

YOLOv8s 55.3 42.0 44.4 27.1 225 11.1 

YOLOv8s-P2 + 
ESPP 

52.2 42.3 42.9 26.2 279 11.7 

EL-YOLOv8s 49.5 40.2 41.3 25.2 274 9.5 

Table 4.2.1 YOLOv8s-based architecture summary and metrics. 

Results are evaluated on the validation set after 100 epochs. The model with pre-trained 

weights outperforms the proposed models. According to parameters in the network, EL-

YOLOv8s has a slightly faster inference speed. 

 

Figure 4.2.1 mAP50 metric comparison with peak value (green dot and red value) 
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Figure 4.2.1 shows slightly higher mAP50 peaks due to the fitness function that determines 

the best model weights as shown in Code 4.2.1.  

def fitness(self): 

w = [0.0, 0.0, 0.1, 0.9]# weights for [P, R, mAP@0.5,  

mAP@0.5:0.95] 

     return (np.array(self.mean_results()) * w).sum()  

Code 4.2.1 YOLOv8 fitness function that determines the best weights. 

Consequently, mAP50 contributes 10% while mAP50:95 contributes 90% to the combined 

evaluation. Furthermore, EL-YOLOv8s and YOLOv8s-p2 + ESPP are trained for an 

additional 100 epochs due to the previous training from scratch. Additional training is started 

with pre-trained weights for each model with the same training strategy. Results are 

presented in Figure 4.2.2. 

 

Figure 4.2.2 Training on EL-YOLOv8s and YOLOv8s-p2+ESPP for additional 100 epochs.  

The experiments with YOLOv8-based models have no significant difference in metrics. The 

efficiency of the proposed EL-YOLOv8s and YOLOv8-ps + ESPP got closer to the basic 

pre-trained YOLOv8s model. Results with an additional 100 epoch are in table 4.2.2. 

                Metric 

Model 

Precision 
(%) 

Recall 

(%) 

mAP50 

(%) 

mAP50:95 

(%) 
Layers 

Parameters 
(M) 

YOLOv8s 55.3 42.0 44.4 27.1 225 11.1 

YOLOv8s-P2 + 
ESPP 

54.6 42.7 44.3 26.9 279 11.7 

EL-YOLOv8s 51.0 42.2 43.8 26.5 274 9.5 

Table 4.2.2 Results after additional 100 epochs of training for EL-YOLOv8s and YOLOv8s-p2 + 

ESPP. 
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Although EL-YOLOv8s has the lowest value for mAP50:95, it has approximately 1.6 million 

parameters less than the other proposed models. Accordingly, EL-YOLOv8s is selected for 

further experiments for real-time MOT. Table 4.2.3 presents metrics evaluated for selected 

EL-YOLOv8 for each class.  

        Class 

Metric 
All Pedestrian People Bicycle Car Van Truck Tricycle 

Awning-
tricycle 

Bus Motor 

Precision 
(%) 

51.0 54.1 54.4 28.7 75.1 52.9 46.1 44.5 27.7 69.6 57.2 

Recall 
(%) 

43.2 48.6 38.1 17.0 82.6 51.0 39.2 32.7 20.1 53.4 49.0 

mAP50 
(%) 

48.3 50.1 40.7 14.9 85.5 50.4 37.1 31.6 16.1 61.5 50.5 

mAP50:95 
(%) 

26.5 23.9 16.6 6.7 62.2 36.1 24.4 18.2 9.6 44.1 23.5 

Table 4.2.3 Metric evaluated for each class in the dataset with the EL-YOLOv8s model. 

According to Table 4, the class bicycle and awning-tricycle ruin the performance of the 

model. Tricycle is a bit strange class and awning-tricycle sounds like a subclass of tricycle. 

The VisDrone [43] dataset is captured in China, and we believe these classes are specific to 

this country. Therefore, we decided to merge bicycle, tricycle, and awning-tricycle into a 

single-class bicycle. The model with 10 classes where two classes have significantly lower 

scores leads to less accurate detections. Mentioned classes are also less presented in the 

dataset (Figure 15). Additionally, these classes are not the most significant in drone traffic 

detection scenarios. Classes pedestrian and people are obvious classes that share the same 

features but in different contexts in traffic scenarios. Due to that, we repeat the same training 

strategy with the dataset where tricycle and awning-tricycle labels are mapped into class 

bicycle and class people is mapped into class pedestrian. The results are in Table 4.2.4.  
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        Class 

Metric 
All Pedestrian Bicycle Car Van Truck Bus Motor 

Precision 
(%) 

61.8 64.5 46.8 78.0 56.1 50.7 74.3 62.5 

Recall 
(%) 

49.1 51.3 26.8 80.7 49.7 39.6 50.2 45.4 

mAP50 
(%) 

52.8 56.2 28.6 84.0 50.1 38.5 61.8 50.5 

mAP50:95 
(%) 

33.0 24.9 15.6 61.3 36.0 25.3 44.3 23.6 

Table 4.2.4 Metric evaluated on the EL-YOLOv8s with classes tricycle and awning-tricycle 

merged into the class bicycle. 

 

Now the model evaluates higher mAP50:95 for 4.0% overall classes and bicycle is still the 

class with the lowest metrics. To summarize the Results section, Figure 4.2.3 visualizes 

feature maps generated by the SPPF and ESPP blocks.  

 

Figure 4.2.3 a) input image from the VisDroneDET-2019 validation set. b) SPPF feature maps 

(YOLOv8s). c) ESPP feature maps (EL-YOLOv8s). 
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SPPF output feature maps put focus on wider area of object features while ESPP relies on 

searching for individual small object features. A few predictions on the test set, that is not 

utilized for training or metrics evaluation, are shown in Figure 4.2.4.  

 

Figure 4.2.4 Predictions on test set images with EL-YOLOv8s which has merged classes. 
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4.3. Model for object detection and tracking 

This work is publicly available in [66]. Python is the most popular programming language, 

especially in the Machine learning field and it is selected for this purpose. YOLOv8 and 

StrongSORT are implemented in Python, so there is no need for additional implementation. 

The main python libraries and frameworks utilized for this purpose are: 

• Ultralytics [19] contains YOLOv8 models with corresponding scripts for training, 

validation, test etc. It enables computer vision workflow in Python code or by using 

command-line interface (CLI). Besides object detections, the Ultralytics framework 

provides the possibility to try diverse computer vision tasks such as instance 

segmentation, object tracking, pose estimation and image classification. The 

framework also contains YOLOv5 and YOLOv3 models and it is implemented in 

PyTorch. 

• PyTorch is a framework that accelerates deep learning on the graphics processing unit 

(GPU). Having Nvidia GPU which supports the Cuda toolkit is necessary to utilize 

GPU acceleration. By installing the Ultralytics package, PyTorch is contained in 

dependencies, and modules for the CPU will be installed. According to that, PyTorch 

for GPU should be installed first [67]. 

• Boxmot is a collection of state-of-the-art object trackers which includes various 

trackers for the tracking-by-detection paradigm. It simplifies utilizing trackers such as 

StrongSORT with YOLOv8 due to the number of algorithms and additional neural 

networks for re-identification purposes. This work is mainly focused on StrongSORT 

object tracking, though utilizing other trackers would not be complicated [68].  

• OpenCV is the computer vision and machine learning library that provides common 

infrastructures for applications. It provides classes and functions to struggle with the 

streams and videos that are necessary for end-to-end object detection and tracking 

[69]. 

Detailed installation instructions are in [66]. After preparing a virtual environment with 

necessary dependencies, the object-oriented paradigm is chosen as a programming approach 

in Python. Simple and straightforward object detection and tracking contain only one main 

class ObjectDetection(). This class contains the basic functions for model loading and 

prediction, VideoCapture(), and tracker initialization. The idea is to construct a simple 

general object detection and tracking model that could be easily upgraded for a specific 

purpose. We use the built-in __call__() function that handles the model pipeline. Firstly, 
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ObjectDetection() initializes the model and tracker with corresponding weights for detection 

and re-identification. Re-identification weights can be found on the Boxmot GitHub page in 

the ReID model zoo section. When the tracker and detector are ready, VideoCapture() opens 

the received video file, and inference starts. We detect objects for each frame that is 

successfully loaded by VideoCapture() and prepare data for the tracker. The tracker joins 

IDs to the bounding boxes and then draws them on the frame. To measure the performance, 

we calculated the time needed to load the frame, do detections and tracking on the frame, 

and visualize bounding boxes. Furthermore, time calculated by the Python performance 

counter is converted into frames per second FPS. Figure 4.3.1 shows a straightforward object 

detection and tracking approach with FPS calculation.  

 

Figure 4.3.1 The pipeline of the object detection and tracking model with main hyperparameters. 

To validate our model on videos we downloaded the VisDrone 2019 detection in videos 

validation set which contains 8 folders with sequences from the video. Sequences are 

converted to video by merging frame by frame with OpenCV’s VideoWriter() class by using 

FPS rate of 20 and the same video resolution as image dimensions. FPS of 20 produces the 

most realistic objects movement speed and we chose it without additional testing. The reason 

why we are not training the model on this dataset is because of the images and label structure. 

Ground truth labels are in a single textual file for each sequence. Sequence consists of 

multiple images so searching for corresponding labels could be demanding. MOT metrics 

are not evaluated because we want to achieve real-time object detection and tracking in 

general instead of outperforming competitors on VisDrone tracking. The following figures 

show tracking results on the VisDrone videos:  
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Figure 4.3.2 10th frame extracted from the video1. 

 

Figure 4.3.3 150th frame extracted from the video 1. 
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Figure 4.3.4 10th frame from the video 2. 

 

Figure 4.3.5 150th frame from video 2. 
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As we can see, calculated FPS (top left corner) is not so real-time, but it depends mostly on 

the hardware. For the inference on videos, we utilize: 

• Intel(R) Core (TM) i7-11800H @ 2.30GHz 

• NVIDIA GeForce RTX 3060 Laptop GPU, 6GB 

• 16,0 GB RAM 

• CUDA Version: 12.2 

• Windows 10 Education 

Speed inference also depends on the number of objects that need to be further processed. 

The traffic situation in China usually with a high number of vehicles and other traffic 

scenarios with a lower number of objects leads to a higher FPS rate. According to Figures 

4.3.2, 4.3.3, 4.3.4, and 4.3.5, we can conclude that YOLOv8 and StrongSORT detect and 

track most objects even in drone-moving scenarios. Re-identification has difficulties with 

similar objects that overlap in video. Due to that, some objects could be misidentified. 

Frames are in high resolution and traffic is crowded, so it would be exhausting to comment 

on each trajectory. 
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Conclusion 

Reviewing the literature, we adopted the YOLOv8 algorithm and a StrongSORT framework 

as the most suitable to achieve the goal of this study: Real-time multiple object tracking for 

the objects captured by drone. With the help of the VisDrone 2019 dataset, we prepare 

weights for our goal. We additionally proposed a new EL-YOLOv8 model that unfortunately 

did not outperform the basic YOLOv8 algorithm in metrics. The difference in mAP50:95 is 

only 0.6%, but our model has 1.6 million parameters less (~15% less). Hence, we chose EL-

YOLOv8 as a model to accomplish real-time tracking. It is important to note that pre-trained 

YOLOv8 models demonstrate a considerably faster convergence than the models trained 

from scratch. Therefore, our model required additional time to achieve the best 

performances. To present our overall real-tracking model, we built it in Python and measured 

how much time the model needs to process in the period of loading a frame, object detection, 

and tracking step, and the period ends after bounding boxes visualization on the frame. The 

metric is additionally converted to frames per second and visualized on each frame. During 

the testing phase on VisDrone videos, the model's performance was notable in identifying 

challenges posed by crowded scenarios. However, it is anticipated that an increase in 

processing demands for detection, tracking, and visualization tasks could result in a potential 

slowdown of the model's overall performance. To conclude this thesis, we added some 

crowded scenario images and briefly described them. Due to the high image resolution and 

crowded scenario, our model is not the fastest one, but we believe that less crowded 

situations and hardware more powerful than mobile GPU would speed up inference. 

Therefore, our model is publicly available, and everyone can test their own weights and 

trackers and improve the model with even more computer vision tasks.  
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