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Rud̄era Boškovića 33, 21000 Split, Hrvatska

SPEKTRALNA FORMULACIJA TEORIJE KRITIČNE DUBINE
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malizam koji pokazuje kako se dobije izraz za vremensku evoluciju biomase fitoplanktona izveden iz

advekcijsko-difuzijsko-reakcijske jednadžbe. U radu su opisana dva modela: monokromatski model za

jednu, dvije i više populacija fitoplanktona te spektralni model za jednu i dvije populacije fitoplanktona.

Na kraju rada opisan je natjecateljski model za fitoplanktone koji pokazuje koja će vrsta preživjeti te
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Robert Turčinov: Spectral formulation of critical depth theory

1 Introduction

Phytoplankton (plant plankton) are free-floating autotrophic organisms living in ocean. The
word phytoplankton was first used by the German scientist Victor Heusen in 1887 and comes
from the Greek word "phyton" which means plant, and "planktos" which means wanderer or
tramp. These organisms first appeared two billion years ago. Phytoplantkon is found in the sur-
face illuminated layer of the ocean where there is enough sunlight needed for photosynthesis.
Phytoplankton actively participate in the carbon cycle due to carbon assimilation in photosyn-
thesis. Phytoplankton biomass contains only one percent of the carbon of the entire biosphere,
and the life cycle of phytoplankton is much shorter than the life cycle of terrestrial plants. It is
therefore extremely sensitive to changes in the environment, but it is also an enviromental reg-
ulator due to the enormous carbon flow in global primary production. Phytoplantkon form the
basis of the food chain in rivers, seas and oceans. Their photosynthetic activity is responsible
for almost 50 % of global primary production.

The regulation of the environment is also influenced by man (anthropogenic influence). Ac-
cording to some theories, oil is formed after dead organisms such as plankton remain trapped
beneath sedimentary rocks exposed to high pressure and temperature. Nowadays, the carbon
stored in these deposits is used as fuel and released into the atmosphere which affects climate
change. Primary production process removes carbon dioxide and releases oxygen. Phytoplank-
ton that sinks to the seabed consequnetly reduces the concentration of carbon in the atmosphere.
This process is called "the biological pump". Global phytoplankton primary production is es-
timated at about 50 PgC per year, of which about 8 % is needed to maintain the total annual
world fishing efforts. With the above we see that the research of primary production of the
oceans and seas is of great interest for fisheries and the study of the climate system. Since the
surface of the ocean is huge, research of the primary production necessarily involves measuring
and modelling the process itself, for which different approaches have been developed.

In 1953 Norwegian oceanographer and meteorologist H. U. Sverdrup published an article [1]
in which he proposed the concept of the critical depth to explain the initiation of the spring
bloom in the North Atlantic. Considering the work before him, Sverdrup was the first to make
a mathematical model of critical depth theory. Sverdrup’s model was among the first models to
explore physical - biological interactions in the ocean. His work has now been applied, adapted
and tested across many aquatic systems worldwide.

Critical depth theory uses the following assumptions:
1) Whithin the surface layer turbulance is strong enough to distributes the plankton homoge-
neously through the layer.
2) Whithin the mixed layer photosynthesis is not limited by a lack of nutrients.
3) The production of organic matter by photosinthesis is proportional to the light energy at
depth.

1



Robert Turčinov: Spectral formulation of critical depth theory

Using the above assumptions we can obtain an expression for the critical depth. The exact
value of critical depth depends on the incoming solar radiation, amongst other things.

There are two different parts of the critical depth concept that Sverdrup proposes [2]: the first
part deals with the use of the law of conservation of mass in the water column to calculate the
change in the amount of phytoplankton concentration. In this part he uses formulas (known
before his work, proposed by Gran and Braarud in 1935) which are axiomatic (taken as correct
whithout testing). The second part refers to the study of the main factors responsible for the
formation of blooms (these are hypotheses amenable to testing). In general, we can say that
in Svedrup’s model the biological dynamics in the ocean is described by equations which are
based on the principles of the law of conservation of mass (mass balance).

There are three important depths that need to be mentioned in this work [2]:
1) Critical depth (biological depth horizon) is the depth to which phytoplantkon can be sus-
tained.
2) Mixing depth or mixed layer depth is the depth of active mixing.
3) Euphotic depth is the depth to which light can penetrate.

Based on Sverdrup’s work, models were made that gave a new perspective on phytoplankton
dynamics and various factors responsible for phytoplankton blooms. Phytoplantkon blooms
have been described as periods of rapid (explosive) growth in phytoplantkon biomass. It is im-
portant to note that some blooms are fast (happen quickly, have short periods), while some
blooms are long lasting (have long periods). Blooms are actually a condition of elevated
(increased) phytoplantkon concentrations. The concentration of the photosynthetic pigment
chlorophyll (Chl) is taken as a measure of phytoplankton concentration. It can be detect from
space.

One of the processes that is of societal importance and is related to primary production is
upwelling. Upwelling is an oceanographic phenomenon that involves wind-driven motion of
dense, cooler, and usually nutrient-rich water from deep water towards the ocean surface, re-
placing the warmer, usually nutrient-depleted surface water. The nutrient-rich upwelled water
stimulates the growth and reproduction of primary producers such as phytoplankton. Due to the
biomass of phytoplankton and presence of cool water in these regions, upwelling zones can be
identified by cool sea surface temperatures (SST) and high concentrations of chlorophyll-a. [3]

The idea of this work is to apply Sverdrup’s model to a monochromatic and a spectral model
for phytoplankton competition. We begin with a basic competition model for two species.

2



Robert Turčinov: Spectral formulation of critical depth theory

In Table 1 all parameters and variables used in monochromatic and spectral model for phyto-
plankton populations are listed.

Table 1: Parameters and variables used in this work.

Variable’s name Variable’s mark Variable’s unit
Primary production P = P (z, t) mgC m−3 h−1

Primary production for each population Pi = Pi(z, t) mgC m−3 h−1

Phytoplankton biomass B = B(z, t) mgChl m−3

Phytoplankton biomass for each population Bi = Bi(z, t) mgChl m−3

Irradiance (light intensity) I = I(z, t) W m−2

Two spectral bands of irradiance I1 = I1(z, t), I2 = I2(z, t) W m−2

Attenuation coefficient K = K(z, t) m−1

Optically uncoupled critical depth C = const. m

Optically coupled critical depth S = S(t) m

Parameter’s name Parameter’s mark Parameter’s unit
Surface irradiance I0 = const. W m−2

Loss (mortality) rate L = const. s−1

Loss rate for each population Li = const. s−1

Mixed layer depth zm = const. m

Critical depth zc = const. m

Initial slope (growth rate) α = const. mgC (mgChl)−1 W−1 m−2 h−1

Initial slope for each population αi = const. mgC (mgChl)−1 W−1 m−2 h−1

Seawater attenuation coefficient KW = const. m−1

Specific attenuation coefficient kB = const. m2 (mgChl)−1

Specific attenuation coefficient for each population kBi = const. m2 (mgChl)−1

Initial phytoplankton biomass B0 = const. mgChl m−3

Number of populations N = const. -

Index of population i = 1, ..., N -

Time index n -

Depth z m

Time t h

Time step ∆t h

Diffusion coefficient D m2 s−1
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2 Competition model

In this model [4], the subject of observation are two species which compete for the same lim-
ited food source or in some way inhibit each other’s growth. Using 2-species Lotka-Volterra
competition model we obtain the change in quantity of each species (N1 and N2) over time [4]:

dN1

dt
= r1N1

(
1− N1

K1

− b12
N2

K1

)
, (2.1)

dN2

dt
= r2N2

(
1− N2

K2

− b21
N1

K2

)
, (2.2)

where r1 and r2 are the linear birth rates, K1 and K2 are the carrying capacities (enviromental
capacities) and b12 and b21 are measures of the competitive effect of N1 and N2. It is useful to
introduce the substitutions:

u1 =
N1

K1

, u2 =
N2

K2

, τ = r1t, ρ =
r2
r1
, a12 = b12

K2

K1

, a21 = b21
K1

K2

. (2.3)

Now equations (2.1) and (2.2) become:

du1
dτ

= u1

(
1− u1 − a12u2

)
= f1(u1, u2), (2.4)

du2
dτ

= ρu2

(
1− u2 − a21u1

)
= f2(u1, u2). (2.5)

The steady states are solutions for which f1(u1, u2) = f2(u1, u2) = 0.

On Figure 1 we can see four different situations in the phase space for various cases of a12
and a21. Blue and orange lines are called nulclines and they represent steady states of equations
(2.4) and (2.5).

In the first case, shown in Figure 1a), where a12 < 1 with a21 < 1 there is a stable steady
state where both species coexist. For example, if carrying capacities K1 and K2 are the same
and interspecific competition is b12 < 1 and b21 < 1, then the two species have low population
size (competition is not aggresive which means that one population will not be exterminated).
On Figure 1a) points on the u1 axis are (1, 0) and (0, 1/a21) and on the u2 axis are (0, 1) and
(0, 1/a12), where points are defined as (u1, u2). If the b12 and b21 are about the same and the K1

and K2 are different, it is not easy to say what will happen.

In the second case, shown in Figure 1b), where a12 > 1 and a21 > 1, if the K’s are about
equal, then the b12 > 1 and b21 > 1.

In the third case, shown in Figure 1c), in which the interspecific competition of one species
is much stronger than the other (b21 >> b12), or the carrying capities are sufficiently different
(K1 6= K2), the result is that u1 species dominates and the other species u2 dies out.
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In the fourth case, shown in Figure 1d), in which the interspecific competition of one species
is much stronger than the other (b12 >> b21), or the carrying capities are sufficiently different
(K1 6= K2), the result is that u2 species dominates and the other species u1 dies out.

(a) Case when a12 < 1 and a21 < 1 (b) Case when a12 > 1 and a21 > 1

(c) Case when a12 < 1 and a21 > 1 (d) Case when a12 > 1 and a21 < 1

Figure 1: Phase plane for the various cases of a12 and a21. Blue curve represents steady state for
equation (2.4), orange curve represents steady state for equation (2.5).
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3 Primary production model

Phytoplantkon primary production P is defined as rate of anorganic carbon assimiliaton by
phytoplantkon. Generally, primary production depends on time (t) and depth (z). Chlorophyll
concentration is used as a measure of phytoplantkon biomassB. Primary production depends
of avaliable light and is defined as:

P = αI, (3.1)

where α is initial slope and I is light intensity (irradiance). Irradiance is taken as a meassure
of available sunlight and is defined as a light energy that in units of time passes through a
unit area perpendicular to the direction of light propagation. Generally, irradiance is a function
that depends on time (t) and depth (z). Beer-Lambert law dictates that irradiance decreasses
exponentially with depth:

I = I0e
−Kz, (3.2)

where I0 is surface irradiance and K is the attenuation coefficient which shows the rate of
decline of the amount of light in the sea.

Figure 2 respresents irradiance as function of depth mentioned in equation (3.2) and primary
production as function of depth mentioned in equation (3.1). It can be seen that the primary
production and irradiance decrease exponentially with depth. Used surface irradiance I0 is 350

Wm−2, intial slope α is 0.2 mgC(mgChl)−1W−1m−2h−1 and attenuation coefficient K is 0.04

m−1.

In the open ocean the attenuation coefficient depends on biomass concentration:

K = Kw + kBB, (3.3)

whereKw is seawater attenuation coefficient representing light atenuation processes due to scat-
tering and apsorption of particles and solutes, kB is specific phytoplankton attenuation coeffi-
cient representing light attenuation processes due to apsorption and scattering by phytoplankton.

6
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Figure 2: Change of irradiance (yellow curve) and primary production (green curve) over depth in a
primary production model.
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4 Critical depth theory

In 1953 Harald Urlik Sverdrup set up a simple mathematical model based on a water column that
connects the roles of vertical water mixing, light attenuation with depth and seasonal increase in
light. The Sverdrup’s model is a model based on an earlier one proposed by Riley [5] in 1946.
Gordon Arthur Riley was an American biological oceanographer who studied the dynamics
of plankton ecosystems. The critical depth hypothesis is the solution of Sverdrup’s model.
This hypothesis predicts that blooms begins when seasonally mixed layer is shallower than the
critical depth zc.

The model rests on the following assumptions [6]:
1) Phytoplankton growth rate is proportional to the light intensity (α ∝ I).
2) The light extintion coefficient (atenuation coefficient) K is constant (K = const.).
3) Phytoplankton loss rate is constant (L = const.).
For light intensity Sverdrup used Beer-Lambert’s law:

I = I0e
−Kz, (4.1)

where I0 is surface irradiance required for the photosynthesis process.

Sverdrup’s model can be understood in terms of differential equation for the time evolution
of phytoplankton concentration (biomass) B [6]:

∂B

∂t
= (α− L)B +

∂

∂z

(
D
∂B

∂z

)
, (4.2)

where α is the rate of phytoplankton growth, L is phytoplankton loss rate and D is the vertical
mixing coefficient (diffusion coefficient).

The assumption that the vertical mixingD is strong enough to evenly distribute the organisms
in the ocean’s surface mixed layer allows the integration of equation (4.2) from the surface
(0) to the bottom of the mixed layer (depth zm) resulting in the equation (z axis is positive
downwards):

∂〈B〉
∂t

=
αI0
kzm

(1− e−kzm)〈B〉 − L〈B〉, (4.3)

where 〈B〉 is the average phytoplankton biomass (over depth):

〈B〉 =

zm∫
0

Bdz. (4.4)

8
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Setting ∂〈B〉
∂t

= 0, an equation is obtained for the critical depth zc for which the integral over
depth of growth is equal to the integral over depth of loss:

αI0
Kzc

(1− e−Kzc) = L. (4.5)

The value of zc depends on 4 model parameters: α, L, k and I0. If zc > zm the phytoplankton
can be sustained in the mixed layer, if zc < zm it can not.

9
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5 Monochromatic model

5.1 Monochromatic model with one phytoplankton population

In order to obtain the expression for the time evolution of phytoplankton biomass in the mixed-
layer, it is necessary to integrate the advection-diffussion-reaction equation by depth:

∂B

∂t
+ w

∂B

∂z
= D

∂2B

∂z2
+ PB − LB, (5.1)

where ∂B
∂t

is local change of biomass, w ∂B
∂z

is the advection term, D ∂2B
∂z2

is the diffusion term
in which D is the diffusion coefficient, P = P (z, t) is primary production which is function of
depth z (axis of depth is positive downwards) and time t, B = B(z, t) is phytoplantkon biomass
which is also function of depth z and time t. This equation describes the evolution of biomass
over time.

Using equations (3.1) and (3.2) primary production P (z, t) is:

P = αI = αI0e
−Kz, (5.2)

where K is atenuation coefficient which is defined in equation (3.3). By integrating equation
(5.1) from the surface (0) to the base of the mixed layer (zm) we get:

zm∫
0

∂B

∂t
dz +

zm∫
0

w
∂B

∂z
dz =

zm∫
0

D
∂2B

∂2z
dz +

zm∫
0

αI0e
−KzBdz −

zm∫
0

LBdz. (5.3)

After integration, the equation (5.3) yields:

∂〈B〉
∂t

zm +
(
wB −D∂B

∂z

)∣∣∣∣zm
0

= −αI0
K

e−Kz

∣∣∣∣zm
0

〈B〉 − L〈B〉zm, (5.4)

where 〈B〉 is defined as:
zm∫
0

Bdz = 〈B〉zm. (5.5)

One of the assumptions in this model is that there is no interaction at the boundaries (0 and zm)
which means that flux on the surface and the mixed-layer base is equal to zero:

wB −D∂B
∂z

= 0 for z = 0, (5.6)

wB −D∂B
∂z

= 0 for z = zm. (5.7)

10
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Equation (5.4) devided by zm now becomes equation which is recognized as Sverdrup’s equa-
tion in (4.3):

∂〈B〉
∂t

=
αI0
Kzm

(
1− e−Kzm

)
〈B〉 − L〈B〉. (5.8)

Numerical form of equation (5.8) is:

B(n+ 1) = B(n) +
αI0∆t

Kzm

(
1− e−Kzm

)
B(n)− LB(n)∆t, (5.9)

where ∆t is the time step and n the time index.

We define A as the ratio of surface production to losses (uniform over depth):

A =
αI0
L
. (5.10)

Optically uncoupled critical depth C is the critical depth associated with kB = 0 and is defined
as [7]:

C =
1

Kw

(
W0(−Ae−A) + A

)
, (5.11)

where W0 is Lambert W function. The optically uncoupled critical depth is independent of time
C 6= C(t). Optically coupled critical depth S is the critical depth associated with kB 6= 0 and
is defined as [7]:

S =
1

Kw + kBB

(
W0(−Ae−A) + A

)
. (5.12)

Optically coupled critical depth is time-depended S = S(t). We now simulate the temporal
evolution of phytoplankton biomass B using equation (5.9). Parameters used in this model can
be seen in Table 2.

Table 2: Parameters used in a monochromatic model for one phytoplankton population.

Parameter Amount Unit

I0 350 Wm−2

L 10 s−1

zm 150 m

α 0.2 mgC(mgChl)−1W−1m−2h−1

KW 0.04 m−1

kB 0.014 m2(mgChl)−1

B0 (0.1 - 0.9) mgChl m−3

11



Robert Turčinov: Spectral formulation of critical depth theory

Figure 3: Change of optically coupled critical depth S(t) over time t in monochromatic model with
one phytoplankton population. Blue dashed line shows base of the mixed layer zm and other lines (blue,
green, red and purple full line) show optically coupled critical depth S(t). Different start points of lines
correspond to different initial biomass conditions.

Figure 3 shows that optically coupled critical depth S(t) for one phytoplankton population,
regardless of given initial conditions, tends to the base of the mixed layer depth zm. Curves that
take values of initial biomass less than 0.5 mgChl m−3 (blue curves) decrease over time to a
fixed value of mixed layer depth of 150 m. Curves that take values of initial biomass greater
than 0.5 mgChl m−3 (green, red and purple line) increase over time to a fixed value of mixed
layer depth of 150 m. The duration of this simulation is 8 h which is sufficient to reach the
stabilized value of optically coupled critical depth.
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Figure 4: Change of biomass B(t) over time in a monocromatic model for one phytoplankton population
at the mixed layer depth zm. Green dashed line shows steady-state biomass and other lines (purple, red,
green, cyan and blue full line) show change of biomass B(t) over time. Different start points of lines
correspond to different initial biomass conditions.

Figure 4 shows that biomass for one phytoplankton population, regardless of biomass initial
conditions, tends to a steady-state biomass given by [7]:

B∗ =
Kw

kB

(
C

zm
− 1

)
. (5.13)

Biomass at the begining of simulation is 0.1, 0.3, 0.5, 0.7, 0.9 mgChl m−3 (arbitrarily selected
values). Curves that use values of initial biomass less than 0.5 mgChl m−3 (blue and cyan line)
increase over time to a fixed value of steady-state biomass. Curves that used values of initial
biomass greater than 0.5 mgChl m−3 (green, red and purple line) decrease over time to a fixed
value of steady-state biomass. The duration of this simulation is 5 h which is sufficient to reach
the stabilized value of biomass.
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Robert Turčinov: Spectral formulation of critical depth theory

Figure 5: Change of irradiance I(t) over time t at the mixed layer depth zm. Red dashed line shows
steady-state irradiance I∗ and other lines (blue, cyan, green, yellow and purple line) show irradiance
I(t). Different start points of lines correspond to different initial biomass conditions.

Figure 5 shows that irradiance for one population at the base of the mixed layer (zm) tends to
a steady-state irradiance which is defined as:

I∗ = I0e
−(Kw+kBB∗)zm . (5.14)

Steady-state irradiance profile has the same shape as the irradiance profile defined in equation
(3.2). The only difference is that this irradiance uses steady-state biomass B∗ and mixed layer
depth zm. In Figure 5 curves with values of initial biomass less than 0.5 mgChl m−3 (blue and
cyan line) decrease over time to a fixed value of steady-state irradiance. Curves with values of
initial biomass greater than 0.5 mgChl m−3 (green, red and purple line) increase over time to a
fixed value of steady-state irradiance.
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5.2 Monochromatic model with two phytoplankton populations

The mathematical procedure for two phytoplankton populations is exactly the same as for one
population. We will use indices 1 and 2 to indicate population. With two populations we have
two advection-diffussion-reaction equations (5.1), one for each population:

∂B1

∂t
+ w

∂B1

∂z
= D

∂2B1

∂2z
+ P1 − L1B1, (5.15)

∂B2

∂t
+ w

∂B2

∂z
= D

∂2B2

∂2z
+ P2 − L2B2. (5.16)

whereB1 andB2 are phytoplantkon biomass for each population, P1 and P2 are primary produc-
tion terms for each population, L1 and L2 are phytoplankton mortality rate for each population.
Primary productions P1 and P2 for each population are defined as:

P1 = α1I = α1I0e
−Kz, (5.17)

P2 = α2I = α2I0e
−Kz, (5.18)

where α1 and α2 are initial slope for each population, K is atenuation coefficient which is now
defined as:

K = Kw + kB1B1 + kB2B2, (5.19)

where Kw is seawater attenuation coefficient, kB1 and kB2 are specific phytoplankton attenua-
tion coefficient for each population. It is important to note that in this case, the two phytoplank-
ton populations both dictate K which means that they can affect each other.

Final equations for the two phytoplantkon populations are now:

∂〈B1〉
∂t

=
α1I0
Kzm

(
1− e−Kzm

)
〈B1〉 − L1〈B1〉, (5.20)

∂〈B2〉
∂t

=
α2I0
Kzm

(
1− e−Kzm

)
〈B2〉 − L2〈B2〉. (5.21)

where 〈B1〉 and 〈B2〉 are defined as:

zm∫
0

B1dz = 〈B1〉zm, (5.22)

zm∫
0

B2dz = 〈B2〉zm. (5.23)
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Numerical form of equations (5.20) and (5.21) is:

B1(n+ 1) = B1(n) +
α1I0∆t

Kzm

(
1− e−Kzm

)
B1(n)− L1B1(n)∆t, (5.24)

B2(n+ 1) = B2(n) +
α2I0∆t

Kzm

(
1− e−Kzm

)
B2(n)− L2B2(n)∆t, (5.25)

where ∆t is the time step and n the time index.

We define A1 and A2 as the ratio of surface production to losses (uniform over depth):

A1 =
α1I0
L1

, (5.26)

A2 =
α2I0
L2

. (5.27)

Optically uncoupled critical depths C1 and C2 are the critical depths associated with kB1 = 0

and kB2 = 0 which are defined as [7]:

C1 =
1

Kw

(
W0(−A1e

−A1) + A1

)
, (5.28)

C2 =
1

Kw

(
W0(−A2e

−A2) + A2

)
. (5.29)

Optically coupled critical depths S1 and S2 are the critical depths associated with kB1 6= 0 and
kB2 6= 0 which are defined as [7]:

S1 =
1

Kw + kB1B1 + kB2B2

(
W0(−A1e

−A1) + A1

)
, (5.30)

S2 =
1

Kw + kB1B1 + kB2B2

(
W0(−A2e

−A2) + A2

)
. (5.31)

Figures 7a and 7b show two different situations for optically coupled critical depths S1 and S2

for two phytoplankton populations.
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Figure 6 shows two different situations of change of phyotplankton biomass over time for two
phytoplankton populations. Figure 6a shows that phytoplantkon biomass B2(t) for the loosing
species tends to zero (after a certain time this species dies out). Also, phytoplantkon biomass
B1(t) for the wining species tends to a steady-state biomass B∗1 , regardless of initial conditions.
It can be noticed at the begin of this simulation (first 1 h) that magenta line decreases because
of population 2 and blue line increases in that period.

Figure 6b shows that phytoplantkon biomass B1(t) for the loosing species tends to zero (after
a certain time this species dies out). Also, phytoplantkon biomass B2(t) for the wining species
tends to a steady-state biomass B∗2 , regardless of initial conditions. It can be noticed at the
begining of this simulation (first 1 h) that cyan line decreases because of population 1 and red
line increases in that period, like in Figure 6a .

Steady state biomass of each species for this model are defined as:

B∗1 =
Kw

kB1

(
C1

zm
− 1

)
, (5.32)

B∗2 =
Kw

kB2

(
C2

zm
− 1

)
. (5.33)

There are two cases for populations in this model:
a) The first case is when population 1 beats population 2, which means that the steady-state
biomass value for population 2 is equal to zero:

B∗2 = 0. (5.34)

b) The second case is when population 2 beats population 1, which means that the steady-state
biomass value for population 1 is equal to zero:

B∗1 = 0. (5.35)
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(a) Case when population 1 wins (α1 = 0.22, α2 = 0.21)

(b) Case when population 2 wins (α1 = 0.21, α2 = 0.22)

Figure 6: Change of biomass B(t) over time in monochromatic model for two phytoplankton populations.
Steady-state biomasses B∗1 and B∗2 are given with red and blue dashed line. Blue and cyan full line show
phytoplankton biomass B1(t). Red and magenta full line show phytoplankton biomass B2(t). Different
start points of lines correspond to different initial biomass conditions.
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Figure 7 shows two different situations of change of optically coupled critical depths S1(t)

and S2(t) over time for monochromatic model with two phytoplankton populations. Red and
blue line correspond to initial biomass of 0.1 mgChl m−3. Magenta and cyan line correspond
to initial biomass of 0.9 mgChl m−3.

Figure 7a shows the case when population 2 wins. In this case initial slope for popula-
tion 2 is greater than for population 1 (α2 = 0.22 mgC (mgChl)−1 W−1 m−2 h−1, α1 = 0.21

mgC (mgChl)−1 W−1 m−2 h−1). Loss rate for each phytoplankton population has the same
value L1 = L2 = 10.2 s−1. Blue and cyan line, which show value of S2(t), over time tend to
fixed value of mixed layer depth which is set at zm = 150 m regardless of initial conditions.
They tend to the same value regardless of initial conditions.

Figure 7b shows the case when population 1 wins. In this case the initial slope for popula-
tion 1 is greater than for population 2 (α1 = 0.22 mgC (mgChl)−1 W−1 m−2 h−1, α2 = 0.21

mgC (mgChl)−1 W−1 m−2 h−1). Loss rate for each phytoplankton population has the same
value L1 = L2 = 10.2 s−1. Red and magenta curve, which show value of S1(t), over time tend
to fixed value of the mixed layer depth, which is set at zm = 150 m. They tend to the same
value regardless of initial conditions.
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(a) Case when population 1 wins (α1 = 0.22, α2 = 0.21)

(b) Case when population 2 wins (α1 = 0.21, α2 = 0.22)

Figure 7: Change of optically coupled critical depths S1(t) and S2(t) over time t. Blue dashed line
shows the mixed layer depth zm, red and magenta line show optically coupled critical depth S1(t), blue
and cyan line show optically coupled critical depth S2(t). Different start points of lines correspond to
different initial biomass conditions.
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Figure 8: Change of irradiance I(t) over time t at mixed layer depth zm. Red dashed line shows
steady-state irradiance I∗1 , blue dashed line shows steady-state irradiance I∗2 , blue and cyan line show
irradiance I(t). Different start points of blue lines correspond to different initial biomass conditions.

Using the equations (5.34) and (5.35) we can get two different values of steady-state irradi-
ance depending on which population wins:

I∗1 = I0e
−(Kw+kB1B

∗
1 )zm , (5.36)

I∗2 = I0e
−(Kw+kB2B

∗
2 )zm , (5.37)

Figure 8 shows that irradiance I(t), regardless of initial condition, tends to a steady-state
irradiance I∗2 which is iradiance of the wining species in this case. Steady-state irradiance in
this model is defined as:

I∗ = I0e
−(Kw+kB1B

∗
1++kB2B

∗
2 )zm . (5.38)
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Table 3: Parameters used in a monochromatic model for two phytoplankton populations.

Parameter Amount Unit

I0 350 W m−2

L1 10.1 s−1

L2 10.2 s−1

zm 150 m

α1 0.21 mgC (mgChl)−1 W−1 m−2 h−1

α2 0.22 mgC (mgChl)−1 W−1 m−2 h−1

KW 0.04 m−1

kB1 0.014 m2 (mgChl)−1

kB2 0.015 m2 (mgChl)−1

B0 (0.1 - 0.9) mgChl m−3

5.3 Monochromatic model with N phytoplankton populations

The mathematical procedure for N phytoplankton populations is exactly the same as for one
phytoplankton population. With N populations we have N advection-diffussion-reaction equa-
tions (5.1) for each population:

∂Bi

∂t
+ w

∂Bi

∂z
= D

∂2Bi

∂2z
+ Pi − LiBi for i = 1, 2, ..., N, (5.39)

where i is the index of each population. Primary production Pi(z, t) for each population is now
defined as:

Pi = αiI = αiI0e
−Kz for i = 1, 2, ..., N, (5.40)

where αi is initial slope for each population andK is atenuation coefficient which is now defined
as:

K = Kw +
N∑
i=1

(kBiBi). (5.41)

Final equation for i-th biomass is:

∂〈Bi〉
∂t

=
αiI0〈Bi〉
Kzm

(
1− e−Kzm

)
− Li〈Bi〉. (5.42)

Numerical form of equation (5.42) is:

Bi(n+ 1) = Bi(n) +
αiI0∆t

Kzm

(
1− e−Kzm

)
Bi(n)− LiBi(n)∆t. (5.43)
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Robert Turčinov: Spectral formulation of critical depth theory

We define Ai as the ratio of surface production to losses (uniform over depth):

Ai =
αiI0
Li

. (5.44)

Optically uncoupled critical depth Ci is the critical depth associated with kBi = 0 and is defined
as:

Ci =
1

Kw

(
W0(−Aie

−Ai) + Ai

)
. (5.45)

Optically coupled critical depth Si is the critical depth associated with kBi 6= 0 and is defined
as:

Si =
1

Kw +
N∑
i=1

(kBiBi)

(
W0(−Aie

−Ai) + Ai

)
. (5.46)

Table 4: Parameters used in a monochromatic model for N phytoplankton populations (i is the popula-
tion index in the range i = 1, 2, 3, ..., N ).

Parameter Amount Unit

I0 350 Wm−2

Li 10.1 + 0.1(i-1) s−1

zm 150 m

αi 0.21 + 0.01(i-1) mgC(mgChl)−1W−1m−2h−1

KW 0.04 m−1

kBi 0.014 + 0.001(i-1) m2(mgChl)−1

B0i 0.5 mgChl m−3

N 5 -

Table 5: Obtained values for cricital depth, steady-state biomass and steady-state irradiance in a
monochromatic model for 10 phytoplankton populations.

Critical depth C Steady-state biomass B∗ Steady-state irradiance I∗

174.83 0.47 0.32

181.80 0.56 0.24

188.62 0.64 0.18

195.30 0.71 0.147

201.86 0.76 0.10

208.28 0.81 0.08

214.58 0.86 0.06

220.76 0.89 0.05

226.82 0.93 0.04

232.77 0.95 0.03
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In table 5 we can see that the population which has the highest value of critical depth C and
steady-state biomass B∗ has the lowest value of steady-state irradiance I∗.

Figure 9: Change of biomass B(t) over time in a monochromatic model for 5 phytoplankton populations.
Phtoplankton biomasses B1, B2, B3, B4, B5 are given with blue, red, orange, purple and green line.
Steady-state biomass B∗5 is given with green dashed line.

Figure 9 shows that biomass Bi of each loosing species (purple, orange, red and blue line)
tends to zero. Phytoplantkon biomass B5(t) for the wining species (green line) tends to its
steady-state biomass B∗5 (green dashed line). Only one population wins, regardless of initial
conditions. At the begining of this simulation it can be seen that the biomass of the wining
species (green full line) decreases then increases. The reason for this is that in the begining other
species have a greater influence onK, until the victorious species overpower them. Steady-state
biomass for this model is defined as:

B∗i =
Kw

kBi

(
Ci

zm
− 1

)
, for i = 1, 2, ..., N. (5.47)
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Figure 10: Change of optically coupled critical depth S(t) over time in a monochromatic model for 5
phytoplankton populations. Optically coupled critical depths Si(t) for each phtoplankton population are
described with different colours (blue for S1, red for S2, orange for S3, purple for S4 and green for S5).
Green dashed line stands for the mixed layer depth zm.

Figure 10 shows that optically coupled critical depths Si(t) for the loosing species (purple,
orange, red and blue full line) do not converge to zm. Optically coupled critical depth Si(t)

(only one) for the wining species (green full line) tends to the mixed layer depth zm (green
dashed line). Inital biomass is 0.5 mgChl m−3. The wining species has the largest biomass B
(only that species survives) and the depest optically coupled critical depth S.
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Figure 11: Change of irradiance I(t) at the mixed layer depth zm over time in a monochromatic model
for 5 phytoplankton populations. Steady-state irradiance for each population is described with different
dashed lines (red for I∗1 , orange for I∗2 , purple for I∗3 , green for I∗4 and cyan for I∗5 ). Blue full line stands
for irradiance I(t).

Figure 11 shows that irradiance I(t) at the mixed layer depth zm, regardless of initial condi-
tions, tends to steady-state irradiance I∗5 which is equal to irradiance of the wining population 5
in this case. Steady-state irradiance in this model is defined as:

I∗ = I0e
−
(
Kw+

N∑
i=1

(
kBiB

∗
i

))
zm
. (5.48)

We can get N different values of steady-state irradiance depending on which population wins:

I∗i = I0e
−(Kw+kBiB

∗
i )zm , for i = 1, 2, ..., N (5.49)
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6 Spectral model

In this chapter the main idea is to observe the effect of spectrally resolved irradiances I1 and I2
on one and two phytoplankton populations.

6.1 Spectral model with one phytoplankton population

Irradiance is now split into 2 spectral bands I1 and I2:

I1 = I01e
−K1z, (6.1)

I2 = I02e
−K2z, (6.2)

where I01 and I02 represent surface irradiance of each spectral band and K1 and K2 are the
atenuation coefficients which are now defined as:

K1 = Kw1 + k1B, (6.3)

K2 = Kw2 + k2B, (6.4)

where Kw1 and Kw2 are seawater attenuation coefficients, k1 and k2 are specific phytoplankton
attenuation coefficients. Attenuation coefficients K1 and K2 give the rate of decrease of light
intenstities I1 and I2 with depth.

We will once again use the advection-diffussion-reaction equation (5.1) to get the final equa-
tion for biomass:

∂B

∂t
+ w

∂B

∂z
= D

∂2B

∂2z
+ PB − LB. (6.5)

Primary production P is now defined as:

P = α1I1 + α2I2 = α1I01e
−K1z + α2I02e

−K2z, (6.6)

where α1 and α2 are phytoplankton initial slopes which show the response (reaction) of phyto-
plankton to different light intensities I1 and I2. By including equations (6.3), (6.4) and (6.6) in
equation (6.5) and integrating from the surface (0 m) to the mixed layer depth (zm) we get:

zm∫
0

∂B

∂t
dz+

zm∫
0

w
∂B

∂z
dz =

zm∫
0

D
∂2B

∂2z
dz+

zm∫
0

α1I01e
−K1zB+

zm∫
0

α2I02e
−K2zB−

zm∫
0

LBdz. (6.7)

After integration we get the following equation:

∂〈B〉
∂t

zm +
(
wB−D∂B

∂z

)∣∣∣∣zm
0

= −α1I01
K1

e−K1z

∣∣∣∣zm
0

〈B〉− α2I02
K2

e−K2z

∣∣∣∣zm
0

〈B〉−L〈B〉zm, (6.8)
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where 〈B〉 is defined as:
zm∫
0

Bdz = 〈B〉zm. (6.9)

The fluxes on the surface (0) and the mixed layer depth (zm) are assumed to be zero:

wB −D∂B
∂z

= 0 for z = 0, (6.10)

wB −D∂B
∂z

= 0 for z = zm. (6.11)

By including these conditions and dividing equation (6.8) by zm, the final equation for change
of biomass over time is:

∂〈B〉
∂t

=
α1I01
K1zm

(
1− e−K1zm

)
〈B〉+

α2I02
K2zm

(
1− e−K2zm

)
〈B〉 − L〈B〉. (6.12)

Now, the numerical form of equation (6.12) is:

B(n+ 1) = B(n) +
α1I01∆t

K1zm

(
1− e−K1zm

)
B(n) +

α2I02∆t

K2zm

(
1− e−K2zm

)
B(n)− LB(n)∆t,

(6.13)
where ∆t is the time step and n the time index. We now simulate the temporal evolution of
phytoplankton biomass B using equation (6.13). Table 6 contains all the parameter values used
in this model.

Table 6: Parameters used in the spectral model for one phytoplankton population.

Parameter Value Unit

I01 200 W m−2

I02 150 W m−2

L 10 s−1

zm 150 m

α1 0.21 mgC (mgChl)−1W−1 m−2 h−1

α2 0.22 mgC (mgChl)−1W−1 m−2 h−1

Kw1 0.041 m−1

Kw2 0.042 m−1

k1 0.014 m2 (mgChl)−1

k2 0.015 m2 (mgChl)−1

B0 (0.1 - 0.9) mgChl m−3
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Figure 12: Change of Biomass B(t) over time in a spectral model with one phytoplankton population
on the mixed layer depth zm. Green line shows phtoplankton biomass B with initial condition of 0.1
mgChl m−3, blue line shows biomass B with initial condition of 0.9 mgChl m−3 and red dashed line
shows steady-state biomass B∗.

Figure 12 shows that biomass for one population with two spectral bands tends to a steady-
state biomass (in this case steady-state biomass is at about 0.6 mgChl m−3). Biomass which is
higher than steady-state biomass at the begining of the simulation decreases over time until it
stabilizes. Biomass that is lower than steady-state biomass at the beginning of the simulation
increases over time until it stabilizes. The duration of the simulation is 5 h which is sufficient
to see the stabilization of the biomass.
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Figure 13: Change of irradiance I(t) over time at the mixed layer depth zm in a spectral model with
one phytoplankton population. Red and magenta line stand for a case when surface irradiance is 200
W m−2, blue and cyan line stand for a case when it is 150 W m−2. Different start points of lines
correspond to different initial biomass conditions.

Figure 13 shows change of two different irradiances over time at the mixed layer depth zm.
Red and magenta line corresponds to surface irradiance of 200 W m−2, while blue and cyan line
shows the irradiance which corresponds to surface irradiance of 150 W m−2. The duration of the
simulation is 5 h which is sufficient to see the stabilization of the irradiance. "Red" and "blue"
irradiance correspond to initial conditions for biomass of 0.1 mgChl m−3. Red and magenta line
tend to a steady-state irradiance I∗1 . "Blue" and "cyan" irradiance correspond to initial condition
for biomass of 0.9 mgChl m−3. Blue and cyan line tend to a steady-state irradiance I∗2 . Curves
that have irradiance on the begining of simulation greater than steady-state irradiance decrease
over time. Curves that have irradiance on the begining of simulation smaller than steady-state
irradiance increase over time.
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6.2 Spectral model with two phytoplankton populations

We again use irradiance which is split into two spectral bands:

I1 = I01e
−K1z, (6.14)

I2 = I02e
−K2z, (6.15)

where I01 and I02 respresent surface irradiance of each spectral band and K1 and K2 are atenu-
ation coefficients which are now defined as:

K1 = Kw1 + k11B1 + k12B2, (6.16)

K2 = Kw2 + k21B1 + k22B2 (6.17)

whereKw1 andKw2 are seawater attenuation coefficients,B1 andB2 are phytoplankton biomass
for each population, k11, k12, k21 and k22 are specific phytoplankton attenuation coefficients.
Attenuation coefficients K1 and K2 give the rate of decrease of light intenstities I1 and I2 with
depth.

We will once again use two advection-diffussion-reaction equations (5.1) to get the final
equation for biomass of each population:

∂B1

∂t
+ w

∂B1

∂z
= D

∂2B1

∂2z
+ P1B1 − L1B1, (6.18)

∂B2

∂t
+ w

∂B2

∂z
= D

∂2B2

∂2z
+ P2B2 − L2B2. (6.19)

Primary production P1 and P2 for each population is now defined as:

P1 = α11I1 + α12I2 = α11I01e
−K1z + α12I02e

−K2z, (6.20)

P2 = α21I1 + α22I2 = α21I01e
−K1z + α22I02e

−K2z, (6.21)

where α11, α12, α21 and α22 are phytoplankton initial slopes which show the response (reaction)
of phytoplankton photosynthesis rate of each population to different light intensities I1 and I2.
By including equations (6.20) and (6.21) in equations (6.18) and (6.19) and integrating from the
surface (0 m) to the depth of the mixed layer (zm) we get:

zm∫
0

∂B1

∂t
dz +

zm∫
0

w
∂B1

∂z
dz =

zm∫
0

D
∂2B1

∂2z
dz +

zm∫
0

P1(z, t)dz −
zm∫
0

L1B1dz, (6.22)
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zm∫
0

∂B2

∂t
dz +

zm∫
0

w
∂B2

∂z
dz =

zm∫
0

D
∂2B2

∂2z
dz +

zm∫
0

P2(z, t)dz −
zm∫
0

L2B2dz. (6.23)

By solving these integrals we get:

∂〈B1〉
∂t

zm+
(
wB−D∂B1

∂z

)∣∣∣∣zm
0

= −α11I01
K1

e−Kz

∣∣∣∣zm
0

〈B1〉−
α12I02B2

K2

e−Kz

∣∣∣∣zm
0

〈B1〉−L1〈B1〉zm,

(6.24)
∂〈B2〉
∂t

zm +
(
wB −D∂B2

∂z

)∣∣∣∣zm
0

= −α21I01
K1

e−Kz

∣∣∣∣zm
0

〈B2〉 −
α22I02
K2

e−Kz

∣∣∣∣zm
0

〈B2〉 − L2〈B2〉zm,

(6.25)
where 〈B1〉 and 〈B2〉 are defined as:

zm∫
0

B1dz = 〈B1〉zm, (6.26)

zm∫
0

B2dz = 〈B2〉zm. (6.27)

The fluxes on the surface and the mixed layer depth are equal to zero:

wB1 −D
∂B1

∂z
= 0 for z = 0, (6.28)

wB1 −D
∂B1

∂z
= 0 for z = zm, (6.29)

wB2 −D
∂B2

∂z
= 0 for z = 0, (6.30)

wB2 −D
∂B2

∂z
= 0 for z = zm. (6.31)

By including these conditions and dividing equations (6.24) and (6.25) by zm, the final equations
are:

∂〈B1〉
∂t

=
α11I01〈B1〉
K1zm

(
1− e−K1zm

)
+
α12I02〈B1〉
K2zm

(
1− e−K2zm

)
− L1〈B1〉, (6.32)

∂〈B2〉
∂t

=
α21I01〈B2〉
K1zm

(
1− e−K1zm

)
+
α22I02〈B2〉
K2zm

(
1− e−K2zm

)
− L1〈B2〉. (6.33)

The numerical forms of these equations are:

B1(n+1) = B1(n)+
α11I01B1(n)∆t

K1zm

(
1−e−K1zm

)
+
α12I02B1(n)∆t

K2zm

(
1−e−K2zm

)
−L1B1(n)∆t,

(6.34)

B2(n+1) = B2(n)+
α21I01B2(n)∆t

K1zm

(
1−e−K1zm

)
+
α22I02B2(n)∆t

K2zm

(
1−e−K2zm

)
−L1B2(n)∆t,

(6.35)
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where n is the time index and ∆t is the time step. We now simulate the temporal evolution of
phytoplankton biomass B using equations (6.32) and (6.33).

Figure 14: Change of biomass B(t) on the mixed layer depth zm in a spectral model with two phyto-
plankton population. Biomass B1 is given with red line and biomass B2 is given with blue line. Red
dashed line shows steady-state biomass B∗1 and blue dashed line shows steady-state biomass B∗2 .

Figure 14 shows phytoplankton biomass in a spectral model with two phytoplankton popula-
tions. Blue line shows phytoplankton biomass B2 which has greater value of steady-state than
biomass B1 in this situation (B∗1 < B∗2). Blue line tends to a steady-state biomass B∗2 . Red
line shows phytoplankton biomass B1 which has smaller value of steady-state biomass than B2

in this situation (B∗1 < B∗2). Red line tends to a steady state biomass B∗1 . The duration of the
simulation is 15 h which is sufficient to see the stabilization of each biomass.

33
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Figure 15: Change of irradiances I1 and I2 over time in a spectral model with two phytoplankton
populations at the mixed layer depth zm. Red line corresponds to surface irradiance of 200 Wm−2,
while blue line corresponds to surface irradiance of 150 Wm−2. Red dashed line shows steady-state
irradiance I∗1 , blue dashed line shows steady-state irradiance I∗2 .

Figure 15 shows change of two parts of irradiance over time at the mixed layer depth zm in
a spectral model with two phytoplankton populations. The duration of the simulation is 15 h

which is sufficient to see the stabilization of the irradiance. Red line tends to a steady-state
irradiance I∗1 . Blue line tends to a steady-state irradiance I∗2 . Initial biomass for both irradiance
is 1 mgChl m−3. Table 6 contains all the parameter values used in this model in case when two
phytoplankton populations survives.
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Table 7: Parameters used in a spectral model with two phytoplankton population in case when two
populations survives (one example).

Parameter Value Unit

I01 200 W m−2

I02 150 W m−2

L1 10 s−1

L2 10 s−1

zm 150 m

α11 0.1 mgC (mgChl)−1W−1m−2h−1

α12 0.15 mgC (mgChl)−1W−1 m−2 h−1

α21 0.15 mgC (mgChl)−1W−1 m−2 h−1

α22 0.105 mgC (mgChl)−1W−1m−2h−1

Kw1 0.04 m−1

Kw2 0.04 m−1

k11 0.05 m2 (mgChl)−1

k12 0.02 m2 (mgChl)−1

k21 0.02 m2 (mgChl)−1

k22 0.05 m2 (mgChl)−1

B01 (0.1 - 3) mgChl m−3

B02 (0.1 - 3) mgChl m−3
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7 Competition model for phytoplankton

The idea is to apply the analysis of the competition model in chapter 2 to our phytoplankton
model. We will use equations of spectral model for two phytoplankton populations (6.32) and
(6.33) and equalize them with zero to get stable states for each biomass:

∂B1

∂t
=
α11I01B1

K1zm

(
1− e−K1zm

)
+
α12I02B1

K2zm

(
1− e−K2zm

)
− L1B1 = 0, (7.1)

∂B2

∂t
=
α21I01B2

K1zm

(
1− e−K1zm

)
+
α22I02B2

K2zm

(
1− e−K2zm

)
− L2B2 = 0. (7.2)

Figure 16 shows the phase space of two phytoplankton biomass. In that space we can see
"biomass flows". The arrows show us the flow or derivation of biomass (another example could
be wind) that pushes points on the lines (in some places stronger, in some places weaker) to the
end point. The different points from which the curves starts show different initial conditions.
Regardless of the initial conditions, the curves always end at the same point, depending on the
condition. If biomass B1 wins then the curves end up on its axis and vice versa. In the case
when both species survive, the curves will not end up on the any axes, but somewhere in the
phase space.

Figure 16a shows 3 lines (orange, blue and green) that take 3 different initial conditions
for biomass at the beginning of the simulation. Orange line is corresponding to (B10, B20)

= (1, 1), blue line is corresonding to (B10, B20) = (2, 1) and green line is corresponding to
(B10, B20) = (2.5, 2.5). All 3 lines end at the same point at (B1, B2) = (1.22, 2.28). This point
is closer to the y axis (B2 axis) than the x axis (B1 axis) on the graph, which mean that biomass
B2 has a higher steady-state value than biomass B1 (population 2 has more than population 1).
In this case, both populations survive on the end of simulation.

Figure 16b shows 3 lines that take 3 different initial conditions for biomass at the beginning of
the simulation. Orange line is corresponding to (B10, B20) = (1, 1), green line is corresponding
to (B10, B20) = (1, 2) and blue line is corresponding to (B10, B20) = (2.5, 2.5). All 3 lines end
at the same point at (B1, B2) = (2.28, 1.22). This point is closer to the x axis (B1 axis) than the
y axis (B2 axis) on the graph, which mean that biomass B1 has a higher steady-state value than
biomass B2 (population 1 has more than population 2). In this case, both populations survive
on the end of simulation.

Figure 16c shows 3 lines that take 3 different initial conditions for biomass at the beginning of
the simulation. Blue line is corresponding to (B10, B20) = (1, 1), orange line is corresponding
to (B10, B20) = (2, 2) and green line is corresponding to (B10, B20) = (2, 3). All 3 lines end
at the same point at (B1, B2) = (0, 5). This point is on the y axis (B2 axis) on the graph,
which mean that population with biomass B2 is winner (steady-state value is not zero) and
population with biomass B1 is looser (steady-state is zero). In this case, population 2 at the end
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of simulation survives, while population 1 dies.

Figure 16d shows 3 lines corresponding to 3 different initial conditions for biomass at the
beginning of the simulation. Blue line is corresponding to (B10, B20) = (1, 2), orange line is
corresponding to (B10, B20) = (2, 3) and green line is corresponding to (B10, B20) = (1, 1).
All 3 lines end at the same point at (B1, B2) = (3.82, 0). This point is on the x axis (B1 axis)
on the graph, which mean that population with biomass B1 is winner (steady-state of biomass
is not zero) and population with biomass B2 is looser (steady-state of biomass is zero). In this
case, population 1 at the end of simulation survives, while population 2 dies.

(a) Case when α12 = α21 = 0.15, α11 = 0.1
and α22 = 0.105

(b) Case when α12 = α21 = 0.15 and α11 = 0.105
and α22 = 0.1

(c) Case when α11 = α21 = 0.15, α22 = 0.15
and α12 = 0.1.

(d) Case when α11 = 0.15, α12 = 0.1 and
α21 = α22 = 0.105

Figure 16: The phase space of two phytoplankton biomass B1(t) and B2(t) in a spectral model with
two phytoplankton populations. The arrows on the figures show biomass flows that actually push certain
points in a certain direction. The different points from which the curves (green, orange and blue) starts
show different initial conditions for biomass.

37
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Figure 17 shows null clines of phytoplankton biomass for various cases of α11, α12, α21 and
α22 . In case the curves intersect, both species can survive. In the case when one curve is above
the other, it means that the biomass corresponding to curve above has won the competition and
has beaten the one below. It can be noticed that these curves look quite similar to the curves in
Chapter 2 where we talked about the competititon model in general.

(a) Case when α11 = α22 = 0.15 and
α12 = α21 = 0.1

(b) Case when α11 = α22 = 0.1 and
α12 = α21 = 0.15

(c) Case when α11 = α12 = α21 = 0.15 and
α22 = 0.1

(d) Case when α22 = α12 = α21 = 0.15 and
α11 = 0.1

Figure 17: Shematic phase trajectories for the various cases of α11, α12, α21 and α22. Blue curve stands
for equation (7.1) , orange curve stands for equation (7.2).
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8 Conclusion

At the beginning of this work a basic competition model, that shows competition of different
species for same resource, is described. Figure 1 shows different outcomes of competition for
two species. The idea in this work was to apply this competition model way of thinking to
Sverdrup’s model of critical depth, which describes the necessary conditions for phytoplankton
survival in the ocean. In order to calculate the expression for the change of biomass over time,
the problem was formulated as a typical advection-diffusion-reaction model and was integrated
over depth for each type of phytoplakton. Initially, we explored how light intensity affects one
species of phytoplankton. For this case, Figure 4 and 5 show the change in biomass and light
intensity over time. Further in the paper, the same effect of light intensity was observed for two
and more phytoplankton species. Graphs were obtained for biomass in which it can be seen
that of the N phytoplantkon populations only one can win. The winner is the phytoplankton
population that needs the least light.

In the second part of this work, we observed the effect of spectrally resolved light on one and
two phytoplankton populations. For two phytoplantkon populations we observed that in certain
situations both species can survive. Further in the work, we applied the general competition
model to a specific case of phytoplankton. Using different equations ((2.4), (2.5), (7.1) and
(7.2)) in the general and specific (phytoplankton) competition model, very similar graphs for
different situations were obtained (Figure 1 and 17). Also, at the end of the work, Figure 16
is obtained which shows the phase space of two different phytoplankton types in which arrows
represent biomass flows. These flows are actually derivatives of biomass over time that “push”
the starting points on the graphs to some end points. The starting points of the curves represent
different initial conditions, while the ending points depict which species wins the competition.

This work is a continuation of the well-known theory of the part of physical oceanography
related to phytoplankton and spring blooms. In this work the competition model, critical depth
theory and a primary production model are connected with a monochromatic and a spectral
model for phytoplankton. This theory has been experimentally confirmed which is mentioned
in [11] and other works. Many works mentioned in the literature are connected with this topic.
This work shows that competition model works well. This topic could be extended to look at a
richer light spectrum on the surface and more populations, which would further complicate the
mathematical derivation and the final equations obtained. Also, we could take different forms
of light intensity and in that way look at what kind of graphs and results we will get.
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A Appendix - codes

This chapter presents codes used in this thesis that were needed to obtain graphs for different
situations. MATLAB R2020b and Wolfram Mathematica 11.1 programs were used for coding.
In program MATLAB R2020b codes were made for monochromatic model with one, two and N
phytoplankton populations and the spectral model with one and two phytoplankton populations.
In program Wolfram Mathematica 11. codes were made for the competition model from the
literature [4] and competition model applied for phytoplankton.
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%-----Monochromatic model with one phytoplankton population------- 
 
%Cleaning memory: 
clear; clc; clear vars; 
 
%Used constants: 
I0 = 350; 
Kw = 0.04; 
k1 = 0.014; 
alfa = 0.2; 
L = 10; 
zm = 150; %Mixed layer depth [m] 
 
dt = 0.1; 
T = 10; 
t =  (0 : dt : T)'; 
 
A = alfa * I0 / L; 
 
%Initial conditions: 
%B(1,1) = (0.9).*rand(1,1); 
B(1,1) = 0.1; 
S (1,1) = ( 1 / (Kw + k1*B(1,1)) ) * (  lambertw(-A *exp(-A))  + A  ); 
I (1,1) = I0 * exp(- (Kw + k1*B(1,1)) * zm ); 
 
for  n = 1 : length(t) - 1 
 
K1 = Kw + k1*B(n,1); 
B (n+1,1)=B(n,1)+B(n,1)*(((alfa* I0 ) / (K1*zm))*(1-exp (-K1*zm))-L)*dt ; 
S (n+1,1) = (  1 / (Kw + k1*B(n+1,1))    ) * ( lambertw(-A*exp(-A)) + A); 
I (n+1,1) = I0 * exp(- (Kw + k1*B(n+1,1)) * zm ); 
 
end 
 
C = (1 / Kw) * ( lambertw(-A*exp(-A)) + A ); 
Bz = (Kw / k1) * (C / zm - 1); 
Iz  = I0 * exp(- (Kw + k1*Bz) * zm ); 
 
 
 



figure 
plot(t , B (:, 1),  'b' , 'LineWidth', 1) 
hold on 
plot (t, Bz*ones(size(B (:, 1))) , '--g' , 'LineWidth'  , 2) 
xlim([0 5]) 
title ("Change in biomass over time") 
ylabel("Phytoplankton biomass [mmol m^{-3}]") 
xlabel("Time [h]") 
grid on 
hold on 
legend ('B_0=0.1' , 'B^*') 
 
figure 
plot(t , S (:, 1),  'b' , 'LineWidth', 1) 
hold on 
plot (t, zm*ones(size(S (:, 1))) , '--b' , 'LineWidth', 2) 
xlim([0 8]) 
title ("Change in function S(t) over time") 
ylabel("S(t)") 
xlabel("Time [h]") 
grid on 
hold on 
legend ('S(B_0=0.1)' , 'zm') 
 
figure 
plot(t , I (:, 1),  'b' , 'LineWidth', 1) 
hold on 
hold on 
plot (t, Iz*ones(size(I (:, 1))) , '--r' , 'LineWidth', 2) 
title ("Change in irradiance over time") 
ylabel("Irradiance I(t) [W/m^2]") 
xlabel("Time [h]") 
grid on 
hold on 
legend ('I(B_0=0.1)' , 'I^*') 
 

 
 
 



%-------Monochromatic model with two phytoplankton population--------- 
%Used constants: 
I0 = 350;  %[W/m^2] 
Kw = 0.04; 
K1 = 0.014; 
K2 = 0.015; 
alfa1 = 0.21; 
alfa2 = 0.21; 
L1 = 10.1; 
L2 = 10.2; 
zm = 150; %mixed layer depth [m] 
dt = 0.1; 
T = 30; 
t =  (0 : dt : T)'; 
 
A1 = alfa1 * I0 / L1; 
A2 = alfa2 * I0 / L2; 
 
%Initial conditions: 
B1(1,1) = 0.5.*rand(1,1); 
B2(1,1) = B1(1,1); 
I (1,1) = I0 * exp(- (Kw + K1*B1(1,1) + Kw + K2*B2(1,1)  ) * zm ); 
S1 (1,1) =(1 / (Kw+K1*B1(1,1)+K2*B2(1,1)))*(lambertw(-A1 *exp(-A1))+A1); 
S2 (1,1) =(1 / (Kw +  K1*B1(1,1) + K2*B2(1,1)) )*( lambertw(-A2 *exp(-A2)) + A2); 
 
for  n = 1 : length(t) - 1 
K = Kw + K1*B1(n,1) + K2*B2(n,1); 
B1 (n+1,1)=B1(n,1)+B1(n,1)*(((alfa1* I0)/(K*zm))*(1 - exp (-K*zm))-L1) *dt; 
B2 (n+1,1)=B2(n,1)+B2(n,1)*(((alfa2* I0)/(K*zm))*(1 - exp (-K*zm))-L2) *dt; 
S1(n+1,1)=(1 / ( Kw + K1*B1(n+1,1)   + K2*B2(n+1,1) )) * ( lambertw(-A1*exp(-
A1)) + A1); 
S2 (n+1,1) = (1 / ( Kw + K1*B1(n+1,1)  + K2*B2(n+1,1) ) ) *( lambertw(-A2*exp(-
A2))+A2); 
I (n+1,1) = I0 * exp(- (Kw +    K1*B1(n+1,1)  + K2*B2(n+1,1) )   * zm ); 
end 
 
C1 = (1 / Kw) * ( lambertw(-A1*exp(-A1)) + A1 ); 
C2 = (1 / Kw) * ( lambertw(-A2*exp(-A2)) + A2 ); 
Bz1 = (Kw / K1) * (C1 / zm - 1); 
Bz2 = (Kw / K2) * (C2 / zm - 1); 



 
Iz1  = I0 * exp(- (Kw + K1*Bz1) * zm ); 
Iz2  = I0 * exp(- (Kw + K2*Bz2) * zm ); 
Iz =  I0 * exp(- (Kw + K1*Bz1 + K2*Bz2) * zm ); 
  
figure 
plot(t  , B1, 'g' , 'LineWidth' , 2) 
hold on 
plot(t  , B2, 'b' , 'LineWidth', 2) 
plot (t, Bz1*ones(size(B1)) , '--g' ,  'LineWidth', 2 ) 
plot (t, Bz2*ones(size(B2)) , '--b' , 'LineWidth', 2) 
title ("Changing of biomass over time") 
ylabel("Biomass [mmol m^{-3}]") 
xlabel("Time [h]") 
grid on 
legend('B_1(t)', 'B_2(t)', 'B^*_1' , 'B^*_2') 
  
figure 
plot (t, I , 'b', 'LineWidth', 1)  
hold on 
plot (t, Iz1*ones(size(I)) , 'g' , 'LineWidth', 2) 
plot (t, Iz2*ones(size(I)) , 'r', 'LineWidth',  2) 
title ("Change of iradiance I(t) over time") 
ylabel("Iradiance [W/m^2]") 
xlabel("Time [h]") 
grid on 
legend('I(t)' , 'I^*_1' , 'I^*_2') 
 
figure 
plot(t , S1, 'g' , 'LineWidth', 1) 
hold on 
plot(t , S2, 'b' , 'LineWidth', 1) 
plot (t, C1*ones(size(S1)) , 'g' , 'LineWidth', 1 ) 
plot (t, C2*ones(size(S2)) , 'b' , 'LineWidth', 1) 
plot (t, zm*ones(size(S2)) , 'r', 'LineWidth' , 2) 
title ("Change of S(t) over time (z_m = 150m)") 
ylabel("S(t)") 
xlabel("Time [h]") 
grid on 
legend('S_1(t)','S_2(t)', 'z_m = 150 m') 



%-----Monochromatic model with N phytoplankton population------- 
  
%Cleaning memory: 
clear; clc; clear vars;   
  
dt = 0.1;  %1h [s] 
T = 10; 
t =  (0 : dt : T)'; 
  
%Used constants: 
zm = 150; %mixed layer depth [m] 
I0 = 350;  %[W/m^2] 
Kw = 0.04; 
N = 10; %number of populations (species) 
  
%Matrix: 
B (length(t), N) = zeros; 
S (length(t), N) = zeros; 
I  (length(t), N) = zeros; 
K (length(t), 1) = zeros; 
A (1, N) = zeros; 
alfa (1, N) = zeros; 
L (1, N) = zeros; 
Kb (N, 1) = zeros; 
  
%Initial conditions: 
for i = 1:N      
    Kb  (1, i) = 0.014 + 0.001*(i-1);  
    alfa (1, i) = 0.2 + 0.01*(i-1); 
    L (1, i) =     10 + 0.1*(i-1); 
    B (1, i) = 0.5;  
end 
  
KB = 0; 
  
%Initial conditions: 
for i = 1: N     
    KB = KB + Kb(1, i)*B(1, i);  
end 
  



for i = 1: N     
    K (1, 1) = Kw + KB; 
    I  (1, i) = I0 * exp( - ( K(1, 1) ) * zm ); 
    A (1, i) = alfa (1,i) * I0 / L(1, i); 
    S (1, i) = (  1 / ( K(1, 1) )   ) * (  lambertw(-A(1,i) *exp(-A(1, i)))   + A(1, i));  
end 
  
 for  n = 1 : length(t) - 1 
        for i = 1: N 
                KB = 0; 
                for k = 1:N 
                            KB = KB + Kb(1, k)*B(n, k); 
                end         
                K (n, 1) = Kw + KB; 
B (n+1, i) = B(n, i) + B(n, i) *(( (alfa (1, i) * I0 ) / (K (n, 1) *zm))*(1 - exp(-K(n,1) 
*zm ) )  -  L(1, i) ) * dt  ; 
                 
  S (n+1, i) = (   1 / (  K(n, 1) )    ) * ( lambertw( -A (1, i) *exp(-A (1, i)) )   + A (1, i)); 
                I (n+1, i) =  I0 * exp(  - ( K(n, 1)  )* zm  ) ;        
        end   
end 
  
Iz (1,N)  = zeros; 
Bz (1,N) = zeros; 
C (1,N) = zeros; 
matrica (N, 3) = zeros; %(i,j) 
  
for i = 1: N     
    C  (1, i) = (1 / Kw) * ( lambertw( -A(1, i)*exp(-A(1, i))  )  + A(1, i) ); 
    Bz (1, i) = ( Kw / Kb(1, i) ) * ( (C (1,i) / zm) - 1); 
    Iz  (1, i)  = I0 * exp(- ( Kw + Kb(1, i)*Bz(1, i)  ) * zm );     
end 
  
for i = 1: N 
    for j = 1:3      
        matrica (i, 1) = C  (1, i); 
        matrica (i, 2) = Bz (1, i); 
        matrica (i, 3) = Iz (1, i);        
    end 
end 



figure 
for i =1:N  
    plot(t  , B (: ,i), 'LineWidth', 2) 
    hold on 
    %plot (t,  Bz (1, i)*ones(size(B (: ,i))) ,'LineWidth', 1 )    
     
end 
plot (t,  Bz (1, 10)*ones(size(B (: ,i))) ,'y','LineWidth', 2 )    
title ("Change biomass over time") 
    ylabel("Phytoplantkon biomass [mmol m^{-3}]") 
    xlabel("Time [h]") 
    grid on 
    
figure 
for i= 1:N   
    plot(t , I (:, i), 'LineWidth', 2) 
    hold on      
    plot (t,  Iz (1, i)*ones(size(I (: ,i))) ,'LineWidth', 1 ) 
end 
    title ("Change in irradiance over time") 
    ylabel("Irradiance [W/m^2]") 
    xlabel("Time [h]") 
    grid on 
    
figure 
for i = 1:N 
    plot(t , S (:, i), 'LineWidth', 1) 
    hold on 
    %plot (t,  C(1,i) ,'LineWidth', 2 )    
end 
plot (t,  zm*ones(size(S (: ,1)))  , 'r' , 'LineWidth',  2 ) 
title ("Change in S(t) over time") 
    ylabel("S(t)") 
    xlabel("Time [h]") 
    grid on 
 
 
 
 
 



%-----Spectral model with one phytoplankton population------- 
  
%Cleaning memory: 
clear; clc; clear vars;   
  
%Surface irradiance: 
%(I0 = 350) 
I01 = 200; 
I02 = 150; 
  
%Attenuation coefficients: 
%(Kw = 0.04) 
Kw1 = 0.041; 
Kw2 = 0.042; 
k1 = 0.014; 
k2 = 0.015; 
  
% fitoplanktonska stopa rasta [m^2 /sW] : 
%(alfa = 0.2) 
alfa1 = 0.21; 
alfa2 = 0.22; 
  
%mp - gubici: 
L = 10;  
  
zm = 150; %mixed layer depth [m] 
  
%Time: 
dt = 0.1;  %1h [s] 
T = 5; 
t =  (0 : dt : T)'; 
  
%Initial conditions: 
B(1,1) = (0.9).*rand(1,1); 
I (1,1) = I01 * exp(- (Kw1 + k1*B(1,1) ) * zm ); 
I (1,2) = I02 * exp(- (Kw2 + k2*B(1,1) ) * zm ); 
  
 
 
 



for  n = 1 : length(t) - 1 
       
      K1 =  Kw1 + k1*B(n,1); 
      K2 =  Kw2 + k2*B(n,1);  
      B (n+1,1) = B(n,1) +  ( ( alfa1*I01*B(n,1)*dt ) / ( K1 *zm ) ) * (1 - exp(-K1*zm))  
+  ( ( alfa2*I02*B(n,1)*dt ) / ( K2 *zm ) ) * (1 - exp(-K2*zm))    -   L*B(n,1)* dt; 
      I (n+1, 1) = I01 * exp(- (Kw1 + k1*B(n+1,1) ) * zm ); 
      I (n+1, 2) = I02 * exp(- (Kw2 + k2*B(n+1,1) ) * zm ); 
        
end 
  
figure 
plot(t , B (:, 1), 'r', 'LineWidth', 2) 
hold on 
title ("Change of biomass in time") 
ylabel("Biomass [mmol m^{-3}]") 
xlabel("Time [h]") 
grid on 
  
figure 
plot(t  , I(:, 1), 'r' , 'LineWidth', 2) 
hold on 
plot(t  , I(:, 2), 'b' , 'LineWidth', 2) 
title ("Change of irradiance over time") 
ylabel("I(t) [W/m^2]") 
xlabel("Time [h]") 
grid on 
legend ( 'I0 = 200 W/m^2' , 'I0 = 150 W/m^2') 
  
 
 
 
 
 
 
 
 
 
 
 



%-----Spectral model with two phytoplankton population------- 
  
%Cleaning memory: 
clear; clc; clear vars;   
  
%Surface irradiance: 
%I0 = 350;  %[W/m^2] 
I01 = 200; 
I02 = 150; 
  
%Attenuation coefficients: 
%Kw = 0.04; 
Kw1 = 0.04; 
Kw2 = 0.04; 
k11 = 0.05; 
k12 = 0.02; 
k21 = 0.02; 
k22 = 0.05; 
  
% fitoplanktonska stopa rasta [m^2 /sW]: 
%alfa = 0.2; 
alfa11 = 0.25;  %0.25 je granica 
alfa12 = 0.10;  %0.10 je granica 
alfa21 = 0.115;  %0.115 je granica 
alfa22 = 0.19;  %0.203 je granica 
  
 %mp - gubici: 
%L = 10; 
L1 = 10; 
L2 = 10; 
  
zm = 150; %mixed layer depth [m] 
  
%Time: 
dt = 0.1;  
T = 10; 
t =  (0 : dt : T)'; 
  
 
 



%Initial conditions: 
B(1,1) = 0.9.*rand(1,1); 
B(1,2) = B(1,1); 
I (1,1) = I01 * exp(- (Kw1 + k11*B(1,1) + k12*B(1,2) ) * zm ); 
I (1,2) = I02 * exp(- (Kw2 + k21*B(1,1) + k22*B(1,2) ) * zm ); 
K1 = Kw1 + k11*B(1,1) + k12*B(1,2);  
K2 = Kw2 + k21*B(1,1) + k22*B(1,2); 
dBdt (1,1) = ( (alfa11*I01*B(1,1) ) / (K1 *zm) ) * ( 1 - exp (-K1 *zm ) ) +   ( 
(alfa12*I02*B(1,1) ) / (K2 *zm) ) * ( 1 - exp (-K2 *zm ) )  -    L1*B(1,1); 
dBdt (1,2) = ( (alfa21*I01*B(1,2) ) / (K1 *zm) ) * ( 1 - exp (-K1 *zm ) ) +   ( 
(alfa22*I02*B(1,2) ) / (K2 *zm) ) * ( 1 - exp (-K2 *zm ) )  -    L2*B(1,2); 
  
 for  n = 1 : length(t) - 1 
     K1 = Kw1 + k11*B(n,1) + k12*B(n,2);  
     K2 = Kw2 + k21*B(n,1) + k22*B(n,2); 
     B (n+1,1) = B(n,1) + ( (alfa11*I01*B(n,1)*dt ) / (K1 *zm) ) * (1 - exp (-K1 *zm)) 
+   ( (alfa12*I02*B(n,1)*dt ) / (K2 *zm) ) * ( 1 - exp (-K2 *zm ) )  -    L1*B(n,1)*dt; 
     B (n+1,2) = B(n,2) + ( (alfa21*I01*B(n,2)*dt ) / (K1 *zm) ) * (1 - exp (-K1 *zm)) 
+   ( (alfa22*I02*B(n,2)*dt ) / (K2 *zm) ) * ( 1 - exp (-K2 *zm ) )  -    L2*B(n,2)*dt; 
     I (n+1,1) = I01 * exp(-  ( Kw1 + k11*B(n+1,1) + k12*B(n+1,2) )  * zm ); 
     I (n+1,2) = I02 * exp(-  ( Kw2 + k21*B(n+1,1) + k22*B(n+1,2) )  * zm ); 
     dBdt (n+1,1) =  ( (alfa11*I01*B(n,1) ) / (K1 *zm) ) * ( 1 - exp (-K1 *zm ) ) +       
((alfa12*I02*B(n,1) ) / (K2 *zm) ) * ( 1 - exp (-K2 *zm ) )  -    L1*B(n,1); 
     dBdt (n+1,2) =  ( (alfa21*I01*B(n,2) ) / (K1 *zm) ) * ( 1 - exp (-K1 *zm ) ) +        
((alfa22*I02*B(n,2) ) / (K2 *zm) ) * ( 1 - exp (-K2 *zm ) )  -    L2*B(n,2);        
 end 
  
figure 
plot(t  , B (:, 1), 'r' , 'LineWidth' , 2) 
hold on 
figure 
plot(t  , B (:, 2), 'b' , 'LineWidth', 2) 
title ("Change of biomass over time") 
ylabel("Biomass [mmol m^{-3}]") 
xlabel("Time [h]") 
grid on 
legend('B1' , 'B2') 
  
 
[X,Y] = meshgrid(0:0.1:1, 0:0.1:1); 



for i = 1:size(X,1) 
    for j = 1:size(Y,2) 
         
    K1 = Kw1 + k11*X(i,j) + k12*Y(i,j) ; 
    K2 = Kw2 + k21*X(i,j) + k22*Y(i,j); 
    U(i,j) = ( (alfa11*I01*X(i,j) ) / ( K1 *zm) ) * ( 1 - exp (- K1 *zm ) ) +   ( 
(alfa12*I02*X(i,j) ) / ( K2 *zm) ) * ( 1 - exp (- K2 *zm ) )  -    L1*X(i,j); 
    V(i,j) = ( (alfa21*I01*Y(i,j) ) / (K1 *zm) ) *  ( 1 - exp (-K1 *zm ) ) +    ( 
(alfa22*I02*Y(i,j) ) / (K2 *zm) ) *   ( 1 - exp (-K2 *zm ) )  -    L2*Y(i,j);     
    end 
end  
 
figure 
plot(B(:,1), B(:,2), 'LineWidth' , 2) 
 hold on 
h1 = quiver (X (1:st:end, 1:st:end) , Y (1:st:end, 1:st:end), U (1:st:end, 1:st:end) , 
V (1:st:end, 1:st:end), 'r'); 
quiver (X,Y, U, V) 
set(h1,'AutoScale','on', 'AutoScaleFactor', 10) 
axis equal square 
grid on 
title('Dependence of biomass B_1 on biomass B_2') 
xlabel("Biomass B1") 
ylabel("Biomass B2") 
  
quiver (B (:,1) , B (:,2)) 
quiver (B (:,1) , B (:,2), dBdt (:,1) , dBdt (:,2)) 
st = 10; 
quiver (X1 (1:st:end, 1:st:end) , Y1 (1:st:end, 1:st:end), X2 (1:st:end, 1:st:end) , 
Y2 (1:st:end, 1:st:end)) 
  
figure 
plot(t  , I (:, 1), 'r' , 'LineWidth' , 1) 
hold on 
plot(t  , I (:, 2), 'b' , 'LineWidth', 1) 
title ("Change of irradince over time") 
ylabel("Irradiance [W/m^2]") 
xlabel("Time [h]") 
grid on 
legend('I0 = 200 W/m^2' , 'I0 = 150 W/m^2') 



(*Competition model -  Mathematical Biology - An introduction - Murray 

2002 *) 

 

(*  First situation a) *) 

a12 = 0.8; 

a21 = 0.8; 

ro=10; 

ContourPlot [ { u1 *(1-u1-a12*u2) == 0 ,  ro*u2 *(1-u2-a21*u1) == 0 }, 

{u1,0,1.5}, {u2,0,1.5},   FrameLabel->{"u1","u2"}] 

 

(*  Second situation b) *) 

a12 = 1.8; 

a21 = 1.8; 

ContourPlot [ { u1 *(1-u1-a12*u2) == 0 ,  ro*u2 *(1-u2-a21*u1) == 0 }, 

{u1,0,1.5}, {u2,0,1.5}, FrameLabel->{"u1","u2"}] 

 

 

(*  Third situation c) *) 

a12 = 0.7; 

a21 = 1.5; 

ContourPlot [ { u1 *(1-u1-a12*u2) == 0 ,  ro*u2 *(1-u2-a21*u1) == 0 }, 

{u1,0,1.5}, {u2,0,1.5}, FrameLabel->{"u1","u2"}] 

 

 

(*  Fourth situation d) *) 

a12 = 1.5; 

a21 = 0.7; 

ContourPlot [ { u1 *(1-u1-a12*u2) == 0 ,  ro*u2 *(1-u2-a21*u1) == 0 }, 

{u1,0,1.5}, {u2,0,1.5}, FrameLabel->{"u1","u2"}] 

 
 
 
 

 



(* -------Competition model for phytoplankton ----------*) 
(* First case *) 

I01 = 150; 

I02 = 150; 

zm = 50; 

Kw1 = 0.04; 

Kw2 = 0.04; 

k11 = 0.01; 

k12 = 0.02; 

k21 = 0.02; 

k22 = 0.01; 

L1 = 10; 

L2 = 10; 

alfa11 = 0.15; 

alfa12 = 0.1; 

alfa21 = 0.1; 

alfa22 = 0.15; 

 

ContourPlot [ {( (alfa11*I01*B1)/( (Kw1 + k11*B1 + k12*B2)*zm) ) *(1-Exp [-(Kw1 + 

k11*B1 + k12*B2)*zm] ) +  

    ( (alfa12*I02*B1) / ((Kw2 + k21*B1 + k22*B2)*zm ) )*(1-Exp[-(Kw2 + k21*B1 + 

k22*B2)*zm] ) - L1*B1 ==0 , ( (alfa21*I01*B1)/( (Kw1 + k11*B1 + k12*B2)*zm) ) 

*(1-Exp [-(Kw1 + k11*B1 + k12*B2)*zm] ) +  

    ( (alfa22*I02*B1) / ((Kw2 + k21*B1 + k22*B2)*zm ) )*(1-Exp[-(Kw2 + k21*B1 + 

k22*B2)*zm] ) - L2*B1 ==0 }, {B1, 0,3} , {B2,0,3} ,   FrameLabel->{"B1(t)","B2(t)"}] 

 

(* Second case *) 

 

alfa11 = 0.1; 

alfa12 = 0.15; 

alfa21 = 0.15; 

alfa22 = 0.1; 

 

ContourPlot [ {( (alfa11*I01*B1)/( (Kw1 + k11*B1 + k12*B2)*zm) ) *(1-Exp [-(Kw1 + 

k11*B1 + k12*B2)*zm] ) +  

    ( (alfa12*I02*B1) / ((Kw2 + k21*B1 + k22*B2)*zm ) )*(1-Exp[-(Kw2 + k21*B1 + 

k22*B2)*zm] ) - L1*B1 ==0 , ( (alfa21*I01*B1)/( (Kw1 + k11*B1 + k12*B2)*zm) ) 

*(1-Exp [-(Kw1 + k11*B1 + k12*B2)*zm] ) +  

    ( (alfa22*I02*B1) / ((Kw2 + k21*B1 + k22*B2)*zm ) )*(1-Exp[-(Kw2 + k21*B1 + 

k22*B2)*zm] ) - L2*B1 ==0 }, {B1, 0,3} , {B2,0,3} ,  FrameLabel->{"B1(t)","B2(t)"}] 



(*Third case*) 

alfa11 = 0.15; 

alfa12 = 0.15; 

alfa21 = 0.15; 

alfa22 = 0.1; 

 

ContourPlot [ {( (alfa11*I01*B1)/( (Kw1 + k11*B1 + k12*B2)*zm) ) *(1-Exp [-(Kw1 + 

k11*B1 + k12*B2)*zm] ) +  

    ( (alfa12*I02*B1) / ((Kw2 + k21*B1 + k22*B2)*zm ) )*(1-Exp[-(Kw2 + k21*B1 + 

k22*B2)*zm] ) - L1*B1 ==0 , ( (alfa21*I01*B1)/( (Kw1 + k11*B1 + k12*B2)*zm) ) 

*(1-Exp [-(Kw1 + k11*B1 + k12*B2)*zm] ) +  

    ( (alfa22*I02*B1) / ((Kw2 + k21*B1 + k22*B2)*zm ) )*(1-Exp[-(Kw2 + k21*B1 + 

k22*B2)*zm] ) - L2*B1 ==0 }, {B1, 0,4} , {B2,0,4} ,  FrameLabel->{"B1(t)","B2(t)"}] 

 

(*Fourth case*) 

alfa11 = 0.1; 

alfa12 = 0.15; 

alfa21 = 0.15; 

alfa22 = 0.15; 

 

ContourPlot [ {( (alfa11*I01*B1)/( (Kw1 + k11*B1 + k12*B2)*zm) ) *(1-Exp [-(Kw1 + 

k11*B1 + k12*B2)*zm] ) +  

    ( (alfa12*I02*B1) / ((Kw2 + k21*B1 + k22*B2)*zm ) )*(1-Exp[-(Kw2 + k21*B1 + 

k22*B2)*zm] ) - L1*B1 ==0 , ( (alfa21*I01*B1)/( (Kw1 + k11*B1 + k12*B2)*zm) ) 

*(1-Exp [-(Kw1 + k11*B1 + k12*B2)*zm] ) +  

    ( (alfa22*I02*B1) / ((Kw2 + k21*B1 + k22*B2)*zm ) )*(1-Exp[-(Kw2 + k21*B1 + 

k22*B2)*zm] ) - L2*B1 ==0 }, {B1, 0,4} , {B2,0,4} ,  FrameLabel->{"B1(t)","B2(t)"}] 

 


