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Introduction

In the recent years, natural language processing has become ever-more pop-

ular as a field of research, being introduced into formal education, and in

the market, as a useful tool in creating products related to language such as

chatbots. Historically, one of the first tasks of this sub-field of artificial intel-

ligence is machine translation. This is a task which has had a large influence

in the motivation of developing the field of computational linguistics, as well

as natural language processing techniques.

From this task, a simpler one emerges - how to process the input of text,

automatically, by the use of a computer? Text summarization is one such

task, where a machine is expected to produce relevant output in human-

readable, textual, format. This is no easy task, as many obstacles present

themselves. Namely, the problem of text representation in a form suitable

for management by the computer, and semantically relevant text production

are two biggest ones.

Several approaches have been tried out to try to tackle the problem of cre-

ating meaningful summaries from given text; both numerical and, in modern

times, deep learning. Neural networks have been shown to be the best mod-

els up to date for text generation problems, thanks to their immense power

of generalization and ability to operate under the assumption of context.

Human language is one of the most complicated systems, and yet, it



v

is developed naturally, through evolution and intuition. The intricacies of

natural language are extremely hard to capture by any machine or formal

system which operates under strict and logical rules. To capture the true

cultural and other, more local, contexts and meaning of some text, many

complex models have been tried out. Perhaps truly ”teaching” the machines

how to speak is not possible, but attempts at mimicking are becoming more

and more convincing.

This thesis covers the basics of text summarization, the historical devel-

opment of techniques for this purpose, as well as an overview of the most

popular and successful modern methods using deep learning. At the end,

practical examples showcasing the methods in action are given.
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Chapter 1

About natural language

processing and automatic text

summarization

1.1 About natural language processing

Natural language is any human language which has evolved through repeti-

tion and without conscious planning. Natural language is most easily defined

by contrasting it with another kind of language, well known in mathematics

- formal languages.

Natural language processing is a sub-discipline of artificial intelligence,

linked to linguistics and computer science, concerned with the interactions

between computer programs and human languages. Its primary concern is

programming computers to process and analyze large quantities of natural

language data.

The main goal is to achieve a computer program capable of understanding

the natural language documents it is given, including context and nuances.



1.1. About natural language processing

This enables extraction and analysis of information contained in the docu-

ments as well as organization and categorization of documents themselves.

The term document refers to a generally accepted definition in natural

language processing field - a collection of meaningful natural language in-

stances (words or sentences), treated as a single unit.

Natural language processing has many tasks. Some of them are machine

translation, text summarization, and key-word extraction.

1.1.1 History of natural language processing

The history of natural language processing has its roots as early as in sev-

enteenth century, with the first ideas of a system which translates human

languages from one to another. Descartes and Leibniz both proposed ideas

for codes which would do this task. However, none of these ideas became

realized and further explored until the famous paper by Alan Turing - Com-

puting Machinery and Intelligence, in which he proposed the procedure now

called the Turing test. In 1957, Noam Chomsky took the ideas about lan-

guage even further by constructing a universal grammar, a rule based system

of syntactic structures.

The main task which was a primary goal of many of these ideas was a

system, or a machine, which could automatically translate. Thus, machine

translation sub-field of natural language processing was born. Many early

successes occurred in the sub-field of machine translation, due to work at

IBM Research, where successively more complicated statistical models were

developed.

Recent research focuses on the use of machine learning models, which

take the statistical logic even further, by implementing semi-supervised and

unsupervised algorithms for various natural language processing tasks, not

2



1.2. About automatic text summarization

just machine translation. One thing these algorithms need is a lot of data.

This is available for the first time in history, in sufficiently large quantities,

thanks to the World Wide Web and its enormous resources of text, in many

different forms.

Today, there exist many models which utilize large amounts of textual

data, called corpora, in order to train various algorithms. There are several

virtual assistants on the market which utilize natural language processing

techniques in order to appear realistic to users. The field of natural language

processing continues to grow and expand, by introduction of more specific

sub-fields and tasks, as well as research which is ever-more popular.

The history of natural language processing can be roughly divided into

three phases:

• symbolic (1950s - early 1990s) - characterized by computer emulation

of natural language by using the predefined set of rules,

• statistical (1990s - 2010s) - based on introduction of machine learn-

ing algorithms which discouraged the previous Chomskyan theories of

modelling languages as formal grammars and encouraged the corpus

linguistics principle of viewing language,

• neural (present) - brought on by the advances of machine learning which

made deep neural network style algorithms more prevalent.

1.2 About automatic text summarization

Text summarization is a task in natural language processing with the goal

of producing a shorter version of a given text by the use of a computer. The

created output is called a summary, which should be representative of the full

3



1.3. The goal of text summarization and established methods

text, that is, it should contain the most important information from the orig-

inal text. There are other types of data which can be summarized, namely:

images and video/audio content. The umbrella term for summarization of

any kind of data here mentioned by the use of a computer is called automatic

summarization.

This thesis focuses on the summarization of text. Two main types of text

summarization are extractive and abstractive. The former does not include

changing any words from the given text, but only rearranging them. In con-

trast, abstractive summarizing is based not only on extracting semantically

valuable pieces of text, but employing various methods for building a seman-

tic representation of the text which looks more like the product of a human

expression. This includes paraphrasing.

One task of natural language processing which is related to summariza-

tion is key-word extraction, which refers to a practice of finding relevant

words or phrases in the given text in order to identify the topic of the text.

Summarization is similar to this in regards to the need of finding semantic

connections in the text. The better the semantic representation of the text,

the better the summary because it does not rely solely on detecting relevant

whole sentences, but also on their core meaning, thus making it possible to

combine them in order to achieve a more quality summary.

1.3 The goal of text summarization and es-

tablished methods

The process of creating a summary has several steps:

1. text segmentation,

4



1.3. The goal of text summarization and established methods

2. word encoding,

3. applying a chosen model to create a summary.

In order to present text to a computer, it needs to be transformed into

a form which computers understand - numbers. The first thing that needs

to be done in order to use any kind of model, be it numerical or machine

learning based, is text encoding. This can be done in many ways.

Usually, text is split into sentences, and then into words. This procedure

is called text segmentation. It can be done in simple ways, by using

regular expressions, or in a more sophisticated way, by the use of machine

learning models. The main point is dividing the initial text into smaller,

more manageable units such as words.

The next step is mapping words into numbers or, more commonly, vectors

which will represent them in the model. This is no trivial task, and is a

sub-field of natural language processing itself. There are many ways to do

this. Some of the most popular methods include one-hot encoding, tf-idf

vectorization and word embeddings.

Definition 1.1 Let K = {1, . . . , n} represent the set of words which occur

in a text, where each number corresponds to a unique word. A one-hot vector

is a vector (y1, . . . , yn) ∈ {0, 1}n where yi = 1 if (y1, . . . , yn) corresponds to

the word represented by i, yi = 0 otherwise.

Remark 1.2 One-hot vectors are called this way because only one coordinate

is equal to 1 and all others are zero.

This method of encoding words is limited, and there exist more advanced

methods which encapsulate the frequency of word occurrence in text - an

important and telling feature. One such method uses two scores in order

5



1.3. The goal of text summarization and established methods

to produce a vector: number of word occurrences in a document (term fre-

quency), and number of documents in which the word occurs (document

frequency). Since the word is considered less meaningful if it appears in

many documents, this score is higher for more specific words rich with mean-

ing, and low for common words such as conjuction words, for example ”a”

and ”the”.

Remark 1.3 It can be difficult to find the balance in scoring words based

on their occurrence frequency since common words appear in most if not

all documents, and many times at that, but words representative of the text

topic occur many times as well. It is for this reason that universally common

words, so-called stop words, are usually removed from the text.

Tf-idf refers to term frequency - inverse document frequency, and is a

score calculated for pairs of terms and documents (t, d) in the following way:

tf − idf(t, d) = tf(t, d)× idf(t)

where tf(t, d) is the number of occurrences of a term t in the document d,

and

idf(t) = log
1 + n

1 + df(t)
+ 1

where df(t) is the number of documents in the document set which contain

the term t.

A more sophisticated method of representing words with vectors is by

word embeddings - typically real-valued vectors which represent words in

such a way that words closer to each other in meaning are represented by

vectors which are closer to each other in the embedding space. The resulting

embedding space can be considered as a subset of Rn, thus formalizing the

notion of closeness.

6



1.3. The goal of text summarization and established methods

The final step in producing a summary is applying the chosen model. This

thesis presents established algorithms used for this purpose. As any task

related to natural language is complicated, since natural language cannot

be described by a finite set of rules, machine learning makes an excellent

candidate as an improvement to the classical numerical models.

1.3.1 Document-term matrix

Document-term matrix is a matrix which represents the occurrences of terms

in documents along a given set of documents.

Definition 1.4 Let D = {d1, . . . , dn} be a set of documents and let T =

{t1, . . . , tm} be a set of terms. A document-term matrix is a matrix
[
αij

]
nm

where αij denotes the number of occurrences of the term tj in the document

di.

The rows represent the documents, and the columns represent the terms.

A document-term matrix is one of the simpler methods of modelling text by

counting words. It disregards the order of appearance in which the words

occur, but it is still a powerful tool and an important concept.

Matrix factorization can be used in order to represent the initial matrix as

a product of two smaller ones V = WH. In this case, W can be considered as

a feature matrix, and H as a coefficient matrix. Now, each original document

(row of V ) can be considered to be built from a set of hidden features. The

role of matrix factorization is to find useful features. This is how numerical

methods are used for text summarization: in the form of matrix factorization

techniques.

7



Chapter 2

Numerical methods

2.1 Singular value decomposition

Definition 2.1 (Singular value decomposition) A singular value decom-

position (SVD) of a matrix A ∈ Cm×n is a factorization

A = UΣV ∗

where

Σ = diag(σ1, σ2, . . . , σp) ∈ Rm×n,

p = min{m,n},

σ1 ≥ σ2 ≥ . . . ≥ σp ≥ 0

and both U = [u1,u2, . . . ,um] ∈ Cm×m and V = [v1, v2, . . . , vn] ∈ Cn×n

are unitary. The diagonal entries of Σ are called singular values of A. The

columns of U are called left singular vectors of A. The columns of V are

called right singular vectors of A.

Remark 2.2 Notation diag(σ1, σ2, . . . , σp) denotes the following diagonal



2.1. Singular value decomposition

matrix: 
σ1 0 · · · 0

0 σ2 · · · 0
...

...
. . .

...

0 0 · · · σp

 .

Singular value decomposition is, most notably, used in latent semantic

analysis. This is a technique in distributional semantics, a natural language

processing area which studies theories and methods of quantifying and cat-

egorizing semantic similarities between linguistic instances based on their

distributional properties in large samples of natural language data.

2.1.1 Latent semantic analysis

The goal of latent semantic analysis is producing a set of concepts related to

documents and terms, based on analyzing the relationships between them.

The main assumption is that words which are close in meaning occur in

similar pieces of text. This is referred to as distributional hypothesis.

Latent semantic analysis is based on the vector space model idea which

uses linear algebra knowledge. The vector space model was initially devel-

oped for information retrieval. More precisely, it was developed to handle

text retrieval from large databases with heterogeneous text. One of the first

systems which used this model, in its traditional version, was System for the

Mechanical Analysis and Retrieval of Text (SMART) [9].

The main premise of this model style is that documents can be derived

from their components. The underlying mathematical model of vector space

models defines unique vectors for each document and uses these vectors for

querying by comparing each one with the given query in order to find the

right one. Query-document similarity is based on similar semantic content.

9



2.1. Singular value decomposition

Latent semantic analysis is considered a truncated vector space model

which represents documents in a high-dimensional document-term vector

space. It uncovers the hidden underlying (”latent”) semantic structure in

text to define documents in a collection. A document is defined as the sum

of the meaning of its terms. By using the truncated singular value decom-

position, latent semantic analysis exploits the meaning of terms by removing

”noise”, which is evidenced by polysemy and synonymy found in documents

[10]. As a results, document similarity is dependent on their semantic con-

tent, and not on the terms which they contain. This is especially emphasized

by the fact that documents relevant to queries do not need to necessarily

contain any terms from the query itself [11].

The algorithm

A document-term matrix is constructed from large quantities of text and then

singular value decomposition is applied to it in order to reduce the number of

rows (which represent documents) while preserving the similarity structure

along columns (which represent terms). Finally, a comparison of documents

is performed, by calculating cosine similarity of vectors or the dot product of

normalized vectors formed by any two columns. Values close to 1 represent

similar documents, and those close to 0 very dissimilar ones.

The document-term matrix undergoes a procedure of weighting, in the

sense that each nonzero element αij gets a weight associated to it. A weight-

ing function should give low weight to high-frequency terms which occur in

many documents and high weight to terms that only occur in some docu-

ments. Latent semantic analysis applied both a local and a global weighting

function to each nonzero element in order to increase or decrease the im-

portance of a term within documents (local) and across the entire document

10



2.1. Singular value decomposition

collection (global). The local and global weighting functions are directly re-

lated to frequency of term occurrence within documents and inversely related

to frequency of term occurrence across the whole document collection.

Local weighting functions include using term frequency and binary fre-

quency (0 if term is not in a document, 1 if it is) and logarithms of term

frequency plus 1. Global weighting functions include normal, tf-idf, and en-

tropy. A common local and global weighting function is log-entropy which

decreases the effect of large differences in frequencies.

Entropy in the context of term-document frequency is defined as

1 +
∑
j

pijlog2(pij)

log2n

where

pij =
tfij
gfi

,

tfij being the number of times a term i appears in the document j, gfi being

the number of times a term i appears in the entire document collection, and

n being the number of documents in the collection.

After constructing the document-term matrix, a low-rank approximation

method is applied to it. This is done for multiple reasons: original document-

term matrix is too large for computing resources, too noisy (contains too

many anectodal instances of terms), or too sparse relative to the possible

document-term matrix which would also contain words related to each doc-

ument (synonyms) and not only precisely words which do appear.

Rank lowering is expected to merge the instances associated with words

which have similar meaning. This mitigates the problem of synonymy.

Singular value decomposition is applied to the low-rank approximation

of the original document-term matrix. When selecting the k largest singular

values {σ1, . . . , σk} and their corresponding singular vectors, one gets the

11



2.1. Singular value decomposition

rank-k approximation of the original document-term matrix with the smallest

error (regarding the Frobenius norm).

Definition 2.3 Frobenius norm of a matrix A is defined as

∥A∥F =

√√√√ m∑
i=1

n∑
j=1

|aij|2.

Now, it is possible to treat the term and document vectors as a semantic

space. Each term and document vector then has k entries which represent

its mapping to a lower-dimensional space.

Figure 2.1: Vector space and latent semantic analysis space representations

comparison (figure from [5]).

The new lower-dimensional space can be used for different purposes:

• comparison of documents (data clustering, document classification),

• finding similar documents across languages (cross-language information

retrieval),

12



2.2. Non-negative matrix factorization

• discovering relations between terms (synonymy and polysemy),

• translation of given query into low-dimensional space and finding match-

ing documents (information retrieval),

• expansion of the feature space of text mining systems,

• analysis of word association in text.

Singular value decomposition is the chosen orthogonal matrix decomposi-

tion for multiple reasons. Firstly, it decomposes the original document-term

matrix into orthogonal factors that represent both terms and documents.

These vector representations are achieved at the same time. Secondly, it

sufficiently captures the latent semantic structure of the document collection

and it allows for adjustment of term and document representation in the

vector space by choosing the number of dimensions (appropriate number of

singular values k). Finally, its computation is manageable for large datasets.

By dimension reduction to k, variability in term usage referred to as

”noise” is removed. Terms similar in meaning are near each other in the k-

dimensional space even if they never occur next to each other in a document.

Documents similar in meaning are near each other even if they share no

terms. In practice, choosing k depends on the given data. For large document

collections, this value usually falls between 100 and 300 [12].

2.2 Non-negative matrix factorization

2.2.1 Basic idea and use in text summarization

Non-negative matrix factorization is a family of algorithms in multivariate

analysis and linear algebra. The goal of non-negative matrix factorization

13



2.2. Non-negative matrix factorization

is interpreting the initial matrix as a product of two matrices with non-

negative entries. The non-negativity condition insures easier manipulation

with matrices, in the context of matrix calculations. Also, for certain types

of data non-negativity is a given instance - sometimes negative entries make

no sense (audio spectrograms, muscle activity...).

Such a factorization is not always possible to achieve analytically. Hence,

it is solved by numeric methods.

2.2.2 Definition and formalization

Let

V = W ·H

where

V ∈Mm,n(R),W ∈Mm,p(R), H ∈Mp,n(R).

The crucial property of matrix multiplication which non-negative matrix

factorization uses is arbitrarity of the chain dimension p. Dimensions m and

n are determined by the type of V , but p can be any natural number. This

means that the number of entries in W and H is a lot smaller than the

number of entries of V and it can be chosen.

The goal of factorization is to approximate the starting matrix as well as

possible. This translates to minimizing the error function. Thus, the task

of finding a suitable matrix factorization becomes an optimization problem.

The error function is defined as

∥V −WH∥F

where ∥·∥F denotes the Frobenius norm.

Intuitively, it is desirable to shrink the distance between the approxima-

tion WH and the original V .

14



2.2. Non-negative matrix factorization

The reason why a numerical approach is used instead of an analytical one

is because non-negative matrix factorization belongs to NP (nondeterministic

polynomial) class of problems, regarding algorithmic complexity. Simply put,

the result of the factorization is easy to verify by multiplying W and H, but

not easy to find. More specifically, it has not been proven that the result can

be found in polynomial time.

So, the previous expression V ≈ WH can be replaced with

V = WH + U

where U is the residual, which does not necessarily need to be non-negative.

The Hadamard multiplication algorithm

The simplest algorithm for finding W and H is the one by the name of

Hadamard multiplication algorithm, which got its name by the main oper-

ation it uses. The use of Hadamard multiplication is in the so-called multi-

plicative update rule.

To define the update rule of the iterations in the algorithm, it is necessary

to first fix one of the factors W , H and then minimize the cost function

regarding the other, variable factor.

The cost function can be written in the form of:

∥V −WH∥2F =
n∑

i=1

∥V:i −WH:i∥22

More specifically, the cost function problem can be reduced to a series of n

independent smaller problems where each column of H is minimized sepa-

rately. This means that the original problem has been transformed to a series

of quadratic minimization problems:

min
h≥0

F (h) = min
h≥0
∥v −Wh∥22

15



2.2. Non-negative matrix factorization

where v, h are the columns of V,H.

Definition 2.4 Quadratic minimization problem is defined as a quadratic

programming problem with n variables and m constraints: given a vector c ∈

Rn, a symmetric positive definite matrix Q ∈Mn(R), a matrix A ∈Mmn(R),

and a vector b ∈ Rm, the objective of quadratic programming is to find a

vector x ∈ Rn such that
1

2
xTQx+ cTx

is minimized subject to

Ax ⪯ b,

where ⪯ denotes component-wise inequality.

Furthermore, for the fixed approximation h̃ ≥ 0 it can be shown that the

gradient of the cost function F is:

∇hF = W TWh−W Tv + Vh̃(h− h̃).

Equating the gradient with zero, one gets the following expression, where h∗

is the minimum:

(W TW + Vh̃)h
∗ = W Tv − Vh̃h̃.

Given that h̃ is the global minimum of the cost function in the fixed

iteration F̄ , it follows that:

F (h∗) ≤ F̄ (h∗) ≤ F̄ (h̃) = F (h̃).

This means that there exists a negative slope in the cost function.

The update rule for the whole matrix H is obtained by repeating the

aforementioned procedure for each row of H. Similarly, the update rule is

applied to the matrix W .

16



2.2. Non-negative matrix factorization

1. Initialize W i H.

2. Calculate new W i H:

Hn+1
i,j = Hn

i,j

((W n)TV )i,j
((W n)TW nHn)i,j

W n+1
i,j = W n

i,j

(V (Hn+1)T )i,j
(W nHn+1(Hn+1)T )i,j

until W and H are stabilized.

In this process, Hadamard multiplication is used instead of the standard

matrix multiplication. That is why this algorithm is sometimes also called

Hadamard product algorithm. This is the most popular and the oldest algo-

rithm of non-negative matrix factorization [3].

Remark 2.5 Note that the factors

W TV

W TWH
,

V HT

WHHT

are equal to the neutral element for Hadamard multiplication
1 1 · · · 1

1 1 · · · 1
...

...
. . .

...

1 1 · · · 1


when V = WH (exactly equal).

It is important to note that this factorization is not unique. Factors W

and H can be transformed into some different factors (which still work) by

using an appropriate invertible matrix and its inverse

WH = WBB−1H = W̃ H̃

17



2.2. Non-negative matrix factorization

where B is a non-negative generalized permutation matrix.

These conditions are neccessary in order to guarantee non-negativity of

the new matrices W̃ i H̃. Generalized permutation matrices are permuta-

tion matrices with non-zero elements which are any real numbers (and not

multiplicative neutral element of the given field - 1 in (R,+, ·) with stan-

dard addition and multiplication). Here, it is additionaly required that B is

non-negative, so one example of such a matrix could be:


0 2 0

3 0 0

0 0 4

 .

What is left is ensuring non-negativity of the new matrices W k+1, Hk+1,

with the condition thatW k, Hk are non-negative. Actually, this is an attempt

to avoid a situation where the algorithm gets ”stuck” in some extreme which

is not stationary, that is Karush-Kuhn-Tucker condition is not satisfied but

the following holds: ∇Hij
F < 0.

If a stronger assumption is made that the starting matrices W,H are

positive (instead of non-negative), the following holds:

∇Hk
ij
F < 0,

that is [
(W k)TW kHk

]
ij
−
[
(W k)TV

]
ij
< 0.

From this, by using the Hadamard product iterations it follows:

Hk+1
ij = Hk

ij

[
(W k)TV

]
ij

[(W k)TW kHk]ij
> Hk

ij > 0.
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2.2. Non-negative matrix factorization

Alternating least squares algorithm

Alternating least squares algorithm (ANLS) have first been introduced in

1994 [20]. The motivation of this algorithm lies in the convexity of the

minimization function in the case where one of the factors V or W is fixed.

Fixing one factor the factorization problem becomes a non-negative least

squares problem (NNLS).

In every step of updating the matrices H and W , two least squares sub-

problems are solved. A basic idea behind this process is given here:

1. Initialize W 0 ≥ 0, H0 ≥ 0.

2. Repeat until the stopping criterion is satisfied:

Solve Wk+1 = arg min
W≥0

∥V −WHk∥2F .

Solve Hk+1 = arg min
H≥0

∥V −W k+1H∥2F .

Since the least squares method gives an optimal solution to the current

sub-problem iteration in every step of the algorithm, every algorithm it-

eration reduces the error more than the previous algorithm of Hadamard

multiplication. The downside of this effect is that this algorithm is slower to

run and harder to implement.

As an improvement of this idea, another alternating least squares algo-

rithm has been introduced - an inexact version of the standard non-negative

alternating least squares algorithm. The difference is that non-negativity is

not required in solving the least squares sub-problems. Since the exact so-

lution is replaced with a projection of the solution of the unrestricted least

squares problem to later achieve non-negativity, there is a loss of the conver-

gence property. However, this process speeds up the runtime of the algorithm.

1. Initialize W 0 ≥ 0, H0 ≥ 0.
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2.2. Non-negative matrix factorization

2. Repeat until the stopping criterion is satisfied:

Solve Wk+1 = arg min
W≥0

∥V −WHk∥2F .

W k+1 = [W k+1]+

Solve Hk+1 = arg min
H≥0

∥V −W k+1H∥2F .

Hk+1 = [Hk+1]+

Non-negativity is achieved in the simplest possible way here - by replacing

the negative elements with zero. This produces another desirable property of

matrices - sparsity. Though, unlike the Hadamard product algorithm, a zero

in the matrix can later be replaced by a non-zero element in later algorithm

iterations.

The difference between ALS and ANLS is that ANLS always produced a

descent in the minimization function and has a better approximational error,

but it needs a significantly greater amount of time to run. This is why ANLS

is rarely used in practice. Usually a hybrid approach is used where one starts

with ALS because it is faster and induced matrix sparsity and finishes with

ANLS because it always converges towards a solution.

There is also a third option: hierarchical alternating least squares (HALS)

algorithm which solves the non-negative least squares sub-problems by using

the exact coordinate descent method, described in detail in [21]. Each time,

one column of W or one row of H is updated. r − 1 columns (rows) is fixed

and j-th column (row) is minimized:

min Jj(W:j, Hj:) = ∥R(j) −W:jHj:∥2F

where R(j) is the j-th residual

R(j) = V −
r∑

i ̸=j

W:iHi:.
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2.2. Non-negative matrix factorization

Now, stationary points are found by calculating the gradient in W:j and Hj:

0 =
∂Jj
∂W:j

= W:jHj:H
T
j: −R(j)HT

j:

0 =
∂Jj
∂Hj:

= HT
j:W

T
:jW:j − (R(j))TW:j

It follows that the updating rules for the j-th components W and H are

going to be

W:j ←

[
R(j)HT

j:

Hj:HT
j:

]
+

Hj: ←
[
R(j)W:j

W T
:jW:j

]
+

The residual can be written in the following form:

R(j) = V −
r∑

i ̸=j

W:iHi: = V −WH +W:jH:j

which can be substituted into the previous expressions for W and H, thus

producing the final updating rule for W and H:

1. Initialize W 0 ≥ 0, H0 ≥ 0.

2. Repeat until the stopping criterion is satisfied:

for j = 1, . . . , r do:

W
(k+1)
j: =

[
W:j +

[XH]T:j−W [HHT ]
:j

[HHT ]jj

]
+

H
(k+1)
j: =

[
Hj: +

[XTW ]
T

:j
−HT [WTW ]

:j

[WTW ]jj

]
+

k = k + 1

The HALS algorithm converges much faster than the Hadamard product

algorithm while having a similar complexity. HALS is the best option for

both sparse and dense matrices.
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2.2. Non-negative matrix factorization

Gradient descent method

Projected gradient descent (PGD) method can be used thanks to the achieved

non-negativity of the matrices by replacing negative entries with zero. The

process consists of finding the gradient ∇F (hk), choosing a step size of the

descent ak and projecting the updated solution onto Rn
+:

hk+1 =
[
hk − ak∇F (hk)

]
+
.

In order to improve the convergence speed of gradient descent, some

method of choosing the step size which ensures variability if often used,

instead of a fixed step size. One such method of choosing the step size ak is

the so-called Armijo rule:

1. Initialize W 0 ≥ 0, H0 ≥ 0, 0 < β < 1, 0 < σ < 1, k = 1

2. Repeat until the stopping criterion is satisfied:

W k+1 =
[
W k − ak∇WF (W k, Hk)

]
+

ak = βtk where tk is the smallest t ∈ N such that (*) is satisfied.

Hk+1 =
[
Hk − ak∇HF (W k+1, Hk)

]
+

ak = βtk where tk is the smallest t ∈ N such that (**) is satisfied.

(*):

(1−σ)
〈
∇WF (W k, Hk),W k+1 −W k

〉
+
1

2

〈
W k+1 −W k, (W k+1 −W k)(Hk(Hk)T )

〉
≤ 0

(**):

(1−σ)
〈
∇HF (W k+1, Hk), Hk+1 −Hk

〉
+
1

2

〈
Hk+1 −Hk, (W k+1)TW k+1(Hk+1 −Hk)

〉
≤ 0

The Armijo rule is used in order to ensure a steep enough descent in each

algorithm iteration. This gives faster convergence compared to using a fixed

step size a.
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2.2. Non-negative matrix factorization

Algorithm initialization and stopping criterion

Since non-negative matrix factorization problem is not convex, it is to be

expected that there are local minima. This is why it is important to initialize

the starting matrices well in order to reduce the chance of the algorithm

becoming ”stuck” in a local minimum instead of finding the global one.

Starting far away from the stationary point of the minimizing function

is likely when using random initialization which results in prolonging the

runtime of the algorithm, i.e. increasing the number of iterations. This is

why some improved methods of initialization have been designed:

• improved random initialization - an extra step is used in order to im-

prove the initial point by finding an optimal factor for scaling the step,

• clustering methods - the columns ofW are initialized by using centroids

found by clustering algorithms and then H is initialized in response to

the found W ,

• singular value decomposition - each factor of range 1 of the best ap-

proximation of range r of V can contain negative and positive elements.

Each factor of range 1 is replaced by a corresponding non-negative fac-

tor of range 1, with the condition of maximum possible norm.

There are also several kinds of stopping criteria. The difference is in what

they are based on - cost function minimization, optimality conditions, or

difference between cost function values in two consecutive iterations. These

criteria are usually combined with an additional condition such as maximum

number of iterations or runtime limitation in order to ensure that the program

stops, whether the algorithm converges or not.
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Chapter 3

Machine learning methods

Machine learning, and especially deep learning, is immensely popular as a

new tool for solving all kinds of problems in science. The main advantage of

using deep neural networks, essentially composites of special functions, is the

generalization power of the model. In recent years, this has become a very

popular approach to solving many classical problems because of the advance

in computing power.

3.1 Text summarization overview

Text summarization tasks can be split into the following classes:

• extractive summarization - intermediate representation has two ap-

proaches: topic representation and indicator representation,

• topic extraction - frequency based approaches, latent semantic analysis,

bayesian approaches,

• knowledge bases and automatic summarization - graph methods, ma-

chine learning (labeled and semi-supervised),



3.1. Text summarization overview

• abstractive summarization - usage of sequence-to-sequence deep learn-

ing models, further described in the last chapter.

In the context of classification, each sentence in the text gets a sentence

score - probability that it is a summary sentence. The final summary is

created from highly ranked sentences. Machine learning algorithms and deep

neural networks are used as classifiers of sentences.

As text summarization is a task in natural language processing, it makes

sense to introduce neural network architectures which are used for multiple

tasks of this field. Because language is inherently a temporal phenomenon,

model architectures need to reflect this fact in their functionality. This means

that an approach is needed where simultaneous access to all input is not

assumed. Another thing which is crucial in sequential network architectures

that deal with language input is the notion of context. Neural network

architectures which satisfy these two demands are recurrent neural networks

and transformers.

The recurrent neural network offers a new way of representation of prior

context, allowing the model’s decision to be influenced by information on a

large number of words from the past. The transformer offers new mechanisms

that help represent time and focus on relation between words which are

distantly positioned in the text - self-attention and positional encodings.

In order to explain the mentioned models, a probabilistic language model

approach is going to be used. Probabilistic language models predict the next

word in a given sequence by looking at the preceding context. They give

an option of assigning conditional probabilities to each possible word, where

conditions come in the form of previously seen words. This yields a distri-

bution over the entire vocabulary1. It is also possible to assign probabilities

1A vocabulary is the set of all words in a given text. Words are thought of as sequences
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3.1. Text summarization overview

to whole sequences of words by using the chain rule 3.6 (defined on the page

31).

Definition 3.1 (Conditional probability) Let (Ω, F, P ) be a probability

space, and A ∈ F such that P (A) > 0. A function PA : F −→ [0, 1] defined

with PA(B) = P (B|A) = P (A∩B)
P (A)

is a probability function and it is called

conditional probability (conditioned by the event A).

The term conditional probability is used in the language model context to

denote the value of the conditional probability function when talking about

occurrences of words as events. For example, let

B = {word x appears in the sequence}

A = {words y1, y2, . . . , yn appear in the sequence}

be events. Then the probability of word x appearing after the words y1, . . . , yn

in the sequence is equal to P (B|A), sequence usually being a sentence, but

not necessarily.

3.1.1 Neural networks

In order to explain the special types of neural networks in the following

text, the basic concepts all neural networks share are going to be briefly

presented. Neural network architecture is most simply explained by using

the mathematical term of a directed graph.

Definition 3.2 Directed graph is an ordered triple G = (V,E, ϕ), where V is

a non-empty set whose elements are called vertices, E is a set whose elements

are called arcs, and ϕ : E −→ V × V a function which maps arcs to vertices

pairs e 7→ (u, v). Vertex u is called the beginning, and v the ending of an arc.

of letters from a natural language alphabet.
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3.1. Text summarization overview

Definition 3.3 Weighted directed graph is an ordered pair W = (G,w)

where G is a directed graph and w is a weighting function w : E −→ R+

which maps non-negative numbers, called weights, to each arc of the graph

G.

Definition 3.4 Let G = (V,E, ϕ) be a directed graph, v0, . . . , vn ∈ V such

that vn = v0, and ej = (vj−1, vj) ∈ E for j = 1, . . . , n. Ordered tuple

(e1, . . . , en) is called a cycle.

A neural network can be described as a weighted directed graph G =

(V,E, ϕ) with a weighting function w : E −→ R. Many types of neural

networks do not contain cycles, but recurrent neural networks do, and this is

precisely where their power lies. This is why acyclicity is excluded from the

definition of a neural network here, even though it is usually included in the

standard definition.

The structure is organized in the form of layers. The set of vertices V

can be considered as a union of non-empty disjoint finite sets Vl, V =
m⋃
l=0

Vl

such that for the set of edges E the following holds: E ⊆
m⋃
l=0

(Vl−1× Vl), that

is, each edge connects one vertex from the layer Vl−1 with one vertex from

the next layer Vl.

Number m is called the depth of a network. The first layer V0 is called

the input layer, the last layer Vm is called the output layer, and the layers

between them V1, . . . , Vm−1 are called the hidden layers. A layer Vl is said to

be fully connected if each vertex from the previous layer Vl−1 is connected

with each vertex from Vl.

Each vertex contains a numeric value which it propagates forward, except

if it is a part of the output layer. In neural networks which have cycles, these

values can also be sent back to previous layers. The values of nodes from
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3.1. Text summarization overview

the input layer are called input values and are usually denoted as xi, i =

1, . . . , |V0|. The vector (x1, . . . , x|V0|) is called an input to the network. The

vertices v ∈ V \ V0 are called neurons. Neurons are modelled by scalar

functions g : R −→ R which are called activation functions. The value

of a neuron is equal to the value of the activation function on a sum of

multiples of activation function outputs from the neurons in the previous

layer and weights of the edges which connect them to the given neuron.

The vector of activation function results on the neurons in the output layer

ŷ = (ŷ1, . . . , ŷ|Vm|) is called the output of the network. Each layer which is

not the output layer contains one vertex with the constant value 1. The edge

which connects this neuron with some other neuron is called the bias. The

vector of all parameters (weights and biases) of a network is denoted by a

Greek letter θ.

Remark 3.5 Commonly, the terms defined above are written in matrix no-

tation form:

• n0 = |V0| the length of the input x

• nl = |Vl| the number of neurons in the l-th layer

• a[l] ∈ Rnl×1 the vector of activation function outputs of the l-th layer

• W [l] = (w
[l]

ij ) ∈ Rnl×nl−1 the matrix of edge weights, where w
[l]
ij denotes

the weight of an edge which connects the j-th neuron in the layer Vl−1

with the i-th neuron in the layer Vl

• x = a[0] the input vector

• ŷ = a[m] the output vector
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3.1. Text summarization overview

• b[l] ∈ Rnl×1 the bias of the layer Vl (which can be included in the weights

matrix W [l])

• z[l] = W [l]a[l−1] + b[l]

• g[l] the activation function of the l-th layer (most commonly all neurons

in the layer use the same activation function)

Neural networks operate on data, in a specific way, such that a portion of

the given data is used to determine the best possible values for weights, and

another portion of the data is used for evaluation of the calculated weights.

Let X, Y be sets of possible inputs and outputs of the network, respectively.

The most common task of deep learning is so-called supervised learning,

where data has a form of feature vectors along with specified labels, which

denote the class to which the feature vector belongs. The goal of such tasks

is to learn a map f : X −→ Y such that ŷ := f(x) is a good prediction of the

exact value y for the input x. The process of learning this function is called

training the network, and the data portion which is used for this purpose

Dtrain = {(xi, yi) : i = 1, . . . , n} ⊆ X × Y

is called a train set, where yi denotes the label of the input xi.

The term ”model” is commonly used to denote the prediction function f .

If Y = {1, . . . , K}, then the task of learning the prediction function is called

classification, and if Y = R, then the task is called regression. A neural

network can be understood as a function fθ : x 7→ ŷ completely determined

by its parameters θ, the weights and biases, which are calculated during the

training process. The parameters which also determine the network archi-

tecture, but are not directly included in calculations of the training process,

such as network depth, are called hyperparameters.
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The portion of the data which is used for evaluation of the network can be

split into two parts, one of which is used for hyperparameter tuning Dval ⊆

X ×Y (validation set), and another for the final evaluation of the network

capabilities Dtest ⊆ X × Y (test set). This can be summed up in the

following way: the whole data set D is partitioned into three disjoint sets

Dtrain, Dval, Dtest, or into two disjoint setsDtrain, Dtest, whereDtrain can then,

optionally, be used for validation too. The most important condition related

to the partition of data which must be met is that testing data must not ever

be seen during training. If it is, it can skew results of the evaluation and give

incorrectly accurate predictions. This phenomenon is called data leakage, and

it must be avoided in order to enable accurate analysis of training results.

In order to quantify the error between the network predictions ŷ and the

true values y, a concept of loss function L is introduced. The value of loss

function L(ŷ, y) for given arguments ŷ, y is called loss, and is proportional

to the prediction error. For correct predictions, that is, when ŷ = y, its value

is equal to zero. The choice of loss function is tied to the output layer of the

network, and differs across various tasks of deep learning. The global loss

function J across all data D is called the cost function and is defined as an

average loss on all points in the set

J(θ;D) =
1

|D|
∑

(x,y)∈D

L(ŷ, y).

Using this term, it is now possible to frame the training process as an

optimization problem of minimizing the cost function value through an iter-

ative process of updating parameters θ, in order to find the best possible set

of parameters

θ∗ = arg min
θ

J(θ;Dtrain).

One iteration across the whole train set Dtrain in which parameters θ are
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updated is called an epoch. The optimization method used for updating the

parameters θ is gradient descent, which is based on updating the parameters

in the direction of negative gradient −∇θJ(θ;Dtrain).

The most computationally expensive part of gradient descent is calcu-

lating the gradient of the cost function ∇θJ(θ). This is done by using a

procedure called backpropagation, which relies on the chain rule:

Theorem 3.6 (Chain rule) Let g : Rm −→ Rn, f : Rn −→ R be functions.

If y = g(x) for some x, and z = f(y) for some y, then

∂z

∂xi

=
n∑

j=1

∂z

∂yj

∂yj
∂xi

.

The needed partial derivatives are calculated starting from the output

layer, propagating back until reaching the input layer.

3.2 Recurrent neural networks

A recurrent neural network is any network that contains a cycle in its net-

work connections. This means that values of some units are either directly

or indirectly dependent on their own earlier outputs. Even though many

recurrent neural network architectures exist, in this thesis a specific type is

going to be explained: the simple recurrent neural network, first proposed in

1990 by Elman[]. These networks serve as a basis for more complex models,

one of which is especially important and will be explained in further detail

later - the Long Short-Term Memory. Recurrent neural networks are used for

several purposes regarding language modelling: sequence classification (tasks

like sentiment analysis and topic classification), sequence labelling (tasks like

part-of-speech tagging), and text generation (tasks like text summarization

and machine translation).
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3.2.1 The structure of recurrent neural networks

Figure 3.1 illustrates the structure of a simple recurrent neural network. An

input vector xl representing the current input is multiplied by the weight

matrix W [l] and then passed through the activation function g[l] to compute

the values for the next layer. Subscripts will be used in order to represent

time, so xt will denote the input vector x (of any which layer) at a time t. The

key difference from a feed-forward network, where values from neurons are

propagated exclusively forward, is in the recurrent link shown in the figure

with a dashed line. This link augments the input to the computation at the

hidden layer with the value of the hidden layer from the past.

Figure 3.1: Recurrent cell of a neural network. Figure from [22].

The hidden layer from the preceding point in time provides a form of

memory or context that saves results of earlier processing and helps inform

decisions that are made later. This approach does not impose a fixed-length

limit on the prior context. The context given by the previous hidden layer

can include information from the beginning of the sequence.

The addition of the temporal dimension to the neural network makes

recurrent neural networks appear more complex, but they are not that dif-

ferent in their mechanics from regular feed-forward networks. The standard

feed-forward calculations are still performed. The most significant change is
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the introduction of the new set of weights U that connect the hidden layer

from the previous step to the current hidden layer. These weights determine

how the past context is used in calculating the output for the current layer.

These connections are trained with backpropagation, as other weights in the

network.

Arriving at the sequence of outputs yt from the sequence of inputs xt is

done similarly as in standard feed-forward networks, by applying the activa-

tion function to the sum of multiples of weights and inputs:

ht = g(Uht−1 +Wxt)

yt = f(V ht)

where ht denotes the current hidden layer neuron values, ht−1 the values of

neurons from the previous layer, W ∈ Rdh×din , U ∈ Rdh×dh , V ∈ Rdout×dh ,

with din, dh, dout being the dimensions of the input, hidden, and output layers,

respectively. The most commonly used activation function f is softmax,

which gives a probability distribution over the set of possible output classes.

Definition 3.7 Softmax activation function is a function g : RK −→ RK

defined by

g(z)i =
ezi∑K
j=1 e

zj
; i = 1, . . . , K,

where K is the number of possible classes of output.

Remark 3.8 Softmax is a generalization of the sigmoid function:

g : R −→ R,

g(z) =
1

1− e−z
.
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The softmax function gives a probability distribution of a discrete random

variable which takes K different values (also called classes). Finally, this

makes the output yt = softmax(V ht).

Recurrent neural networks are trained like simple feed-forward networks;

by using backpropagation to update weights in the direction of the negative

gradient, in order to minimize the cost function. There are three sets of

weights to update: W - weights from the input layer to the hidden layer,

U - weights from the previous hidden layer to the current hidden layer, and

V - weights from the hidden layer to the output layer. However, there is a

difference, thanks to the cycles present in the network architecture. Now, in

order to calculate the loss function for the output at time t, the hidden layer

from time t− 1 is needed, but also the hidden layer from time t+ 1 because

the hidden layer at time t influences both hidden layer at time t−1 and t+1.

It is necessary to change the backpropagation algorithm into a two-pass

version. In the first pass, forward inference is performed (computing ht, yt

and accumulating the loss at each step in time). In the second pass, the

sequence is processed in reverse, computing the required gradients, saving

the error terms for use in the hidden layer backward in time. This approach

is called backpropagation through time [23] [24].

The input x = (x1, . . . , xt, . . . , x|V |) consists of a series of word embed-

dings which are represented by one-hot vectors of size |V |×1, and the output

y is a probability distribution over the vocabulary V . At time t, the following

is done:

et = Ext

ht = g(Uht−1 +Wet)

yt = softmax(V ht),

where E is a word embedding matrix of type (dh × |V |), where dh is the
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size of the current hidden layer. The probability that a particular word i from

the vocabulary is the next word is represented by yt[i], the i-th component

of yt:

P (wt+1 = i|w1, . . . , wt) = yt[i].

The probability of the entire sequence is a product of probabilities of each

item from the sequence:

P (w1:n) =
n∏

i=1

P (wi|w1:i−1) =
n∏

i=1

yi[wi].

The loss function which is used for training the network is cross-entropy

loss, which measures the difference between a predicted probability distri-

bution and the true distribution:

LCE = −
∑
w∈V

yt[w] log ŷt[w].

The correct distribution yt comes from knowing the next word in the

sequence, and so, the cross-entropy loss is determined by the probability the

model assigns to the correct next word. This implies

LCE(ŷt, yt) = − log ŷt[wt+1].

The idea of always giving the model the correct history sequence to predict

the next word, instead of giving it the best case from the previous step, is

called teacher forcing.

3.2.2 Recurrent neural networks for text generation

Text generation tasks cover any situation where a system needs to produce

text conditioned on some other text. The approach of using a language

model to generate words by repeatedly sampling the next word conditioned
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on previous choices is called autoregressive generation. An autoregressive

model is a model that predict the output at time t by taking into account

the linear function of previous values in times t − 1, t − 2 etc. Even though

recurrent neural networks are highly non-linear systems, this label is still

used to describe such a language model because the logic holds, since the

word generated at each time step depends on previously seen words.

Since the structure of recurrent neural networks is flexible, it is possi-

ble to combine several of them into new model architectures: stacked and

bidirectional ones.

Stacked recurrent neural network consists of several networks where

the output of one layer serves as an input to the next one; thus using entire

sequences as inputs and outputs, instead of just one word at a time. The

main advantage of this model, and the probable reason for its superiority over

single-layer networks, is induction of different levels of abstraction across

layers. The initial layers of a stacked network can induce representations

that prove to be useful abstractions for the following layers, which is difficult

to achieve with a single-layer network. However, this multi-layered approach

increases the computational cost significantly and makes the training process

a much more elaborate process.

Bidirectional recurrent neural network is a network which consists

of two separate recurrent neural networks, where one operates ”from left to

right”, and the other one ”from right to left”. More concretely, this means

that one of them uses information from the previous points in time (past)

in order to make a decision at the current time, and the other one uses

information from the following points in time (future). The state of a left-

to-right network is a function of inputs which represent the context to the
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left of the current time t:

hf
t = RNNforward(x1, . . . , xt),

where hf
t corresponds to the hidden state at time t. The right-to-left network

operates on a reversed input sequence, in order to take advantage of the

context to the right from the current time t:

Hb
t = RNNbackward(xt, . . . , xn),

where hb
t represents all the information discerned about the sequence from

time t to the end. A bidirectional recurrent neural network combines two

independent recurrent neural networks and concatenates their outputs, thus

capturing the context at time t from both the past and the future.

3.2.3 Long short-term memory networks

One issue that arises in practice with recurrent neural networks is that the

information in hidden states is local, even though the network has access

to the entire preceding sequence. Ideally, a network is desired to keep the

distant information from parts of the sequence which are further away in

time, be it in the past, or the future.

One reason why this is not achieved with standard recurrent neural net-

works is the fact that each hidden layer is required to do two tasks at the

same time: providing information relevant to the current decision, and car-

rying forward information required for future decisions. Another reason for

difficulty in training recurrent neural networks is the need to backpropagate

the error back through time. During the backward pass of training, hid-

den layers are subject to repeated multiplications which frequently results

in driving the gradients to zero. This phenomenon is called the vanishing

gradients problem.
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In order to addess these problems, managing of relevant context over time,

explicitly, by enabling the network to ”forget” information that is no longer

needed, has been introduced in more complex models. The most common

improvement upon the standard recurrent neural network is a Long short-

term memory network [25]. Long short-term memory networks divide the

context management problem into two parts: removing information which

is no longer needed (forgetting), and adding information which is likely to

be needed later down the line. They solve these sub-problems by using spe-

cialized neurons called gates which control the flow of information into and

out of neurons that comprise the network layers. The gates are implemented

by using additional weights, and they share a common design: each consists

of a feed-forward layer, followed by sigmoid activation function, followed by

pointwise multiplication with the gated layer. Sigmoid function is chosen

because it has a tendency to push the outputs to either zero or one, which,

combined with pointwise multiplication, has an effect similar to a binary

mask. Values in the gated layer that align with values near one are passed

through barely changed, and the values corresponding to gate values closer

to zero are erased.

There are three types of gates a long short-term memory network uses:

• forget gate - in charge of deleting information irrelevant to the current

decision,

• add gate - in charge of selecting information to add to the current

context which needs to be preserved for future decisions,

• output gate - in charge of deciding what information is required for

the current hidden state.

The forget gate computes a weighted sum of the previous state hidden
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layer output and the current input, and then passes this result through the

sigmoid activation function σ:

ft = σ(Ufht +Wfxt).

This mask is then multiplied element-wise by the context vector to remove

the information which is no longer necessary:

kt = ct−1 ⊙ ft,

where ⊙ denotes the Hadamard product. The following step is calculating

gt = tanh(Ught−1 +Wgxt)

in order to extract the needed information from the previous hidden states

and the current input.

Remark 3.9 The function used in the above expression is tangent hyperbolic

activation function tanh : R −→ R defined with

tanh(z) =
ez − e−z

ez + e−z
.

Next, a mask for the add gate is generated:

it = σ(Uiht +Wixt)

jt = gt ⊙ it,

and is added to the modified context vector in order to get the updated

context vector:

ct = jt + kt.

Finally, the output gate is used:

ot = σ(Uoht−1 +Woxt)

ht = ot ⊙ tanh(ct).
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3.3 Transformer neural networks

While the long short-term memory network is an improvement upon the

recurrent neural network, it still does not solve the problem of information

loss and training difficulty, caused by passing information through a series of

recurrent connections. Another side-effect of the sequential architecture of

the recurrent neural network is difficulty in implementing parallel computing

techniques. Transformers are designed without recurrent layers and are a

come-back to the original structure of neural networks.

Transformers map sequences of input vectors x = (x1, . . . , xn) to se-

quences of output vectors y = (y1, . . . , yn) of the same length. They are

made up of stacks of transformer blocks - multilayer networks that combine

feed-forward linear layers and self-attention layers. These layers are the

key innovation in this model that allow the network to directly take infor-

mation from contexts of arbitrary size, without the need to pass it through

intermediate connections.

3.3.1 Self-attention layers

Self-attention layers map sequences of input vectors x = (x1, . . . , xn) to se-

quences of output vectors y = (y1, . . . , yn) of the same length. While process-

ing items in the input vector, the layer has access to all input points preceding

the current one, but not to the following ones. This ensures the usefulness

of transformer models for autoregressive text generation. The computations

done at each point are mutually independent. This property ensures easy

parallelization of forward inference and training.

The attention-based approach is rooted in the possibility of comparing

an item of interest to a whole collection of other items, while also revealing
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their relevance in the current context. When talking about self-attention,

this mechanism is used on a single sequence, that is, items from a sequence

are compared to each other, and not to items from some other collection.

The simplest form of comparison is the dot product. Let score denote

the result of a dot product of two items:

score(xi, xj) = xi · xj.

The larger the value, the higher the score, and the greater the similarity

between items being compared xi, xj. In order to make effective use of scores,

a softmax activation function is used to normalize the results and to create

the weights vector αij, that indicates the relevance of each input:

αij = softmax(score(xi, xj));∀j ≤ i.

An output value yi is generated by summing up the inputs thus far, weighted

by their α values:

yi =
∑
j≤i

αijxj.

In order to capture different roles of word embeddings which naturally

arise, transformers use weight matrices:

• WQ - role of embeddings as the current focus of the attention while

being compared to all other inputs (query),

• WK - role of embeddings as the preceding input being compared to the

item which is the current focus of attention (key),

• W V - role of embeddings as the values used to compute the output for

the current focus of attention (value).
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These weights are used for projecting each input vector xi into a representa-

tion of its role as a query qi, key ki, or value vi:

qi = WQxi,

ki = WKxi,

vi = W V xi.

Let the type of weight matrices be denoted as d, that isWQ,WK ,W V ∈ Rd×d.

When introducing multi-headed attention, an improvement upon the current

procedure, separate dimensions for these matrices will be introduced: dk

for query and key vectors, and dv for value vectors, meaning WQ,WK ∈

Rd×dk ,W V ∈ Rd×dv . For now, let dk = dv = d.

Given these projections, the score between the current focus of attention

xi and an element from preceding context xj is calculated as the dot prod-

uct between the query vector of the given i-th item and the key vectors of

preceding items, scaled by their dimensionality for numerical stability:

score(xi, xj) =
qi · kj√

dk
,

where qi, kj ∈ R1×dk . The output calculation is now based on a weighted

sum:

yi =
∑
j≤i

αijvj.

By putting the input embeddings of a sequence of length N into a matrix

form X ∈ RN×d, it is possible to exploit matrix multiplication routines which

are numerically more effective:

Q = XWQ;K = XWK ;V = XW V ,

where Q,K, V ∈ RN×d. Additionally, by applying the softmax function to

scaled values of these scores, and then multiplying it with V , it is possible to
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reduce the entire procedure for a sequence ofN items to a single computation:

SelfAttention(Q,K, V ) = softmax

(
QKT

√
dk

)
V ∈ RN×d.

The elements in the upper-triangular portion of the matrix QKT are set

to −∞ to reflect the fact that it is unnecessary to include already familiar

following items into a calculation for guessing it, thus producing a matrix of

the form

QKT
(N,N) =


q1 · k1 −∞ · · · −∞

q2 · k1 q2 · k2 · · · −∞
...

...
. . .

...

qN · k1 qN · k2 · · · qN · kN

 .

3.3.2 Transformer blocks

The self-attention logic is the core of a transformer network unit called

a transformer block, which also includes additional feed-forward layers,

residual connections, and normalizing layers. The input and output of the

blocks are matched so that the blocks can be stacked together.

Residual connections pass information from a lower layer to a higher one

without going through the intermediate layer, allowing information from the

activation to go forward and the gradient to go backward by skipping a layer,

which improves training and gives higher layers direct access to information

from lower layers. Layer normalization is applied to the sum of the layer’s

input and output, represented in the following calculation, assuming that

layers are denoted as vectors of units:

z = LayerNorm(x+ SelfAttention(x))

y = LayerNorm(z + FeedForward(z)),
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where LayerNorm denotes layer normalization and FeedForward denotes

a feed-forward layer.

Layer normalization is a variation of the standard score (z-score) applied

to a single hidden layer. Given a hidden layer of dimensionality dh, the

factors are calculated as follows:

µ =
1

dh

dh∑
i=1

xi

σ =

√√√√ 1

dh

dh∑
i=1

(xi − µ)2.

Given these values, vectors are normalized in the standard way:

x̂ =
x− µ

σ
.

Finally, two learnable parameters β, γ are introduced, in order to represent

gain and offset values:

LayerNorm = γx̂+ β.

3.3.3 Multihead attention

The concept called multihead attention is introduced for solving the prob-

lem of distinguishing and utilizing different ways in which words relate to

each other simultaneously. For example, these relationships between words

can be syntactic, semantic or discourse driven. It can be difficult to cap-

ture all of these intricacies using a single transformer block. Hence, several

self-attention layers, called heads, are used, each one for a different word

relationship type. They are placed at the same depth in the network, each

one with its set of parameters.

Each head i is provided with its own set of query, key and value matrices

WQ
i ,WK

i ,W V
i which are used to project inputs into separate query, key and
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value embeddings. The query and key embeddings have a size dk, and the

value embedding has a size dv, resulting in WQ
i ,WK

i ∈ Rd×dk ,W V
i ∈ Rd×dv

for each head. Just as before, these matrices are multiplied by X from the

left, resulting in Q,K ∈ RN×dk , V ∈ RN×dv .

Q = XWQ
i

K = XWK
i

V = XW V
i .

The output of each one of the h heads is of shape N×dv, producing h vectors

of this size, which are combined and reduced to the size d, in order to make

them suitable for further calculations in the network. This is done by using

a linear projection WO ∈ Rhdv×d on a concatenation 2 of head outputs:

MultiheadAttention(X) = (head1 ⊕ . . .⊕ headh)W
O

headi = SelfAttention(Q,K, V ).

3.3.4 Transformers as language models

Transformers are used as language models via semi-supervised learning: given

a train set that consists of plain text, a network is learned to predict the next

words in sequences by teacher forcing. The output layer of the transformer

network produces a distribution over the vocabulary at each step, with the

context of all the preceding words. The probability assigned to correct words

during training is used to calculate cross-entropy loss for each item of the

sequence. The loss for a training sequence is average cross-entropy loss.

The benefit of parallelization is seen in the possibility of training the

network in such a way that each training item can be processed in parallel

because outputs are computed separately.

2The operation of concatenation is denoted by ⊕.
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3.3.5 Text generation and summarization using trans-

formers

A variation of autoregressive generation which underpins a large number of

applications in practice uses prior context. A good illustrative task is text

completion where a model is expected to generate a possible completion to

the given text. The model has direct access to the prior context and its

own outputs, resulting in an ability to use the knowledge of the entire earlier

context and outputs at each time step, which is crucial for the effectiveness

of such models.

Text summarization is nothing else than a practical application of au-

toregressive generation based on context. In order to train a transformer

based model for this task, it is necessary to provide it with enough sam-

ples of full-length texts along with their summaries. This makes text sum-

marization a supervised task, because labels in this case are the expected

summaries, in a way. A suprisingly simple approach is effective: appending

the summaries to the full-length texts with a unique marker separator d.

Each text-summary pair (x1, . . . , xm), (y1, . . . , yn) is converted into a single

instance (x1, . . . , xm, d, y1, . . . , yn) for training. These items are treated as

long sentences.

After training, the texts ending with the separator are used as the con-

text in the generation process. In contrast to the recurrent neural network

language model, the transformer based one has access to the newly generated

text as well as the original one throughout the process. This logic is the basis

for more complex models which are used for text-to-text applications, such

as machine translation, text summarization and question answering.
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3.4 Encoder-decoder neural networks

Encoder-decoder neural networks, or sequence-to-sequence networks, are mod-

els capable of generating outputs of arbitrary length, which are context-

based. The key idea is having two networks in one model:

• encoder network - in charge of taking an input sequence and creating

its contextual representation,

• decoder network - in charge of taking said representation and produc-

ing an output specific to the task.

The encoder takes an input xn
i and produces a representation hn

i , which

is then put through a function of the context vector, resulting in an input for

the decoder c. The decoder then takes c and produces a sequence of hidden

states hm
i , from which outputs ymi are obtained. Encoders can be long short-

term memory networks, transformers or even convolutional neural networks,

while decoders can be any sequential models.

3.4.1 Encoder-decoder models with recurrent neural

networks

This architecture is based on two recurrent neural networks as the encoder

and the decoder. The probability of sequence y = (y1, . . . , ym) can be broken

down to the following:

P (y) = P (y1)P (y2|y1) . . . P (ym|y1, . . . , ym−1).

At a given time t, the prefix of t−1 items is passed through the language

model to produce a sequence of hidden states which ends with the hidden
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state corresponding to the last word in the prefix. The final hidden state is

used as a starting point in generating the following item:

ht = g(ht−1, xt)

yt = f(ht),

where g is an activation function (e.g. tanh), and f is a softmax over the

set of possible vocabulary items. Superscripts e, d will be used to denote the

hidden states of the encoder and the decoder, respectively.

Stacked architectures for the encoder are common, where the output

states from the last layer of the stack are taken as the final representation

outputted by the encoder he
n. A widely used encoder model is a bidirectional

long short-term memory network. The hidden states from last layers from

forward and backward passes are concatenated in order to form the needed

contextualized representation, for each time step. The decoder uses the input

c = he
n as its prior hidden state hd

0 and creates the output sequence one ele-

ment at a time, while keeping each hidden state conditioned on the previous

one.

The influence of the context vector c weakens as the output sequence is

generated. The solution is making it available at each step of the sequence

generation by adding it as a parameter in the computation of the current

hidden state:

hd
t = g(ŷt−1, h

d
t−1, c),

where ydt−1 is the embedding for the output sampled from the softmax at the

previous step in time t− 1.

Taking all of the above into account, the final form of the whole encoder-

decoder model can be described by the following equations:

c = he
n
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hd
0 = c

hd
t = g(ŷt−1, h

d
t−1, c),

zt = f(hd
t )

yt = softmax(zt).

Finally, the most likely output at each time step is chosen as the one with

the highest probability, that is, the largest value of softmax :

ŷt = arg max
w∈V

P (w|x, y1, . . . , yt−1).

3.4.2 Encoder-decoder models with transformers

The components of this architecture differ slightly from the encoder-decoder

model which uses recurrent neural networks, but also from transformers

themselves. Namely, a concept of the cross-attention layer is introduced

- an extra layer added into the decoder transformer blocks, which has the

same form as multihead self-attention layers, except for the fact that the key

and value pairs come from the encoder outputs (instead of the previous layer

of the decoder).

The final output of the encoder Hencoder is multiplied by the key weights

from the cross-attention layer WK and value weights W V . The output from

the prior decoder layer Hdecoder[i−1] is multiplied by the cross-attention layer

query weights WQ:

Q = WQHdecoder[i−1]

K = WKHencoder

V = W VHencoder

CrossAttention(Q,K, V ) = softmax

(
QKT

√
dk

)
V.
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Teacher forcing is used in the training process, just as before, and the training

is done autoregressively, while using cross-entropy loss.
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Chapter 4

Examples of using machine

learning and numerical

methods

In this chapter, practical examples of using the previously described methods

are shown. Google Colaboratory is used, a Jupyter notebook environment in

the cloud that ensures free use of Tesla K80 graphics processing units. The

experiments are written in Python 3.8 programming language using the Keras

deep learning librabry with Tensorflow support. The goal of experiments

here is not producing the best possible results on the given task, but simply

demonstrating how the described methods can be used in practice.

Since matrix factorization methods predate machine learning methods,

they are used on simpler tasks of topic modelling and key-word extraction

from text. As text summarization is a much more difficult procedure, ma-

chine learning is more suitable for this task because it is more powerful.

Difficulties of producing a good summary from given text are many.

Firstly, there is a need to transform the text into a numerical form of data.



4.1. Data preparation

This can be done naively, by using tf-idf [16] or bag-of-words methods, or in

a more sophisticated way by using neural network models such as word2vec

[14], gloVe [13] or BERT [15]. Explanations of the functionalities of these

methods is beyond the scope of this thesis.

Numerical data, usually in vector form, which is produced by the chosen

method from given text is called word embedding. Word embeddings

represent words in such a way that words closer to each other in meaning are

their vector representatives are closer to each other in the embedding space

(by some chosen metric).

Second problem that arises is the actual formation of summaries from

text inputs. Lastly, the evaluation of summaries is a complex task in itself.

Currently, it is best done manually, that is, by human assessment. This is

an active topic of research. There exist some metrics specifically for this

purpose, but are still underdeveloped. An example of this is ROUGE metric

[17].

4.1 Data preparation

Two methods are chosen for creating word embeddings, to demonstrate the

power of each: vectorization by counting the number of occurrences of a word

in the text, and vectorization by tf-idf, as previously explained.

In order to apply vectorization by counting, another data preparation step

needs to be completed: tokenization. Tokenization refers to the procedure

of transforming pieces of text into lists of so-called tokens - smallest possible

semantic units, or atoms, which depend on the language. Another step of

data preparation is recommended for better performance: lemmatization.

Lemmatization is the task of determining that two words have the same root,
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despite their surface differences.

Remark 4.1 Both tokenization and lemmatization belong to a class of pro-

cedures called text normalization which serve the purpose of transforming

text into desirable, more manageable forms.

All numerical methods are implemented by calling the corresponding

function from the sklearn [18] library. The reason why sklearn implementa-

tions have been used is in order to ensure numerical stability and algorithm

optimality.

Two datasets are used:

• news headlines - table with two columns; date of publishing and head-

line text, containing 1103663 headlines,

• food reviews - table containing 568454 samples of review texts alongside

their proposed summaries written by users of Amazon.

Matrix factorizations are done on news data and deep learning model

is used on food reviews data. This choice is made because news headlines

are considered to be more useful for topic modelling because they are more

diverse in topics and key-words, while food reviews are more suitable for

abstractive text summarization for two reasons. The first reason is that this

dataset contains human-made summaries, which are needed for supervised

learning. The second reason is that reviews are longer pieces of text than

news headlines, thus making them more appropriate because there is more

text for the model to train on. This also makes the task harder because the

vocabulary is larger and the text is more unpredictable, thus showing the

true power of deep learning.
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4.2 Non-negative matrix factorization for key-

word extraction

The algorithm is implemented by using an sklearn library function which

uses the following objective function:

L(W,H) =
1

2
||V −WH||2loss + αW l1N ||W ||1 + αH l1M ||H||1+

+
1

2
αW (1− l1)N ||W ||2F +

1

2
αH(1− l1)M ||H||2F ,

whereN is the number of features, M is the number of samples and l1 denotes

the norm-1 ratio, and || · ||loss can be any chosen norm supported by the back-

end implementation (passed as a function argument). Parameters αW and

αH control the strength of regularization applied to W and H, respectively.

The non-negative matrix factorization function is applied to the embed-

ding matrix of news headlines text which is created by the use of tf-idf vec-

torization. It is possible to choose a desired number of topics by hand, in

this case 10. This is forwarded to the function as an argument. The output

is a feature matrix representing topics found in the text.

As the chosen number of topics is 10, the shapes of matrices X,W,H are

(1103663, 11213), (1103663, 10), (10, 11213), that is

X ∈M1103663,11213(R),

W ∈M1103663,10(R),

H ∈M10,11213(R).

It is possible to name the topics and assign to them their most relevant

key-words, as shown in 4.1.

As a result, it is possible to determine the topic of any headline, as shown

in 4.2, which has some relation to the data on which the model is trained.
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Figure 4.1: Assigning names to numerated topics according to their most

relevant and common key-words.

Figure 4.2: Finding the most probable topic for the given headline (in this

case the document sample 105).

The quality of the classification depends on the number of headlines in the

dataset for training; the more data, the more quality model. Of course, it

is possible to provide the model with any input (as long as it is in string
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format), and gain the output. However, the quality of the output depends

on the input text, that is, if the text has nothing to do with training data

(in this case news headlines), then the output is irrelevant because the model

has no knowledge of the subjects of the given text.

4.3 Encoder-decoder neural network model

with bidirectional long short-term mem-

ory cells

The structure of the neural network is in 9 layers, which constitute the en-

coder and the decoder:

• encoder input layer which accepts sequential data,

• encoder embedding layer which produces word embeddings from the

input,

• 3 encoder bidirectional LSTM cells,

• decoder input layer,

• decoder embedding layer,

• decoder bidirectional LSTM cell,

• dense (fully connected) layer with softmax activation function which

outputs probabilities for each word in the vocabulary to be the next

word in the sequence.

This sequential kind of network architecture is refered to as a sequence-

to-sequence (or colloquially seq2seq) model [19]. Models that belong to
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this family of machine learning approaches turn one sequence into another

sequence, which is refered to as sequence transformation.

This is achieved by implementing recurrent neural units in the neural net-

work, or, more commonly, long short-term memory cells. Each step produces

an output which then becomes context for the following step. Duty of the

encoder is to produce each item into a hidden (latent) vector containing the

input item and its context. The decoder then reverses this process, that is,

turns the vector into an output item, using the previous output as the input

context.

In the context of text summarization, this means that the encoder pro-

duces hidden vectors from input review text embeddings, and the decoder

then outputs a summary sequentially from these hidden vectors, using previ-

ous outputs as its context, which is described in more detail in the previous

chapter.

The reviews data is split into the training and testing portion, in the ratio

90 : 10%. During training, 20% of the training data is used for validation

in each epoch. The model is trained on 50 epochs in batches of size 128.

During training, the accuracy of the model is being tracked and used as an

indicator of performance quality. The optimizer is RMSProp - Root Mean

Square Propagation which is the extension of the Stochastic Gradient Descent

algorithm.

The accuracy of the trained model is 98.7% on the training data and

98.3% on validation data (measured during training). Final model accuracy

on test data is 98%.

The reason why training stopped after 12 epochs instead of the given 50

epochs is because a technique called early stopping has been implemented

in order to possibly reduce the training time, while not losing a significant
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Figure 4.3: Accuracy and loss of the model during training.

amount of accuracy. The stopping criterion is accuracy on the validation data

during training. More detailed explanation of this regularization technique

can be found in [4].
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Conclusion

This thesis covers theoretical foundations for text summarization techniques,

accompanying them by practical examples of usage on real world data. Two

different approaches are used: numerical, using matrix factorizations, and

deep learning, using encoder-decoder neural network model with bidirectional

long short-term memory cells.

The accent is on providing a thorough overview and both intuitive and

formal explanations of the mentioned methods. Examples of usage do not

represent any attempt at achieving state-of-the-art results, but are simply

demonstrations of the theoretically described methods in practice.

As numerical methods of non-negative matrix factorization and singular

value decomposition predate the neural network sequence-to-sequence mod-

elling, they are suitable for extractive text summarization in the form of topic

modelling and key-word extraction. The deep learning model can, however,

achieve good results with both the extractive and abstractive approach to

text summarizing.
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SVEUČILIŠTA U SPLITU

ODJEL ZA MATEMATIKU

DIPLOMSKI RAD
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