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su proučene korištenjem kvantnih Monte Carlo metoda, za koje je u radu razvijen računalni kod, s
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Ocjenjivači: prof. dr. sc. Leandra Vranješ Markić,
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Gloria Odak: QMC study of 1D Bose-Fermi mixtures

1 Introduction

One-dimensional (1D) systems had long been used as theoretical toy models. Indeed, they are
much easier to solve than their three-dimensional counterparts. Ever since Bethe solved the
Heisenberg model of ferromagnetism [1], his method, now called the Bethe ansatz (BA), has
been used in various many-body models. Even when BA fails1, incredibly efficient numerical
methods exist that allow us to access the system’s both ground and excited state properties [2].

Due to their topology, 1D systems show very peculiar properties as there is an interplay be-
tween quantum statistics and reduced geometry since strongly repulsive contact interaction can
replicate Pauli’s exclusion principle. The wavefuction exchange symmetry between identical
particles is governed by the spin of the particles, fermions having an antisymmetric wavefunc-
tion and bosons a symmetric one. In 1D, all particles are aligned in one line and their exchange
is therefore very limited - the only way for two particles to change places is by going through
each other. This leads to an enhanced correlation between distinguishable particles and conse-
quentially a failure of many models that are successful in higher dimensions [3, 4].

There is a deep dichotomy between theory and experiment, as far as dimension is concerned.
Experimentally, 1D quantum systems are far from simple. They can be realized as condensed
matter setups as well as ultracold atomic gases trapped in an external potential limiting the
movement of particles to one dimension only. Ultracold atoms are largely tunable which enables
experimentalists to search for interaction regimes that are sometimes hard to reach in condensed
matter systems [5, 6, 7, 8]. Typically these systems require temperatures as low as a few µK,
so in order to achieve effectively 1D regime, very advanced experimental techniques need to be
used [9].

In this thesis I will explore the relationship between interaction and statistics in various Fermi
and Bose-Fermi mixtures using quantum Monte Carlo methods. The thesis is structured as
follows. Chapter 2 is a general introduction into the physics of one-dimensional systems. This
includes both very simple models of one and two particles, and some more elaborate models of
many-body Bose and Fermi systems. Also, I will give definitions of some relevant quantities
and functions. Chapter 3 reviews the quantum Monte Carlo methods that will be used. It
contains descriptions of variational and diffusion Monte Carlo algorithms. The details of the
implementation are given in Appendix A. The results will be discussed in chapters 4 and 5.
Chapter 4 presents a study of ground state properties of various Fermi mixtures and comparison
of those results with some published data. Some new results on Bose-Fermi mixtures are given
in Chapter 5.

1The Bethe ansatz is widely used for many-body quantum systems but it cannot describe the situation we most
often encounter experimentally, a system of particles confined in a limited area in space, the so-called trapped
systems. All systems I am going to deal with in this thesis will be trapped by an external harmonic potential.
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2 Physics in one dimension

Even though we perceive our world as three dimensional and think of lower dimensions as
overly simplified models, 1D systems are more than a mere theoretical construct. Recent devel-
opments in experiments involving ultracold gases have enabled physicists to explore real-world
quantum 1D problems. These effectively 1D systems can be realized by confining atoms in
very elongated tight magnetic traps. Their interactions can then be fine-tuned by exploiting
Feshbach resonances, creating an opportunity for exploration of fundamental many-body quan-
tum physics [5, 6, 7, 8]. Furthermore, it is possible to mix different kinds of particles of
different mass or even particles of the same species tuned to different hyperfine states [10, 11].
Interestingly, the old toy models sometimes capture the properties of the real systems fairly
well [12, 13, 14]. However, as it often is in physics, the development of new technology and
experimental advancement has caused an outburst of theoretical work in the field [15, 16].

This chapter is organized as follows: first I will give solutions to very simple 1D quantum
mechanical problems - two-body scattering and one particle in a harmonic trap. Second, I
introduce the concept of correlation functions as useful tools in many-body physics, followed
by the definition of Tan’s contact as an appropriate tool to characterize 1D systems. And finally,
I will very briefly discuss some exactly solvable models of interacting particles, both bosons,
and fermions.

2.1 Two body scattering

Let us consider a general two-particle Hamiltonian

Ĥ (x1, x2) = − ~2

2m1

∂2

∂x21
− ~2

2m2

∂2

∂x22
+ V̂ (|x1 − x2|)

The corresponding Schrödinger equation Ĥψ = Eψ is easily solved by separating the particles’
relative movement of that of the center of mass. The wavefunction of the center of mass is
simple - it behaves as a free particle of mass M = m1 + m2. The Hamiltonian of relative
motion now takes the form

Ĥ (x) = − ~2

2µ

∂2

∂x2
+ V̂ (x)

where x = |x1 − x2| is the relative position of particles 1 and 2 and µ = m1m2

m1+m2
is their

reduced mass. In this way we have reduced the two-body problem to an effective one-body
problem. Since we are going to observe systems with repulsive interactions only, we are here
going to consider scattering with positive energy. Now the scattering energy can be written as

2
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E = ~2k2/ (2µ), k ∈ R. The Schrödinger equation is

d2

dx2
ψ (x) +

(
k2 − 2µV̂ (x)

~2

)
ψ (x) = 0

and its solution far away from the range of the potential is

ψ (x) = sin (kx+ ϕ (k)) . (2.1)

In other words, the interaction only adds a momentum-dependent phase shift to the wavefunc-
tion. In the limit of low scattering energy, the details of the potential are no longer relevant and
the phase shift depends only on one parameter called the scattering length

as := − lim
k→0

ϕ (k)

k
. (2.2)

The scattering length as represents a radius of a hard spherical potential which would reproduce
the same phase shift. Namely, this means that for the sake of our calculations, if the incoming
particle’s momentum is low enough, we can replace whatever the potential really is with another
function of the same scattering length. In this thesis I will exploit this fact and use very simple
zero range contact pseudo-potential, obtaining the Hamiltonian

Ĥ (x) = − ~2

2µ

∂2

∂x2
+ gδ (x) , (2.3)

where δ is the Dirac delta function. Now, demanding that (2.1) is an eigenfunction of the
Hamiltonian (2.3) we get

ϕ (k) = arctan
~k
µg

and, from the definition (2.2) we get the connection between interaction strength g and the
scattering length

as = − ~2

µg
(2.4)

A more detailed discussion can be found in any quantum mechanics textbook such as [17].

2.2 One particle in a harmonic potential

One dimensional harmonic oscillator is among the first quantum mechanical problems a student
encounters in an introductory quantum mechanics course. Here it is covered in order to justify
the choice of units for the remainder of the thesis. A more detailed discussion can be found in
[17].
Schrödinger equation describing one particle of mass m confined in a one-dimensional har-

3
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monic potential of frequency ω is

(
− ~2

2m

d2

dx2
+

1

2
mω2x2

)
ψ (x) = Eψ (x)

and, with a proper choice of units, can be reduced to

d2ψ (x)

dx2
+

(
2mE

~2
− x2

a4osc

)
ψ (x) = 0,

where

aosc =

√
~
mω

(2.5)

is called the oscillator length and will be used as a length unit. We can set aosc = 1 and omit it
from further expressions.
This equation can be solved either analytically or algebraically in a fairly simple way. Here I
will only state the solutions. The wavefunction is given as

ψn (x) =
(
2nn!
√
π
)− 1

2 e−
x2

2 Hn (x) n ∈ Z+, (2.6)

where Hn (x) are Hermite polynomials

Hn (x) = (−1)n ex
2 dn

dxn
e−x

2

.

The corresponding energies are

En = ~ω
(
n+

1

2

)

which further simplifies with a choice of energy units ~ω = 1,

En = n+
1

2

These units will be used in most of the thesis since our systems are going to be confined in a
trapping potential just like this one.

2.3 Correlation functions

By adding more elements to the system, the particles lose their individuality and become corre-
lated. Correlation functions enable us to explore the properties of the system as a whole, seen
as composite of smaller subsystems. Here we define those that will be used later.

4
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Following the pedagogical approach of [18], we start with a general Hamiltonian consisting
of one- and two-particle operators.

Ĥ = F̂ (1) + F̂ (2)

The one-particle operator can be expressed as a sum of operators ˆf (1) acting on one particle

F̂ (1) =
∑

i

f̂ (1) (xi) (2.7)

and similarly,
F̂ (2) =

∑

i<j

f̂ (2) (xi, xj)

An example of the one-body operator is an external harmonic potential Vext =
∑

i
1
2
miω

2x2i ,
and that of a two-body operator is an internal potential describing the interaction between two
particles Vint (xi, xj). We want to find averages of these operators in order to define density
correlation functions. The expected value of (2.7) for an N -particle system is

〈F̂ (1)〉 =

∫
ψ∗ (x1, . . . , xN) F̂ (1) (x1, . . . , xN)ψ (x1, . . . , xN) dx1 · · · dxN∫

|ψ (x1, . . . , xN)|2 dx1 · · · dxN

=

∑N
i=1

∫
ψ∗ (x1, . . . , xN) f̂ (1) (xi)ψ (x1, . . . , xN) dx1 · · · dxN∫

|ψ (x1, . . . , xN)|2 dx1 · · · dxN

=
N
∫
f (1) (x1, x

′
1)ψ

∗ (x1, . . . , xN)ψ (x′1, . . . , xN) dx1 · · · dxN∫
|ψ (x1, . . . , xN)|2 dx1 · · · dxN

=

∫∫
f (1) (x, x′)G1 (x, x′) dxdx′,

where G1 is the one-body density matrix (OBDM)

G1 (x, x′) =
N
∫
ψ (x, . . . , xN)ψ∗ (x′, . . . , xN) dx2 · · · dxN∫

ψ (x1, . . . , xN)ψ∗ (x1, . . . , xN) dx1 · · · dxN
. (2.8)

Here we assumed that the one-particle operator can be both local, like in the case of trapping
potential, and non-local, like in the case of kinetic energy, which is why is has two arguments.
As for the two-body operator, we take the assumption of locality by default, like in the case of
internal potential, so it only has two arguments and not four.
The expression for the two-body density matrix, or the pair correlation function (PCF), is ob-
tained analogously from the average of the two-body operator [18]

G2 (x′, x′′) =
N (N − 1)

∫
|ψ (x′, x′′, x3, . . . , xN)|2 dx3 · · · dxN∫
|ψ (x1, . . . , xN)|2 dx1 · · · dxN

. (2.9)

5
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It is often convenient to use dimensionless versions of functions (2.8) and (2.9).

g1 (x, x′) =
G1 (x, x′)√

G1 (x, x)
√
G1 (x′, x′)

g2 (x, x′) =
G2 (x, x′)

G1 (x, x)G1 (x′, x′)

By taking Fourier transforms of OBDM and PCF one obtains the momentum distribution [18]:

n(k) =
1

2π

∫∫
eiksG1

(
x+

s

2
, x− s

2

)
dxds

and static structure factor:

S (k) = 1 +
1

N

∫∫
eik(x2−x1) (G2 (x1, x2)− n (x1)n (x2)) dx1dx2,

respectively.

2.4 Tan’s contact

Let us consider a system with contact interactions. Due to the behavior of the many-body
wavefunction at short distances which is fixed by the interaction, the momentum distribution in
the limit of high momenta displays a universal behavior [19, 20]

n (k) ∼ 1

k4
.

It was shown by Tan in 2008 [21, 22, 23] that the weight of the momentum distribution tails C,
know as the Tan’s contact, is related to the equation of state as

C =
dE0

das
, (2.10)

where E0 is the system’s ground state energy and as the s-scattering length. Tan’s adiabatic the-
orem, and its 1D version [24], also connect the interaction energy, Eint = 〈g∑i<j δ (xi − xj)〉
with the contact using Hellman-Feynman theorem as Eint = −asdE0/das, which using (2.10)
leads to

Eint = −asC. (2.11)

Other than this, Tan’s contact provides a number of universal relations connecting short-range
correlations with the thermodynamics of the entire system. It has recently been a topic of inter-
est in the field of ultracold gases since the high-momentum region of the momentum distribution
can be experimentally accessed [25, 26].

6
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2.5 Models of interacting bosons

A general Hamiltonian describing N bosons of mass m interacting via potential Vint in an
external potential Vext is given with

Ĥ =
N∑

i=1

[−~2
2m

∂2

∂x2i
+ Vext (xi)

]
+

N∑

i<j=1

Vint (|xi − xj|) . (2.12)

Expression (2.12) takes the simplest form if we set Vext = 0 and Vint (x) = gδ (x) resulting
with the following Hamiltonian

Ĥ =
N∑

i=1

−~2
2m

∂2

∂x2i
+

N∑

i<j=1

gδ (|xi − xj|) . (2.13)

This model was first introduced by Lieb and Liniger in 1963 [27, 28]. They descirbed the
interaction via a new parameter γ := mg/~2. In the limit γ = 0 this corresponds to a system of
non-interacting bosons. In the so called Tonks-Girardeau (TG) limit (γ →∞) it is a system of
impenetrable bosons which can be solved by mapping onto a system of free fermions [29]. Lieb
and Liniger showed that the eigenproblem of (2.13) can be solved exactly for every γ using the
Bethe ansatz. There is also a generalization of Lieb-Liniger (LL) model with Feshbach-resonant
interactions whose approximate solution was also obtained with Bethe ansatz [30].

Lieb-Liniger model is not the only integrable model of 1D bosons. By setting

Vint (x) =
g

x2

either without the external potential Vext = 0 or with a harmonic trap Vext (x) = 1
2
mω2x2, one

obtains another integrable model first introduced by Calogero [31] in 1969. It is characterized
by a parameter λ defined with a quadratic equation λ (λ− 1) = 2mg/~2, the limit λ = 0, 1

corresponding to TG limit.

Other experimentally relevant types of interaction that are not exactly solvable include

Vint (x) ∼ 1

|x|3

which is used to describe dipoles in one dimension. There is also the unscreened Coulomb
potential

Vint (x) ∼ 1

x2

relevant for charged particles. Some models include external potentials, mostly periodic, trap-
ping or disorder models. Solving a system in a periodic external potential often requires the
use of various lattice models. Disorder naturally occurs in condensed matter systems and can

7
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be artificially added to cold atom systems. In one dimensional bosons it sometimes results in a
glassy phase of matter. Since ultracold gases need to be contained, trapping potentials are often
very important. Experimentally they are realized as magnetic fields or laser lights and are often
modeled by a harmonic potential

Vext (x) =
mω2x2

2

which is what I am going to use throughout this thesis.

We are now going to briefly consider the solutions of the above-mentioned integrable models.
For a more detailed discussion the reader is referred to [3] and references therein.

2.5.1 The Tonks-Girardeau model

As was already mentioned, the TG model is a limit of LL model described with Hamiltonian
(2.13) in the limit of infinite repulsion. This type of interaction between particles imposes a
constraint that the many-body wavefunction ψTG must vanish whenever two particles touch.
This is also the case for indistinguishable non-interacting spinless fermions. Since they obey
Fermi-Dirac statistics, their wavefunction ψFF is antisymmetric and therefore equal to zero
when any two particles meet. Girardeau [29] implemented this constraint in the wavefunction
as follows:

ψTG (x1, . . . , xn) = S (x1, . . . xn)ψFF (x1, . . . xn) , (2.14)

where

S (x1, . . . , xn) =
n∏

i>j=1

sgn (xi − xj) ∈ {−1, 1} ∀ (x1, . . . , xn)

is a function that compensates for the sign change of ψFF , ensuring proper exchange symmetry
of ψTG. Eigenstates must satisfy the free Schrödinger equation when all n coordinates are
different, so on a ring of circumference L with periodic boundary conditions, the ground state
wavefunction has the form

ψTG (x1, . . . , xn) =

√
2n(n−1)

n!Ln

n∏

i>j=1

∣∣∣sin
[π
L

(xi − xj)
]∣∣∣ (2.15)

This wavefunction is actually generic of many 1D models in the limit of infinite repulsion,
including both the Lieb-Liniger and the Calogero model [3]. The ground state energy in the
thermodynamic limit is given with [3]

ETG =
~2πn2

6mL2

The Bose-Fermi mapping (2.14) is also valid in the presence of an external trapping potential
Vext. The eigenstates are then constructed as Slater determinants of the non-interacting trapped

8
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Hamiltonian. In the case of harmonic confining potential, the eigenfunctions are given with
(2.6) which yields the many-particle wavefunction [32]

ψTG (x1, . . . , xn) =
√
Cn

n∏

k=1

e
−x2k
2

n∏

i<j=1

|xi − xj| ,

where Cn = n!
∏n−1

m=0 2−m
√
πm!. It was shown in [32] that density profile for TG gas is the

same as in the case of free spinless fermions, but the off-diagonal correlations as well as the
momentum distributions differ in both homogeneous and trapped case.

2.5.2 The Lieb-Liniger model

The more general LL model 2.13 is integrable [28, 27] with the ansatz

ψLL =
∑

σ∈Sn
A (σ) ei

∑
m kσ(m)xm , (2.16)

where ki is the pseudo-momentum2 of the ith boson, and A is a function that takes interaction
into account and depends on the ordering of the particles, we take x1 < x2 < · · · < xn and
Sn is the symmetric group of permutations of the set {1, 2, · · · , n}. The value of (2.16) when
the ordering x1 < x2 < · · · < xn is not satisfied follows from the exchange symmetry of the
wavefunction.
Now, when all particles’ coordinates are different, there is no interaction and the Hamiltonian
(2.13) reduces to the Hamiltonian of n free particles whose eigenfunctions are linear combina-
tions of plane waves. If a collision occurs, since we are in 1D regime and we must obey the
conservation laws, there are only two possibilities for the colliding particles - each can either
emerge from the collision with the same momentum it had before, or the two can exchange
momenta. This justifies the use of permutations in the ansatz (2.16) which can be seen as a
generalization of the TG wavefunction (2.15), where the nodes of ψTG are replaced by a more
complicated boundary conditions on ψLL.
A detailed justification and a rigorous proof of the use of the Bethe ansatz can be found in [33]
and a comprehensive derivation of the LL wave function is given in chapter 3 of [34].
Here I will only state their results. In the units where ~2/ (2m) = 1 the wavefunction for a finite
number of bosons is given with

ψLL (x1, . . . , xn) =

∏n
j>i=1 (kj − ki)√

n!
∏n

j>i=1

[
(kj − ki)2 + g2

]
∑

σ∈Sn

n∏

j>i=1

[
1− igsgn (xj − xi)

kσ(j) − kσ(i)

] n∏

j=1

eikjxj

2The prefix pseudo comes from the fact that the ks are not observable and should not be confused with physical
momenta.
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and the corresponding ground state energy is

E0 =
n∑

i=1

k2i .

In the thermodynamic limit, letting the number of particles and the size of the system grow
N,L → ∞ while keeping the density n = N/L finite, the system of infinitely many Bethe
ansatz equations boils down to a set of three integral equations yielding the expression for the
ground state energy

E0(γ)

N
=

~2

2m
n2e(γ) (2.17)

where e (γ) is a dimensionless function of the strength of the interaction γ = mg/ (~2n).3 The
function e and the energy (2.17) are obtained by solving the system of equations

gλ(x) =
1

2π
+

1

π

∫ 1

−1
gλ(y)

λ

λ2 + (x− y)2
dy

γ = λ

(∫ 1

−1
gλ(x)dx

)−1

e(γ) =
γ3

λ3

∫ 1

−1
gλ(x)x2dx

which is not integrable but can be solved numerically.

2.6 Models of interacting fermions

After the development of the LL model, a lot of effort was put into solving the same Hamiltonian
but for a system of identical spin-1

2
fermions.

Ĥ =
∑

s=↑↓

N∑

i=1

−~2
2m

∂2

∂xs2i
+

N∑

i,j=1

gδ
(∣∣∣x↑i − x↓j

∣∣∣
)
. (2.18)

Here we omit the interaction terms between the same spin particles since exchange symmetry
of the wavefunction ensures the particles are never in the same place. The Hamiltonian (2.18)
was solved by Yang and Gaudin using the Bethe ansatz [35, 36]. Even though the Yang-Gaudin
(YG) model is most often mentioned with spin-1

2
fermions in mind, [35] gives a solution for

contact interaction Hamiltonian (2.13) in any irreducible representation of the group SN of
permutation of the coordinates and is therefore valid for both bosons and fermions of any spin.

3Notice that the linear density n appears in the denominator of the interaction strength γ. This is very counter-
intuitive, it means that by diluting the system, the interaction strength increases. This means that the TG regime
γ →∞ actually corresponds to very dilute gases, n→ 0.
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The ansatz is given with
ψ =

∑

σ,τ∈SN
A (σ, τ) ei

∑N
j=1 kσ(j)xτ(j)

where both σ and τ are permutations of the coordinates and the sum goes over N !×N ! terms.
Here I will list the integral Bethe ansatz equations for the case of repulsive interactions g > 0

in the thermodynamic limit. For the derivation and a more detailed discussion see [4].

p1 =
1

2π
+

∫ A2

−A2

K1 (k − k′) p2 (k′) dk′

p2 =

∫ A1

−A1

K1 (k − k′) p1 (k′) dk′ −
∫ A2

−A2

K2 (k − k′) p2 (k′) dk′

Kl(x) =
1

2π

lc

(lc/2)2 + x2

where the integration boundaries are determined from the conditions

N

L
=

∫ A1

−A1

p1(k)dk

N↓
L

=

∫ A2

−A2

p2(k)dk

E

L
=

∫ A1

−A1

k2p1(k)dk.
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3 Quantum Monte Carlo

Monte Carlo methods encompass a broad class of algorithms whose common characteristic is
the use of random numbers for solving problems that might be deterministic in principle. They
are widely used for finding solutions of non-integrable or otherwise difficult problems.

Quantum Monte Carlo (QMC) methods are powerful tools which allow treatment and de-
scription of the many-body effects encoded in the wavefunction. In this thesis I am going to use
two flavors of QMC. The core method is the Diffusion Monte Carlo (DMC), which is exact for
calculations of the ground state of a Bose system. Its modification for fermions, the Fixed-Node
Diffusion Monte Carlo (FN-DMC) gives an upper bound of the ground state energy but with
a good choice of the trial wavefuncton can be a very accurate approximation. The Variational
Monte Carlo (VMC) is based on the variational principle of quantum mechanics and is used for
optimization of the wavefunction before doing DMC and FN-DMC.

Mathematically, the core of every Monte Carlo method is the theory of Markov processes,
which is why I start this chapter with the definition of a Markov chain. Secondly, I introduce the
techniques of importance sampling, first generally and then by giving a specific example used
in QMC methods here - the Metropolis algorithm. After that I am going to discuss variational
principle and its implementation through VMC. Finally, I will describe the theory behind DMC
for bosons and FN-DMC for fermions.

This chapter will contain the theoretical overview of these methods. For the most part I will
follow the approach of Thijssen’s chapters 10 and 12 [2]. The pseudocode and examples of the
source code will be omitted here and instead be given in larger detail in Appendix A.

3.1 Markov chains

A Markov chain is a series of stochastic events in which the probability of each events de-
pends only on the previous state and not the entire chain. This property is sometimes calles
memorylessness, for obvious reasons. To better understand Markov chains, we first consider an
uncorrelated chain. The probability of occurence of a series of events {x1, . . . , xN} is statisti-
cally uncorrelated if

PN (x1, . . . , xN) = P (x1) · · ·P (xN) ,

where P (x) is the probability of occurrence of the event x and is assumed to be equal for each
step. From the definition of a Markov chain, we see that the probability PN (x1, . . . , xN) will
have to contain transition probabilities T (xi → xj) for event xj happening right after event xi.

12



Gloria Odak: QMC study of 1D Bose-Fermi mixtures

The probability for having a sequence (x1, . . . , xN)4 then becomes

PN (x1, . . . , xN) = P (x1)T (x1 → x2) · · ·T (xN−1 → xN)

A Markov chain is ergodic if it satisfies the following two properties [2]:

• the chain is connected - any configuration is accessible from any other configuration in a
finite number of steps
• the chain is not periodic - a realized configuration must not be realized again after a fixed

number of steps

These conditions ensure that after sufficiently long time, the entire phase space will be covered.
Let p be a probability distribution function such that p(X, t) is a probability of configuration X
occurring in a Markov step t. From step to step, the change in p is governed by two processes
described by the master equation [2]:

p(X, t+ 1)− p(X, t) = −
∑

X′

T (X → X ′) p(X, t) +
∑

X′

T (X ′ → X) p (X ′, t) (3.1)

which describes the transition from X to any new configuration and the transition to X from
any old configuration. We are interested in finding a stationary distribution so that (3.1) equals
zero, i.e. p(X, t+ 1) = p(X, t). Even though finding a general solution for

∑

X′

T (X → X ′) p(X, t) =
∑

X′

T (X ′ → X) p (X ′, t)

is not simple, a sufficient condition for a Markov process to be stationary is obvious

T (X → X ′) p(X, t) = T (X ′ → X) p (X ′, t) , ∀X,X ′. (3.2)

This defines the detailed balance condition.

3.2 Importance sampling

A simple application of Monte Carlo is the evaluation of a definite integral

F =

∫ b

a

f (x) dx. (3.3)

4Here I use different parentheses on purpose, to emphasize the fact that events in a Markov chain are ordered,
contrary to those in an uncorrelated chain.
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Using the mean value theorem,

F = (b− a) lim
n→∞

1

n

n∑

i=1

f (xi) ,

where xi = a+ i(b−a)/n for a given n. Of course, to evaluate this numerically, a cut-off needs
to be made for a finite n.

Fn = (b− a)
1

n

n∑

i=1

f (xi) , (3.4)

We can further expand this as

Fn = (b− a)

∑n
i=1 ωif (xi)∑n

i=1 ωi
, (3.5)

where coefficients ωi are introduced into the sum as weights. This is the starting point for con-
ventional methods of numerical integration which use equidistant (3.4) or otherwise predeter-
mined points (3.5) to sample the function. These algorithms are effective for low-dimensional
integrals, but the computational cost of d-dimensional integral evaluation increases as nd. Since
multi-dimensional integration is often unavoidable, more effective methods are needed.
If the points xi ∈ [a, b] are chosen at random, by the central limit theorem, the set of all possible
sums over different {xi}ni=1 will have a normal distribution and the measure of the uncertainty
in the integral’s value is the standard deviation

σn =

√
b−a
n

∑n
i=1 f

2 (xi)− F 2
n

n− 1

which decays as n−
1
2 independent of the dimension of the integral, making Monte Carlo inte-

gration very appropriate for calculations in statistical physics and quantum mechanics.

Obviously, the choice of the probability distribution from which to sample the configuration
can have a strong impact on the efficiency of the calculation. The simplest approach would be
to use the uniform distribution. However, it is often ineffective since not all states contribute
to the integral equally, while many functions have significant weight in only a few regions. In
order to overcome this problem and increase the overall efficiency, techniques of importance
sampling are introduced. These methods consist of sampling from a non-uniform distribution ω
chosen carefully to approximate f on the interval [a, b]. Now the integral (3.3) can be evaluated
by selecting points from the probability distribution p given with

p (x) =
ω (x)∫ b

a
ω (x) dx

,
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leading to

F =

∫ b

a

f (x) dx =

∫ b

a

[
f (x)

p (x)

]
p (x) dx,

where the set {xi} is sampled according to p, and Fn becomes

Fn =
1

n

n∑

i=1

f (xi)

p (xi)

3.3 Metropolis algorithm

In 1953, Metropolis et al. published a paper [37] that is considered by many the beginning of
modern Monte Carlo methods. They described sampling of the given function as a random walk

of a mathematical object called a walker. The movement of the walker through the state space
completely determines the properties of the system. The collection of the walker’s movements
is called a chain. Mathematically this is a Markov chain and the goal is to sample its stationary
distribution. In order to construct the algorithm, the transition probability T (X → X ′) can be
decomposed as

T (X → X ′) = ω (X,X ′)A (X,X ′) ,

where ω is the trial step probability and A is the acceptance probability. In principle, ω is
arbitrary and A is chosen so that it satisfies the detailed balance condition (3.2)

A (X,X ′) = min

(
1,
p (X ′)ω (X ′, X)

p (X)ω (X,X ′)

)
, (3.6)

where all the functions are evaluated in the same Markov step so I use p (X, t) =: p (X). This
choice of the acceptance probability ensures sampling according to the targeted distribution p
for any choice of ω. To further simplify (3.6), let ω be the Gaussian distribution. Since it is
symmetric, ω (X,X ′) = ω (X ′, X), and

A (X,X ′) = min

(
1,
p (X ′)

p (X)

)
,

Because of its probabilistic interpretation, for all QMC applications of the Metropolis algorithm,
the probability distribution p is the square of the system’s wavefunction |ψ|2.

The variance will not affect the equilibrium distribution but it does affect the efficiency of
the sampling. A large variance will explore more configurations but that will result in longer
simulations since many moves will be rejected. A small variance, on the other hand, means high
acceptance rate but the state space is explored very slowly. For an efficient simulation variance
will need to be adjusted in order to keep the acceptance rate around 50%. The pseudocode for
Metropolis acceptance is given in Appendix A.3.1, algorithm 1, and the scheme for acceptance
adjusting is given in listing 4.
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3.4 Variational Monte Carlo

The key idea behind the VMC is to use a trial wavefunction ψT (α), with free parameters α, and
the variational principle of quantum mechanics according to which ψT gives an upper bound on
the ground state energy

ET =
〈ψT |Ĥ|ψT 〉
〈ψT |ψT 〉

≥ E0. (3.7)

By minimizing the variational energy with respect to the variational parameters α, the trial
wavefunction approaches the real ground state function. From now on I will assume that the
trial wavefunction is normalised, i.e. 〈ψT |ψT 〉 = 1, so the expression (3.7) can be expanded in
the coordinate representation as

ET =

∫
ψT ∗ (X) ĤψT (X)

ψT (X)

ψT (X)
dX

=

∫
ψT ∗ (X)ψT (X)

ĤψT (X)

ψT (X)
dX

=

∫
ψT ∗ (X)ψT (X)EL (X) dX, (3.8)

where EL (X) := Ĥψ(X)
ψ(X)

is the local energy of the configuration X = (x1, . . . , xN). The
integral (3.8) is suitable for Metropolis integration, therefore the energy ET is calculated as an
average local energy EL sampled according to |ψT |2.
The details of the implementation are given in Appendix A.3.1.

3.5 Diffusion Monte Carlo

The DMC method is a Green’s function based method for solving the ground state of the
Schrödinger’s equation. It provides an exact (in statistical sense) solution for the ground state
energy. A general N -body system’s time evolution is described with the following Hamiltonian

Ĥ = −
N∑

i=1

~2

2m

∂2

∂x2i
+

N∑

i<j=1

Vint (xij) +
N∑

i=1

Vext (xi) ,

where xij = |xi − xj| is the distance of particles i and j, Vint describes the interactions between
particles and Vext is the external potential. An arbitrary state of the system |ψ〉 can be expanded
in the basis of the eigenstates of the Hamiltonian {φn} as

|ψ (X, t)〉 =
∑

n

cn |φn (X, t)〉 , (3.9)

where X = (x1, . . . , xN). Instead of considering time-evolution, the ground state properties
can be investigated by performing a Wick’s rotation of the Schrödinger’s equation, it/~ → τ ,
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and evolving the state (3.9) in imaginary time τ according to the equation

− ∂

∂τ
ψ (X, τ) =

(
Ĥ − ER

)
ψ (X, τ) ,

where we introduced a referent energy ER whose effect is going to become evident later. The
evolution of the state (3.9) can be described by the imaginary time propagator

|ψ (X, τ)〉 =
∑

n

cne
−(Ĥ−ER)τ |φn (X, 0)〉 .

In a sufficiently long simulation, the contribution of all states with energies larger than ER

exponentially decays. With a good choice of the referent energy ER ≈ E0, the system will
evolve to the ground state φ0, independent of the choice of the initial state ψ, as long as they are
not orthogonal 〈φ|ψ〉 6= 0.

In order to reduce statistical fluctuations, we introduce importance sampling by defining a
new distribution

Ψ(X, τ) = ψT (X)ψ(X, τ),

where ψT is the VMC-optimized wavefunction.

−∂τΨ(X, τ) = −D∇2Ψ(X, τ) +D∇ [F (X)Ψ(X, τ)] + [EL(X)− ER] Ψ(X, τ), (3.10)

whereD := ~2/(2m),∇ =
∑

i ∂i, and standard abbreviated notation is used for the derivatives;
EL is the local energy defined in (3.8) and a new quantity is introduced, the quantum force F ,
defined as

F (X) = 2
∇ψT
ψT

. (3.11)

Notice that the equation (3.10) has the following form:

−∂τΨ = (Â1 + Â2 + Â3)Ψ

The operators Âi, i = 1, 2, 3, are associated with diffusion, drift and decay processes, respec-
tively. Equation (3.10) is solved using the Green’s function method

Ψ (X ′, τ +4τ) =

∫
G (X ′, X,4τ) Ψ (X, τ) dX,

where
G (X ′, X,4τ) = 〈X ′|e−(Â1+Â2+Â3)4τ |X〉 .

We can calculate the Green’s function independently for each of the operators Âi. Since they
don’t commute, the Green’s function for their sum cannot be found exactly, but within the
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short time approximation, and propagating for a large number of steps, according to Lie-Trotter
product formula [38], and the Baker–Campbell–Hausdorff formula [39],

e−(Â1+Â2+Â3)4τ = e−Â34τ/2e−Â24τ/2e−Â14τe−Â24τ/2e−Â34τ/2 + O(4τ 3),

so

Ψ (X ′, τ +4τ) =

∫
G3

(
X ′, X1,

4τ
2

)
G2

(
X1, X2,

4τ
2

)
G1 (X2, X3,4τ)

G2

(
X3, X4,

4τ
2

)
G3

(
X4, X,

4τ
2

)
Ψ (X, τ) dX1dX2dX3dX4dX

Analytical solutions to these Green functions are [40]:

G1(X
′, X, τ) =

(
2π~2τ
m

)− 3N
2

e−
m(X′−X)2

2~τ

G2(X
′, X, τ) = δ (X ′ −X (τ)) ,where X(0) = X and

dX

dτ
=

~2

2m
F (X)

G3(X
′, X, τ) = e−(EL(X)−ER)δ (X ′ −X) .

The calculation of the local energy (3.8) can be optimized by separating the Hamiltonian on
the kinetic and potential part. The kinetic part of the local energy of the i-th particle is given as

Ei
L(xi) = −Di

(
1

2
∂iFi +

1

4
Fi · Fi

)
, (3.12)

where Fi is the drift force acting on the ith particle, and the total energy of the system is

E(X) =
N∑

i=1

Ei
L(xi) + Vext(X)

The details of implementation of DMC are given in Appendix A.3.2.
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3.5.1 Fixed Node Diffusion Monte Carlo

The FN-DMC is a modification of the DMC algorithm which allows approximate treatment
of a system whose wavefunction has nodes. This includes both the ground state of fermionic
systems and excited states of various many-body systems. The distribution of walkers at the end
of a DMC simulation corresponds to ψ(X) = ψT (X)φ0(X). To ensure positive definiteness of
ψ, the nodal hypersurfaces of ψT and φ0 must match, i.e. they have to change signs together.
Since the exact expression for φ0 is not a priori know, the nodes of the trial wavefunction ψT are
fixed by accepting only the moves for which the sign remains unchanged, ψT (X

′)
ψT (X)

> 0, with X
and X ′ representing the old and new configurations, respectively. Due to the nodal constraint,
this method only gives an upper bound of the energy, and is as accurate as the guess on the
nodal surfaces. Namely, if the nodes of ψT were exact, then ψ would be exact.
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4 Fermi mixtures

In this chapter I use FN-DMC technique to study the ground state properties of various multi-
component fermionic systems. The proper statistics will be imposed by using an antisymmetric
trial wavefunction. If the nodes of the trial wave function are exact, the method will yield
exact ground state properties, as was described in 3.5.1. Since 1D fermionic wavefunction must
vanish when two identical fermions coincide, its nodes are known and the obtained properties
are expected to be statistically exact.

I will first define the Hamiltonian and the trial wavefunction that will be used. Then I discuss
the results, first the energy and Tan’s contact, and then the density profiles. Since some results
for 1D fermionic mixtures were already published [41, 42], I will be comparing my results with
theirs throughout this chapter so it can be understood as a sort of a test of the code before we
continue to the next chapter where some new results will be given.

4.1 Model Hamiltonian and trial wave function

We consider a 1D Fermi gas with contact interaction trapped in a harmonic external potential
with frequency ω. The system consisting of Nc components with component α containing Nα

particles of equal mass m is described by the Hamiltonian

Ĥ = − ~2

2m

Nc∑

α=1

Nα∑

i=1

∂2αi + g
Nc∑

α<β=1

Nα∑

i=1

Nβ∑

j=1

δ
(
xαi − xβj

)
+
mω2

2

Nc∑

α=1

Nα∑

i=1

(xαi )2 (4.1)

where ∂αi = ∂
∂xαi

and g is a coupling constant which can be fine tuned with Feshbach and Ol-

shanii resonances [43, 44]. The total number of particles is N =
∑Nc

α=1Nα. The Hamiltonian
(4.1) was used in [41] for two-component systems N = N1 + N2 in balanced N1 = N2 and
slightly imbalanced case N2 = N1 + 1. Multi-component systems with Np particles of each
component, where N = NcNp, were considered in [42]. Both cases will be studied here.

The trap imposes a length scale aosc, defined with (2.5), which we use as a length unit. The
energy unit will be the g = 0 level separation ~ω. Another important length scale, the scattering
length as given with (2.4), is related to particle interaction and depends on the coupling constant
g. We will use both as and g interchangeably to characterize interaction strength. In order to
compare our results with the published data [42], we are also going to use another interaction
parameter describing the interaction strength [45], defined with Na2s/a

2
osc.

The system’s behavior in the limits as → ∞ and as → 0 is known. The former corresponds
to g → 0. The system separates to Nc subsystems with subsystem α consisting of Nα non-
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interacting indistinguishable fermions in a harmonic trap. The wavefunction is a product of
Slater determinants of the harmonic oscillator wavefunctions and the energy is a sum of energies
of the subsystems given with Eα =

∑Nα−1
n=0

(
n+ 1

2

)
. The latter corresponds to g → ∞. We

already discussed in the section 2.5.1 about the TG model, how this limit was solved for bosons
with infinite contact repulsion using the process of fermionization. There is no reason for this
not to also apply in the case of distinguishable fermions [7] since the Hamiltonian (4.1) is spin
independent. Therefore, we can expect the system with infinite repulsion to behave like the
system of N =

∑Nc
α=1Nα identical fermions.

The trial wavefunction is constructed in the manner of [42] as a product of correlation terms
and Slater determinants detS of a single-component Fermi gas which ensure the anti symmetry
of the fermionic wavefunction

ψF =
Nc∏

α=1

detS (Xα)×
Nc∏

α<β=1

Nα∏

i=1

Nβ∏

j=1

∣∣∣
∣∣∣xαi − xβj

∣∣∣− as
∣∣∣ , (4.2)

where Xα =
(
xα1 , ..., x

α
Nα

)
is an Nα-dimensional vector that contains the positions of the parti-

cles of componentNα. The Slater determinant contains Hermite polynomials and its calculation
can be simplified by rewriting it as a product of a Van der Monde determinant and exponentials.
The determinant then reduces to a Van der Monde polynomial [46],

detS (Xα) =
Nα∏

i<j=1

∣∣xαi − xαj
∣∣
Nα∏

i=1

e−γ(x
α
i )

2

,

where γ = 1/2 for single particle in a harmonic potential. Here it will be considered as a
variational parameter in VMC. A different wavefunction was used by Carbonell-Coronado et

al. [41] so the comparison with their results can be used as a test of the choice of the trial
wavefunction.

4.2 Energy and Contact

Our goal in this section is to understand how the interplay between statistics and interaction
affects the energetic properties of the system. We are going to use Tan’s contact C, discussed
in section 2.4, to estimate the interaction energy (2.11). Since Tan’s contact is defined as a
derivative of the enrgy with respect to the scattering length (2.10), I used finite difference to
calculate it from the FN DMC energies as in [42]. The dependence of the contact C on the
strength of the interaction is plotted in figure 1, using the same rescaling as in [42]. The results
are normalized with respect to the total number of particles N . We can see that the number
of components Nc is the most relevant parameter for this rescaled contact C/N5/2, and the
dependence on the number of particles in each component Np is negligible. By increasing
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the number of components, the absolute value of the rescaled contact grows. Even though the
particles of each component obey Fermi-Dirac statistics, the entire system’s behavior is similar
to the system of Nc bosons (open symbols). These findings are consistent with the results from
[42], which are shown with lines in figure 1. The lines are not perfectly smooth because the
data were obtained by digitizing the figure from ref. [42].
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Figure 1: The contact C as a function of the interaction parameter Na2s/a2osc for various balanced
systems of Nc components with Np particles each. The contact was obtained as a derivative (2.10) of
FN-DMC energy. The lines are polynomial fits of the FN-DMC results by Matveeva and Astrakharchik
[42]. Open black symbols are results of DMC for interacting bosons. The error bars are smaller than the
symbol size.

The interaction energy, which is obtained from the contact as Eint = −asC, (shown in figure
2) also exhibits no significant dependence on Np. Its value for fixed interaction strength is
larger for larger number of components Nc. Again, the statistics of the particles in a component
is irrelevant since the Nc-component Fermi system’s behavior is similar to a system of Nc

interacting bosons. The results match those from [42] (lines). Slight fluctuations around those
lines (especially in the Nc = 6 case) are assumed to be statistical and are expected to disappear
in a longer simulation. The inset shows the same function for higher interaction parameterNa2s.
The data were fitted to a linear function which also matches the data for Nc = 2, Np = 5.

Figure 3 shows the total energyE of a slightly imbalanced small system of 2+1 particles as a
function of the coupling constant g. The results accurately match those obtained by Carbonell-
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Figure 2: The interaction energy Eint as a function of the interaction parameter Na2s/aosc for
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Coronado et al. with FN-DMC using another trial wavefunction

ψCC = D↑D↓
N↑∏

i=1

N↓∏

j=1

φ (xij) ,

where D↑, D↓ are Slater determinants of the harmonic oscillator eigenfunctions for two compo-
nents of fermions, xij = |xi − xj| and

φ (xij) =





cos (k (xij −Rm)) , xij < Rm

1, xij ≥ Rm

(4.3)

Here Rm is a variational parameter, and k is calculated for each value of as from the following
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Figure 3: Total energy of the 2 + 1 system as a function of the interaction strength g.
Red triangles represent the results of FN-DMC with Nc = 2, N1 = 2, N2 = 1. Blue squares are FN-
DMC results from [41] for the same system. The red line is the energy in the limit of infinite repulsion.
The inset is the same graph zoomed in.

transcendental equation
kas tan (xij −Rm) = 1.

This is a confirmation of the choice that the trial wavefunction (4.2) did not affect the results.
The same results are expected for any trial wavefunction with the same nodes as (4.2) and (4.3).

The total energy E of two-component balanced and slightly imbalanced systems is shown in
figure 4 as a function of the total number of particles N . For comparison, the red shadowed
rectangles indicate the interval of energies obtained by Carbonell-Coronado et al. [41] for the
given number of particles N . There is a good correspondence between those results and my
results (shown with points).
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Figure 4: Total energy of two-component systems with 3-10 particles. The systems were either
balanced N/2+N/2, for even N , or slightly imbalanced (N + 1)/2+(N − 1)/2, in the case of odd N .
For fixed N , the energies are in the same interval as those obtained by Carbonell-Coronado et al. [41].
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4.3 Density profile

Figure 5 shows density profile plots for balanced 4+4 and slightly imbalanced 4+5 two-component
systems for three values of the interaction strength. The profiles are similar to those found in
[41]. The distributions of the two components are alike for balanced systems and differ for
the imbalanced ones. In the imbalanced case, the majority component particles tend to spread
wider and get closer to the edge of the trap, at least in the parameter range given here. Also, the
density distribution of the component with an even number of particles has a minimum in the
center of the trap, while the component with an odd number of particles has a maximum there.
In both balanced and imbalanced case, increasing repulsion strength causes the profiles to get
wider.
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Figure 5: Separate component’s density profiles for balanced 4+4 and slightly imbalanced 4+5
two-component systems with different interaction strengths. The balanced system is plotted in red
on the left and the imbalanced is in blue on the right-hand side. The coupling constant is g = 10 in
the top graphs, g = 2.5 in the middle and g = 0.5 in the bottom. The majority component density is
plotted with light blue open circles and the minority component is plotted with dark blue solid circles.
All profiles are normalized to the number of particles.
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Figure 6 shows total density profiles of the same systems. Here it is more obvious that, in
the balanced case, the weak interaction profile resembles the density profile of Nc ideal trapped
fermions. Medium repulsion causes the density distrubution to lose its distinctive peaks but,
as the coupling constant further grows, the strong interaction replicates the Pauli principle so
the mixed system’s profile looks like the profile of N = NpNc ideal fermions. This is further
analysed in figure 7.
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Figure 6: Total density profiles for balanced 4+4 and slightly imbalanced 4+5 two-component sys-
tems with different interaction strengths. The balanced system is plotted in red on the left and the
imbalanced is in blue on the right-hand side. The coupling constant is g = 10 in the top graphs, g = 2.5
in the middle and g = 0.5 in the bottom. All profiles are normalized to the number of particles.

Desnity profiles for balanced two-component system with Np = 5 are shown in figure 7. For
weak repulsion (g = 1), the profile is similar to a density profile of 5 indistinguishable non-
interacting trapped fermions (thin black line). As the coupling constant g grows, the profile gets
wider and smoother, but as it grows even more (g = 20), new peaks become visible and the
density approaches the density of 10 ideal fermions (thick black line).
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solid squares g = 0.5. Density profiles of indistinguishable non-interacting trapped fermions are plotted
with black lines, thin line corresponding to Np = 5, thick line Np = 10.

27



Gloria Odak: QMC study of 1D Bose-Fermi mixtures

5 Bose - Fermi mixtures

Since the results for the Fermi mixtures agree well with the existing results [41, 42], we can
now be confident in the method and continue to the new results. In this chapter, ground state
properties of mixtures of Bose and Fermi particles will be studied using the FN-DMC method.

The Hamiltonian of the system will be the same as in the previous chapter (4.1) but since we
are now dealing with bosons, the wavefunction will require some changes in order to ensure the
right inter-component statistics so I start this chapter by introducing those changes. After that,
the results will be given in the same order as in the previous chapter. First we will discuss the
energy and Tan’s contact. After that, some interesting density profiles will be shown in order to
better understand the mixing of different types of particles.

5.1 Model Hamiltonian and trial wave function

The goal in this chapter is to obtain the ground state properties of balanced mixtures of NB
c

components of bosons and NF
c components of fermions with Np particles each, described by

the balanced version of the Hamiltonian (4.1):

Ĥ = − ~2

2m

Nc∑

α=1

Np∑

i=1

∂2αi + g
Nc∑

α<β=1

Np∑

i,j=1

δ
(
xαi − xβj

)
+
mω2

2

Nc∑

α=1

Np∑

i=1

(xαi )2 , (5.1)

where Nc = NB
c +NF

c . All particles have the same mass m and scattering length as. The units
defined in the previous chapter will be used: hω for energy, and aosc for length.
Changes of the trial wavefunction (4.2) need to be made to take the Bose-Einstein statistics of
the bosonic components into account. The total trial wavefunction will be taken to be separable
into three functions: ψF for fermions, given with (4.2), ψB for bosons given with

ψB =

NB
c∏

α<β=1

Np∏

i=1

Np∏

j=1

∣∣∣
∣∣∣xαi − xβj

∣∣∣− as
∣∣∣
Np∏

i=1

e−γ(x
α
i )

2

,

and ψBF describing the Bose-Fermi interaction

ψBF =

NF
c∏

α=1

NB
c∏

β=1

Np∏

i=1

Np∏

j=1

∣∣∣
∣∣∣xαi − xβj

∣∣∣− as
∣∣∣ .

The total trial wavefunction of the mixture is ψ = ψBψFψBF . As in the previous chapter, the
nodes of the ground state wavefunction exist because of the Pauli principle and are known in
1D so the FN-DMC results are assumed to be statistically exact.

In this chapter, two types of three-component Bose-Fermi mixtures will be considered. The
first is a mixture of two Fermi and one Bose component described with the Hamiltonian (5.1)
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with Nc = 3 (NF
c = 2, NB

c = 1). The other type also has two Fermi and one Bose component,
but the bosons have intra-component δ-repulsion characterized with the same coupling constant
g as the Bose-Fermi and the Fermi-Fermi inter-component interaction.5 Even though the Hamil-
tonian (5.1) and the trial wavefunction ψ = ψBψFψBF don’t account for the intra-component
Bose-Bose interaction, we can tweak the parameters a bit so we can still use these expres-
sions. If we split the Np-particle one component of bosons into Np components with 1 particle
each (keeping their mass and other properties unchanged), the intra-component repulsion would
technically become inter-component repulsion described with ψB. This is exactly how this was
done in the code. Although this is formally an imbalanced mixture ofNc = 2+Np components,
described with (4.1) where Nα = 2 and Nβ = Np, the bosons are still indistinguishable and I
will regard it as a balanced three-component system.

For the remainder of this chapter, I will refer to the mixture with non-interacting bosons as
BF and the mixture with interacting bosons as BFi.

5.2 Energy and Contact

In this section, I am going to explore the energetic properties of BF and BFi mixtures. In order
to understand the role of statistics in 1D, all results will be compared with the results for Fermi
mixtures from chapter 4.

Figure 8 shows the FN-DMC ground state energy E as a function of the total number of
particles N for different scattering lengths as. Grey rectangles correspond to the energy range
for a three-component Fermi mixture with the same number of particles. The BF mixture’s
energies (blue) are slightly lower than the plotted Fermi energy range, while the BFi mixture’s
energies (red) are close to BF results for weaker interaction and grow even higher then the
Fermi mixture’s energies as the scattering length gets lower (as = −0.6). Because of the
different statistics, energy of non-interacting fermions is always higher than the energy of non-
interacting bosons, so the difference between BF and Fermi mixtures’ energies was expected.
For strongly repulsive bosons in BFi system, interaction energy is large and the total energy
becomes even higher than the ground state energy of the purely fermionic mixture.

Rescaled Tan’s contact C/N5/2 is plotted in figure 9 as a function of the interaction parameter
Na2s. The results of BF (red) and BFi (blue) mixtures are compared with the results for Fermi
mixtures from [42]. The BFi mixtures exibit behaviour similar to Fermi systems for low values
of Na2s (shown in the inset), while the BF mixtures’ contacts have lower absolute values. For
larger parameter Na2s, the interaction is weaker, so the interaction between the bosons in BFi
contributes less. Consequentially, all observed three-component systems have simiar contact in
this range of the interaction parameter.

5Adding fermionic intra-component contact repulsion wouldn’t change the behavior of the system since the
Fermi-Dirac statistics forbids the fermions to ever come into contact.

29



Gloria Odak: QMC study of 1D Bose-Fermi mixtures

0

10

20

30

40

50

60

70

6 9 12 15

6 9 12 15

0

10

20

30

40

50

60

70

6 9 12 15

6 9 12 15

0

10

20

30

40

50

60

70

6 9 12 15

6 9 12 15
E
/h̄

ω

N

N

BF
as = −0.6
as = −1.2
as = −2.0
as = −4.0

E
/h̄

ω

N

N

BFi
as = −0.6
as = −1.2
as = −2.0
as = −4.0

E
/h̄

ω

N

N

Fermi, Nc = 3

Figure 8: Total energy of three-component Bose-Fermi systems with 2-5 particles per component.
Red symbols show FN-DMC ground state energies of BF systems, and blue sybmols show the energies
of BFi systems. Grey rectangles are FN-DMC results for ground state energy of three-component Fermi
mixtures for the same range of scattering length.

−0.07

−0.06

−0.05

−0.04

−0.03

−0.02

−0.01

0

0 20 40 60 80 100

−0.06

−0.04

−0.02

0

0 5 10

C
/
( N

5
/
2
h̄
ω
/a

o
sc

)

Na2s/a
2
osc

BF Np = 2
BF Np = 3
BF Np = 5
BFi Np = 2
BFi Np = 3
BFi Np = 4
BFi Np = 5

Matveeva and Astrakharchik, Fermi Nc = 3
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component systems. The contact was obtained as a derivative (2.10) of FN-DMC energy. The line
is a polynomial fit of the FN-DMC results by Matveeva and Astrakharchik [42] for balanced three-
component Fermi mixtures. Red triangles show FN-DMC results for Bose-Fermi-Fermi (BF) systems.
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Figure 10 shows the interaction energy Eint/N2, given with (2.11), as a function of Na2s.
The results are again compared with the interaction energy of three-component Fermi mixtures
from [42]. The BFi energy exibits similar behavior as the purely fermionic mixtures, while the
BF mixtures’ results are slightly lower. This difference in the interaction energy is especially
large in the range of low Na2s (shown in the inset). This parameter range corresponds to strong
repulsion and this is where the systems’ nature differs the most. The interaction between bosons
largely contributes to Eint which explains the different results for BF and BFi systems. The
similarity between BFi and Fermi mixtures’ interaction energies indicates that strong repulsion
of bosons is mimicking the Pauli principle for fermions. Something similar is observed in the
BFi mixtures’ density profiles.
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Figure 10: The interaction energy Eint as a function of the interaction parameter Na2s/a2osc for
various 3-component systems. The interaction energy was obtained as a function of the contact (2.11).
The line is a polynomial fit of the FN-DMC results by Matveeva and Astrakharchik [42] for balanced
three-component Fermi mixtures. Red triangles show FN-DMC results for Bose-Fermi-Fermi (BF) sys-
tems. The results for Bose-Fermi-Fermi systems with Bose-Bose intra-component repulsion (BFi) are
plotted with blue squares. The inset is the same graph zoomed in. The errorbars are smaller than the
symbol size.
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5.3 Density profile

Figures 11, 12, 13 show density profiles n(x) of BF (left) and BFi (right) systems with coupling
constants g = 0.5, 2.5, 25, respectively, and up to 5 particles per component. Bosons are
always in the middle, surrounded by fermions that tend to get closer to the edge of the trap as
the repulsion becomes stronger.

In the BF case, since the bosons do not interact with each other, their profile always has only
one central peak, regardless of the interaction strength. The interaction only affects its width -
since the repulsion pushes the bosons away from the fermions, as the interaction grows, their
profile gets narrower. As the coupling constant grows, the fermions get pushed away from the
center of the trap. In the case of large g (figure 13), the competition between Pauli principle
and strong repulsion becomes visible. The fermions are getting pushed to the edge of the trap
by the bosons sitting in the center and the trap is pushing them back to the center. There is
a strong repulsive interaction between the two types of fermions and the anti symmetry of the
wavefunction of each component which results in separation of the different fermionic compo-
nents. This transition from mixed (figure 11) to separated (figure 13) phase for the fermions in
a 9-particle system happens for values of the coupling constant g ∈ 〈7.7, 9.1〉 (figure 14). Since
the separation happens in the 9- and 15-particle systems, the same is expected for the 6-particle
system but for larger values of the coupling constant g.

In the BFi case, the Bose component’s profile depends on the coupling constant g. Weakly
interacting system (figure 11) is similar to the corresponding BF mixture. Since there still is
some repulsion between the bosons, their density profile is a bit wider then the BF one, but
there is still only one peak. As the interaction grows stronger, the bosons’ profile gets wider
(figure 12). Strongly interacting (figure 13) bosons’ profile has an odd shape. There are many
shallow extrema along a triangular shaped profile. Both Fermi and Bose profiles are very wide
and largely overlap. If we look at the profile of the whole system (plotted in grey), we can see
that is very similar to the profile of N = 3Np ideal fermions (thick black line). Again, strongly
repulsive 1D system is behaving similarly to a non-interacting system obeying Fermi-Dirac
statistic.

The last two plots in figure 13, where Np = 5, show the simulation results at this moment,
and require further calculations. The profiles are expected to look similar to the Np = 3 case
after sufficiently long simulation time.
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Figure 11: The density profiles for BF and BFi systems with up to 5 particles per component. The
BF system is plotted on the left and BFi is on the right-hand side. The coupling constant is g = 0.5. All
profiles are normalized to the number of particles.
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Figure 12: The density profiles for BF and BFi systems with up to 5 particles per component. The
BF system is plotted on the left and BFi is on the right-hand side. The coupling constant is g = 2.5. All
profiles are normalized to the number of particles.
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Figure 13: The density profiles for BF and BFi systems with up to 5 particles per component. The
BF system is plotted on the left and BFi is on the right-hand side. Total density profile for the BFi
systems is plotted with grey triangles. The black line is the density profile od N = 3Np identical non-
interacting trapped fermions. The coupling constant is g = 25. All profiles are normalized to the number
of particles.

35



Gloria Odak: QMC study of 1D Bose-Fermi mixtures

0.5

1

1.5

0.5

1

1.5

0.5

1

1.5

0.5

1

1.5

0.5

1

1.5

-5 0 5

0.5

1

1.5

-5 0 5

n
(x
)
/a

−
1

o
sc

Fermi
Fermi
Bose

n
(x
)
/a

−
1

o
sc

g = 7.692

n
(x
)
/a

−
1

o
sc

n
(x
)
/a

−
1

o
sc

g = 8.333

n
(x
)
/a

−
1

o
sc

x/aosc

n
(x
)
/a

−
1

o
sc

x/aosc

g = 9.091

Figure 14: The transition from mixed to separated phase for BF system with 3 particles per compo-
nent. The top profile show the system with coupling constant g ≈ 7.7 in a mixed phase. By increasing
the coupling constant, around g ≈ 8.3, a transition starts (shown in the middle). The bottom density
profile shows a separated system at g ≈ 9.
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6 Conclusion

To sum up, in this thesis I calculated ground state properties of two types of three-component
Bose-Fermi mixtures with contact inter-species repulsion gδ(x1 − x2) trapped in an external
harmonic potental. One type (BF) had no intra-component interaction and the other (BFi) had
Bose-Bose intra-component contact repulsion characterized with the same coupling constant g
as the inter-component interaction.

I used fixed node Monte Carlo method to obtain properties connected to ground state energies
and density profiles of the systems of interest. The method was first tested on multi-component
Fermi mixtures by comparison with existing results [41, 42]. I calculated the ground state
energy as a function of the coupling constant for multi-component systems and used those
results to find Tan’s contact and the interaction energy. The results agree with those from [42].
Results for both balanced and imbalanced two-component Fermi systems match the data from
[41].

The motivation for studying Bose-Fermi mixtures was to gain insight in the interplay of
statistics and interaction that happens in one-dimensional systems. This is why the results were
systematically compared with those for Fermi-Fermi mixtures with the same number of par-
ticles. I found that the energy of the BF systems is slightly lower than the energy of their
fermionic counterparts, while the energy of BFi systems shows larger dependence on the cou-
pling constant since the interaction energy contributes more to the system’s ground state energy.
The calculations of Tan’s contact and the interaction energy confirmed this. The BFi systems
were closer to Fermi mixtures than the BF mixtures.

The density profiles of Fermions in BF mixtures show a phase transition from mixed to a
separated phase for strongly coupled systems. In both weakly and strongly interacting regimes,
the non-interacting bosons sit in the middle of the trap while the fermions are closer to the edge.
For weak and medium repulsion, the density profiles of the two fermionic components overlap.
In the strongly coupled regime, their profiles separate so that the neighboring particles are of
different species.

The BFi mixtures show similar behavior in the weakly interacting regime, but the separation
does not happen. Both Bose and Fermi density profiles get wider as the repulsion gets stronger
and, in the case of strong repulsion, the total system’s profile has the shape of the density profile
of N non-interacting identical fermions which indicates the fermionization of the system.

The research could be continued in various directions. Since I calculated Tan’s contact, which
is defined as a coefficient describing the high-momentum tail of the momentum distribution,
continuing with calculations of the momentum distributions of BF and BFi systems is imposed
as a logical next step. It could be interesting to see if the fermionization of the strongly interact-
ing BFi systems happens in the momentum space. Since the contact of the BFi mixtures agrees
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with the results for Fermi mixtures, similar momentum distributions are expected in the high-
momentum limit, but the low-momentum range is expected to be governed with statistics since
bosons usually have sharp peak around k = 0 and fermions tend to have wider low-momentum
distributions.
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A The Code

In section 3 we described the numerical methods used and later, in sections 4 and 5, the phys-
ical systems of interest were introduced and analyzed. Now that we have seen the results, one
question still remains and that is how we implement the algorithms and the system. In this part
I am going to go through the code6 used in this thesis. I will try to avoid copying large chunks
of the source and instead give pseudocode or, if possible, give graphical representations. The
code was written in C++ and is completely object-oriented so I will start with the class structure
and then go through the most important functions and variables.

A.1 Class structure

The code is organized in two classes, shown in figure 15, class Qsystem and class walker.

• The class walker contains all the information on a walker, including its position in
the phase space and functions for calculating and retrieving its energy, wavefunction and
quantum force.
• The class Qsystem contains the algorithms for VMC and DMC, and all the information

on a quantum system, including an array of walker objects used to describe it.

This division has many advantages. New algorithms may be later added without affecting the
walkers or a new system can be implemented without changing the algorithms.
Further expansion of the code was planned and might be realized in the future. It would in-
clude a class interaction containing the system’s wavefunction and potential, as well as
the functions for calculating the associated local energy and quantum force. A walker object
would then contain an interaction object and there would be no need to obtain analytic
expressions of the local energy and drift force.

A.2 Walker

A walker object knows all the physical information about itself. Upon creation, it initializes
its number of particles, their mass, spin, external potential frequency and scattering length by
reading data from an IN file, show in figure 16. There is an option to change the dimensionality
of the system nd but in was not used in this thesis since only 1D systems were explored. A
walker also knows the positions of all of its particles, its wavefunction, local energy, and quan-
tum force. They are calculated in functions UpdatePsi(), UpdateEloc(), UpdateF()

6The latest version of the code can be found on link https://github.com/gloriaodak/QMC.git
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Qsystem

+ runNo

+ Qsystem()
+ ~Qsystem()
+ VMC()
+ DMC()
+ Diffusion()
+ Drift()
+ Branch()
+ Metropolis()
+ AdjustStep()
+ SetScatteringLength()
and 12 more...

walker

 

+ walker()
+ InitData()
+ SetPosition()
+ GetPosition()
+ UpdateEloc()
+ UpdatePsi()
+ UpdateR()
+ GetEloc()
+ GetPsi()
+ UpdateP()
and 17 more...

Figure 15: Class diagrams of classes Qsystem and walker

and this is the part of the code that needs to be changed when changing the physical system
under observation. In this version, the energy and drift force need to be calculated beforehand
using expressions (3.12), (3.11). For specific systems covered in this thesis, the trial wave-
function is given with (4.2) and the above-mentioned functions are listed in listings 1, 2 and 3,
respectively.
Other than that, the class contains some functions whose purpose is purely technical such as
CleanUp() which is used for deleting unnecessary pointers even before the walker’s destruc-
tion is possible, increasing the program’s efficiency and allowing the use of fewer resources.

Listing 1: The trial wavefunction example

void walker::UpdatePsi()

{

Psi=1.0;

int n=0, m=0;

for(int ic=0; ic<nc; ic++)

{

for(int ip=0; ip<component[ic]; ip++)

{

for(int jp=0; jp<ip; jp++)

Psi *= fabs( x[ip+n][0] - x[jp+n][0] );

m=0;

for(int jc=0; jc<ic; jc++)

{

for(int jp=0; jp<component[jc];jp++)

Psi *= fabs( fabs( x[ip+n][0] - x[jp+m][0] ) - a[ip+n] );

m+=component[jc];

}

Psi *= exp( -g * x[ip+n][0] * x[ip+n][0]);

}

n+=component[ic];

}

}
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Listing 2: The local energy example

void walker::UpdateEloc()

{

double e,r;

Eloc=0;

int n=0;

int m=0;

for(int ic=0; ic<nc; ic++)

{

for(int ip=0; ip<component[ic]; ip++)

{

e=2*g;

for(int jp=0; jp<ip; jp++)

{

r=x[ip+n][0]-x[jp+n][0];

e+=1/r/r;

}

for(int jp=ip+1; jp<component[ic]; jp++)

{

r=x[ip+n][0]-x[jp+n][0];

e+=1/r/r;

}

m=0;

for(int jc=0; jc<ic; jc++)

{

for(int jp=0; jp<component[jc]; jp++)

{

r=fabs(x[ip+n][0]-x[jp+m][0]);

e+=1/(r-a[ip+n])/(r-a[ip+n]);

}

m+=component[jc];

}

m+=component[ic];

for(int jc=ic+1; jc<nc; jc++)

{

for(int jp=0; jp<component[jc]; jp++)

{

r=fabs(x[ip+n][0]-x[jp+m][0]);

e+=1/(r-a[ip+n])/(r-a[ip+n]);

}

m+=component[jc];

}

e-=F[ip+n][0]*F[ip+n][0]/4.0;

e*=D[ip+n];

Eloc+=e;

Eloc+=ho[ip+n]*x[ip+n][0]*x[ip+n][0];

}

n+=component[ic];

}

}

Listing 3: The drift force example

void walker::UpdateF()

{

int n=0;

int m=0;

for(int ic=0; ic<nc; ic++)

{

for(int ip=0; ip<component[ic]; ip++)

{

F[ip+n][0] = -2*g*x[ip+n][0];

for(int jp=0; jp<ip; jp++)

F[ip+n][0] += 1/( x[ip+n][0] - x[jp+n

][0] );

for(int jp=ip+1; jp<component[ic]; jp++)

F[ip+n][0] += 1/( x[ip+n][0] - x[jp+n

][0] );

m=0;

for(int jc=0; jc<ic; jc++)

{

for(int jp=0; jp<component[jc]; jp++)

{

double r = x[ip+n][0]-x[jp+m][0];

F[ip+n][0] += (r-a[ip+n]*r/fabs(r))/(

fabs(r)-a[ip+n])/(fabs(r)-a[ip+n]);

}

m+=component[jc];

}

m+=component[ic];

for(int jc=ic+1; jc<nc; jc++)

{

for(int jp=0; jp<component[jc]; jp++)

{

double r = x[ip+n][0]-x[jp+m][0];

F[ip+n][0] += (r-a[ip+n]*r/fabs(r))/(

fabs(r)-a[ip+n])/(fabs(r)-a[ip+n]);

}

m+=component[jc];

}

F[ip+n][0]*=2;

}

n+=component[ic];

}

}
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Figure 16: A typical IN file. In this example, the system contains three particles, two spin up fermions
and one spin down fermion. All particles have the same mass and feel the same external potential.

A.3 QSystem

A Qsystem object represents the quantum system under observation and its most important
variable is an array of walker objects described in the previous section. Its core functions are
VMC and DMC, along with some helper functions to clean up the code and make it readable.

A.3.1 VMC

The call graph for function VMC is shown in figure 17. It uses walker class functions for
manipulating walker objects and Qsystem class functions, Qsystem::Metropolis be-
ing the most interesting one. The theory behind Metropolis and VMC was described in sec-
tion 3, the implementation is straightforward and the pseudocodes of Qsystem::VMC and
Qsystem::Metropolis functions are given in algorithms 2 and 1, respectively.
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Qsystem::VMC

Qsystem::FileName

Qsystem::Metropolis

walker::GetPosition

walker::GetEloc

Qsystem::AdjustStep

walker::GetComponent

walker::GetA

walker::Update

walker::GetP

ran1

walker::SetPosition

walker::CleanUp

Figure 17: Call graph for function VMC of class Qsystem

Algorithm 1 a step s in the Metropolis algorithm

start with initial state Xs = (x1, . . . , xN)

copy initial configuration to a temporary walker X ′ = Xs

generate random move dx in the interval [−δ, δ]
move one particle resulting in a state X ′ = (x1, . . . , x

′
i, . . . , xN)

calculate transition probability T (Xs → X ′) = min
{
ψ∗(X′)ψ(X′)
ψ∗(Xs)ψ(Xs) , 1

}

if T ≥ 1 then
accept new configuration Xs+1 = X ′

else
generate a random number r according to the uniform distribution
if r ≤ ω then

accept new configuration Xs+1 = X ′

else
reject new configuration Xs+1 = Xs

end if
end if
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Algorithm 2 Variational Monte Carlo
for every block do
SsE=0

for every step do
SwE=0

for all walkers do
Metropolis (algorithm 1)
accumulate energy SwE+=EL and other estimators

end for
if block index > number of blocks to skip then

accumulate energy SsE+=EL and other estimators
end if

end for
print averages of the energy and other estimators
accumulate histograms
adjust acceptance rate (listing 4)

end for
print histograms

Listing 4: The adustment of the acceptance rate

void Qsystem::AdjustStep(double acc)

{

if(acc>0.5) for(int k=0; k<nd; k++) {maxStep[k] *= 1.05;}

if(acc<0.5) for(int k=0; k<nd; k++) {maxStep[k] *= 0.95;}

}

A.3.2 DMC

The pseudocode of the DMC method, described in section 3.5, is given in algorithm 3. The
implementation of this method is a bit more involved since it includes changing the size od the
walker array. The walker array is defined in the constructor of class Qsystem as an array of
walker objects of size ncrit × 2, where ncrit is a critical number of walkers around
which the number of walkers nw will fluctuate during the simulation. This number is controlled
in the function Qsystem::branch() given in listing 6. Every DMC step loops through the
entire walker array, as described in the pseudocode, calculating energies and branching the ar-
ray by destroying or creating copies of the existing walkers - sons. The number of sons nSons
is calculated in the branching function Qsystem::branch(). Since this function may be
difficult to understand, I will now try to explain it in more detail.
If a walkers has nSons > 1, then nSons of its copies are added to the end of the walker
array (listing 9). It is important to note that now the array contains new walkers that are not
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going to be looped through during this step, i.e. even though the size of the walker array has
actually changed, the for loop’s limit is kept at the old number of walkers.
If nSons = 1, no copies are made and the walker is kept on the same position in the array.
Finally, if the number of a walker’s sons is zero, the walker will be deleted from the walker array.
This is done in two steps: first the walker is killed using the function walker::Die() which
sets the walker class variable IsAlive to false. Then, after looping through the entire walker
array, the dead walkers are removed in the function Qsystem::BuryDeadWalkers()

given in the listing 8. This function loops through the walker array looking for dead walk-
ers. When it finds one, it moves the last live walker to its place, lowering the total number of
walkers by one. After that, the number of walkers is redefined and used for looping through the
array in the next step.

Algorithm 3 Diffusion Monte Carlo
for every block do

reset energy SsE = 0
for every step do

reset energy SwE = 0
reset number of dead walkers nwDead = 0
define new number of walkers nwNew = nw
for every walker, iw = 0 → nw do

if walker alive then
save current walker’s energy Eold= E
copy current walker’s configuration to walker tmp
perform diffusion (listing 5) on walker tmp
perform drift (listing 7) on walker tmp
save energy of walker tmp to variable E
perform branching (listing 6) on walker tmp
accumulate energy SwE += nSons × E and other estimators
define new number of walkers Nneww += nSons -1
if nSons=0 then
nwDead++

end if
end if

end for
remove dead walkers from the walker array (listing 8)
redefine number of walkers nw = nwNew
accumulate energy SsE+=SwE and other estimators
adjust referent energy ER

end for
accumulate energy SbE+=SsE and other estimators
calculate averages
print averages of the energy and other estimators
accumulate histograms

end for
print histograms
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Listing 5: The diffusion part of DMC

void Qsystem::Diffusion()

{

double x,dx;

double D;

for(int ip=0; ip<np; ip++)

{

D=tmp.GetD(ip);

for(int k = 0; k < nd; k++)

{

dx=var(D)*gasdev(&idum);

x=tmp.GetPosition(ip,k);

tmp.SetPosition(ip,k,x+dx);

}

}

}

Listing 6: The branching part of DMC

int Qsystem::Branch(int * iw, double Eold,

double E)

{

w=exp(tau * (Et -0.5*(E+Eold)));

double r = ran1(&idum);

nSons = (int)(w+r);

if(nSons>0)

{

walkers[*iw]=tmp;

if(nw>nwmax)

nSons = (int)(nSons*reduce+ran1(&idum));

else if(nw<nwmin)

nSons = (int)(nSons*amplify+ran1(&idum))

;

if (nSons>1)

{

CopyWalker(*iw,nSons);

return nSons;

}

if(nSons==1)

return nSons;

}

nSons=0;

walkers[*iw].Die();

return nSons;

}

Listing 7: The dirft part of DMC

double Qsystem::Drift()

{

double **F1, **F2, x, **xold, dx*;

double Eloc;

double * D = new double [np];

F1=new double * [np];

F2=new double * [np];

xold=new double * [np];

for(int ip=0; ip<np; ip++)

{

F1[ip]=new double[nd];

F2[ip]=new double[nd];

xold[ip]=new double[nd];

D[ip]=tmp.GetD(ip);

for(int k=0; k<nd; k++)

{

F1[ip][k]=tmp.GetF(ip,k);

x=tmp.GetPosition(ip,k);

dx=D[ip]*0.5*tau*F1[ip][k];

xold[ip][k]=x;

tmp.SetPosition(ip,k,x+dx);

}

}

tmp.Update();

for(int ip=0; ip<np; ip++)

for(int k=0; k<nd; k++)

F2[ip][k]=tmp.GetF(ip,k);

for(int ip=0; ip<np; ip++)

for(int k=0; k<nd; k++)

{

dx=D[ip]*0.25*tau*(F1[ip][k]+F2[ip][k]);

x=xold[ip][k];

tmp.SetPosition(ip,k,x+dx);

}

tmp.Update();

for(int ip=0; ip<np; ip++)

for(int k=0; k<nd; k++)

F1[ip][k]=tmp.GetF(ip,k);

Eloc=tmp.GetEloc();

for(int ip=0; ip<np; ip++)

for(int k=0; k<nd; k++)

{

dx=D[ip]*tau*F1[ip][k];

x=xold[ip][k];

tmp.SetPosition(ip,k,x+dx);

}

for(int ip=0;ip<np;ip++)

{

delete [] F1[ip];

delete [] F2[ip];

delete [] xold[ip];

}

delete [] F1:

delete [] F2;

delete [] D;

delete [] xold;

return Eloc;

}
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Qsystem::DMC

Qsystem::FileName

walker::GetEloc

Qsystem::Diffusion

walker::GetPosition

Qsystem::Drift

Qsystem::Branch

Qsystem::BuryDeadWalkers

walker::GetComponent

walker::GetA

walker::GetD

Qsystem::var

gasdev

walker::SetPosition

ran1

walker::GetF

walker::Update

Qsystem::CopyWalker

walker::Die

walker::CleanUp

Figure 18: Call graph for function DMC of class Qsystem

Listing 8: Removing dead walkers from the

walker array

void Qsystem::BuryDeadWalkers()

{

walker copy;

int N=nwNew+nwDead;

for(int iw=0; iw<N && nwDead>0; iw++)

{

if(!walkers[iw].IsAlive())

{

while(!walkers[N-1].IsAlive())

{

nwDead--;

N--;

}

if(iw<N-1)

{

copy = walkers[N-1];

walkers[iw] = copy;

N--;

nwDead--;

}

}

}

copy.CleanUp();

}

Listing 9: Making copies of a walker and sav-

ing them at the end of the walker array

void Qsystem::CopyWalker(int iw, int n)

{

walker copy;

copy = walkers[iw];

int N=nwNew+nwDead;

for(int i=0;i<n-1;i++)

walkers[N+i]=copy;

copy.CleanUp();

}
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