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Chapter 1

Introduction

Experimental realization of Bose-Einstein codensation [2] opened the door
to now one of the most active subfields of condensed matter physics, physics
of ultracold systems. The main obstacle in realizing the Bose-Einstein con-
densation is achieving cold enough temperatures in which the Bose-Einstein
phase occurs. For example, in a vapour of rubidium-87 atoms, experimental
group from paper [2] had to achieve the temperature of the sample below 170
nK. Nowadays, in the laboratories the degenerate Bose and Fermi gases of
single and two component alkali metals are produced routinely, and recently
two component systems started to get more theoretical and experimental ac-
tivities. They have been used to investigate different phenomena related to
the research of interacting quantum systems. Two components mean either
the same atoms in different hyperfine states or just two different atoms.

Two main features that are accessible to experimental ultracold physics
are [3] i) control of the interparticle interaction using the phenomena of
Fesbach resonances and ii) precise manipulation of external traps with the
ability to change the dimensionality, shape and the strength of potentials
using lasers or external magnetic fields.

Because the systems are at ultracold temperatures, de Broglie wavelength
of the atoms in the trap is much bigger than the range of interaction, so
the atom collisions are mostly isotropic s-wave scatterings. Therefore, the
interaction can be described using one parameter only: the s-wave scattering
length a. Besides the fact that this greatly simplifies the description of the
interaction, it is interesting that the s-wave scattering length can be tuned
with external magnetic field using the phenomena of Fesbach resonance, with
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the relation between a and B usually taken as

a(B) = a0

(
1− ∆B

B −B0

)
(1.1)

Theoretical description of ultracold systems is usually made by solving
the Gross-Pitaevski equation, a mean field approximation of the system. In
other words, the potential that each atom experiences is approximated to
be the averaged effect of the rest N − 1 atoms in the system. This ap-
proximation usually gives very good results primarily because the systems
under consideration are very dilute, in the order of 1012-1014 atoms/cm3[2].
Relevant parameter that we assocciate with the applicability of diluteness
approximation is the gas parameter na3, which arises as the perturbation
parameter when calculating the ground state energy with the perturbation
theory of homogenous Bose systems (Eq. 1.2). In the limit na3 the mean field
approximation, the first term in Eq. (1.2), becomes exact. Quantum Monte
Carlo calculations [5] show agreement between the perturbation theory and
numerical results.

E/N = 4πna3 ×

[
1 +

128

15
√
π

√
na3 +

8(4π − 3
√

3)

3
na3 ln(na3) + ...

]
(1.2)

In the case of two-component systems with repulsive interactions in a
trap, the first thing to understand is the criteria of miscibility of two species.
In the case of homogenous Bose-Bose gases, the miscibility criteria follows
from the interaction term

∑
ij gijninj, that must be positive definite and so

the miscibility criteria is g2
12 < g11g22. These systems are usually trapped

in a harmonic trap which plays the stabilizing role, so the question is how
the miscibility criteria changes due to the trapping. In the Thomas-Fermi
limit Na/aho, where N is the number of particles and a is the scattering
length, system in the trap behaves locally as a homogenous gas [23], but still
we do not have a complete picture outside the Thomas-Fermi limit for the
two-component systems. It is clear that for the very weak interaction the
density profiles will not not so different from the ideal gas profiles, due to
the stabilizing role of the trap, and it is interesting to ask for which strength
of interaction the phenomena of separation will occur.

Another interesting problem appears in the systems with attractive inter-
action between atoms of different species. In the case of homogenous Bose-
Bose gas, the criteria of stability is again g2

12 < g11g22. When this criteria is
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not fulfiled, the solutions to the Gross-Pitaevski equation do not exist, and
the system collapses. The prediction in [7] says that in the regime unstable
viewed from the mean field thory, there is a droplet that has a very weakly
bound state. If experimentally realised, this could be liquid with the lowest
density ever observed. Mechanism of stabilization of the droplet comes from
attractive mean field term which scales as ∼ n2, and a repulsive beyond mean
field term that scales with ∼ n5/2. The phenomena of droplet formation is
already confirmed in 1D and 2D geometries [8] using quantum Monte Carlo
methods. In lower dimensions this phenomena of droplet formation is more
pronounced since there is always a two-particle bound state for a < 0 in 1D
and 2D, which is not a case in 3D.

Using the quantum Monte Carlo methods, Variational Monte Carlo and
Diffusion Monte Carlo combined, we can determine the ground state prop-
erties of many-particle systems exactly, within the statistical uncertainties.
This is why we used Monte Carlo to investigate two-component Bose systems.

1.1 Outline of the thesis

In Chapter (2) we concetrate on the theoretical results from quantum me-
chanics that are most relevant for this thesis. We start by discussing gen-
eral two-atom scattering in a vacuum, which is the dominant effect in the
many-body dilute systems. Then we derive the long-range behaviour of such
scattering, where it is shown that complete effect of the interaction can be
encoded in a single number: the scattering length a. We write the relations
between parameters of interaction and the scattering length for the simple po-
tentials that were used in our calculations. Finally, we derive Gross-Pitaevski
equation for the many-body Bose system.

In Chapter (3) the numerical methods used in the thesis are presented.
We implemented both Variational Monte Carlo (VMC) and Diffusion Monte
Carlo(DMC) methods in C++ programming language. These methods com-
bined are used to solve many-body Schroedinger equation at zero tempera-
ture exactly.

In Chapter (4) the properties of two-component repulsive Bose gase in
harmonic trap are presented. First we made test runs of our code, and
found the range of applicability of using scattering length for describing the
interactions solely, for the systems containing at most 100 particles. Then we
investigated the phase diagram as defined in [12], to compare our results the
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the predictions of the mean field theory. For the same points in the phase
diagram as in [12], our calculations show some deviations and an indication
that the phase diagram must be spanned differently to account for the mass
disbalance and the interaction strength.

In Chapter (5) we present results of the Bose mixture with repulsive
interspecies and attractive intraspecies interaction. First we made test runs
of the code, and then we determine the properties of the weakly bound droplet
on a variational level, in an unstable regime viewed from the mean field point,
for the systems containing at most 200 particles. Our calculations show that
for the model used, in order to describe the droplet formation scattering
length is not the only relevant parameter.
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Chapter 2

Theoretical background

Underlying microscopic theory of ultracold Bose gases is quantum mechanics.
In position representation of a quantum mechanical state, the wavefunction
ψ(r) ofN non-relativistic spinless particles interacting with the pair potential
Vint, subject to the external potential Vext, is governed by the Schroedinger
equation [21]

i~
∂ψ(R, t)

∂t
= Ĥψ(R, t) (2.1)

where the Hamiltonian is given by

Ĥ = −
n∑
i=1

~2∇2
i

2m
+

n∑
i=1

Vext(ri) +
n∑
i=1

n∑
j=i+1

Vint(|ri − rj|) (2.2)

Wavefunction ψ from (2.1) contains all the information about the system.
Physical quantities that are measured experimentally are the eigenvalues of
some linear Hermitian operator. It is usually very hard to find solutions of
(2.1) for most many-body problems, if not impossible. Therefore, usual the-
oretical description of many-body ultracold systems involve approximations,
such as the mean-field theory.

In this chapter we present theoretical background needed for the descrip-
tion of two-component ultracold Bose gases. We will start by discussing the
two-atom scattering in vacuum (Sec. 2.1), where we introduce the crucial
parameter for describing the interaction: the scattering length a. In sim-
ulating many-body systems we use trial wavefunctions as an input for the
algorithms (Ch. 3), written as a product of two-particle correlation func-
tions, so we write down the analytical solutions of the two-body problem
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for the potentials we use in Sec. 2.2. Finally, we conclude the chapter by
deriving the Gross-Pitaevski equation, which is a mean field description of
many-body ultracold Bose systems (Sec. 2.3).

2.1 Two-atom scattering solution

Let us consider scattering of two spinless nonrelativistic atoms in vacuum,
interacting with isotropic potentials, without the external potentials. We
are interested in low-energy physics of such processes, since the experiments
in ultracold gases are made in that limit. The complete description of the
system is given by the Schroedinger equation (2.1){

−~2∇2
1

2m1

+
−~2∇2

2

2m2

+ Vint(r1, r2)

}
ψ(r1, r2) = Eψ(r1, r2) (2.3)

The problem (2.3) is reduced to one-body problem after making a trans-
formation to r = r1 − r2, rCM =

∑
imiri/(m1 + m2). In the new basis,

the wave function automatically satisfyes Bose statistics, since ψ(r) = ψ(r)
for isotropic potentials, and the solution can be written as ψ(r1, r2) =
ψcm(rCM)ψ(r). The Eq. (2.3) then decouples to two equations, one for cen-
ter of mass, and the other for fictitous particle of mass µ = m1m2/(m1 +m2)
given by {

−~2∇2

2µ
+ Vint(r)

}
ψrel(r) = Eψrel(r) (2.4)

The solution for center of mass wavefunction are trivial plane waves, so the
physics is essentially determined by ψrel, which will be denoted as ψ from
now on. Another way of writing the Eq. (2.4) is{

∇2 + k2
}
ψ(r) = Vint(r)ψ(r) (2.5)

where k2 = 2µE/~2. The wavefunction is formally written as a superposition
of homogenous and particular solutions of (2.5)

ψ(r) = ψ(r)homo −
µ

2π~2

∫
d3r′

exp (ik |r − r′|)
|r − r′|

V (r′)ψ(r′) (2.6)

ψ is not yet determined since it appears on both left and right hand side of Eq.
(2.6). However we can get the solution using approximation |r − r′| � 0,
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for all r′. This is justified by the fact that the mean interparticle distance
in ultracold experiments is much larger than the range of potential. In the
regions where the potential is significant, the wavefunction is negligible and
vice versa. This simplyfies the expression of the particular solution, using
the limits

k |r − r′| −−−→
r→∞

kr − kr
r
r′ (2.7)

1

|r − r′|
−−−→
r→∞

1

r
(2.8)

with the definition of k′ = kr/r, the wave vector of the scattered state. The
solution of [?] is given with

ψ(r) = A

{
exp(ikr)− exp(ikr)

r

µ

2π~2

∫
d3r exp(−ik′r′)V (r′)ψ(r′)

}
(2.9)

We are interested only in the first order effect of the potential to the incoming
wave with wavevector k. This is known as Born approximation, and it is valid
for r � 0, since the Born series give expansions in terms of 1/rn. Putting
the exp(ikr) into the integrand in Eq. (2.9) we get

ψ(r) = A

{
exp(ikr) + f(k′,k)

exp(ikr)

r

}
(2.10)

f(k′,k) = − µ

2π~2

∫
d3r exp(−i [k′ − k] r′)V (r′) (2.11)

The quantity f(k′,k) is called the scattering amplitude. Eq. (2.10) is un-
derstood in the following way. Total wavefunction is a superposition of the
incoming plane wave with wavevector k and an outgoing spherical wave with
the wavevector k′. The role of interaction is to change a state from |k〉 to
|k′〉, as presented in the Fig. 2.1.
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Figure 2.1: Schematic representation of interaction. Incoming plane wave
of momentum p, presented with solid lines, scatters into the spherical wave,
denoted by dashed lines, with momentum p′. Figure adapted from [22]

We see from Eq. (2.11) that the complete interaction is determined by
scattering amplitude f(k′,k). It is now shown how the description can be
simplified in the low-energy limit, or in other words when k ≈ 0. For k′ =
k = 0, the scattering amplitude is

f(0, 0) = − µ

2π~2

∫
d3rV (r′) (2.12)

It is then convinient to use effective potential in the low-energy limit that
reproduces the scattering amplitude. For k 6= 0, since the interaction is
isotropic, we can expand the incoming wave as a sum of angular momentum
eigenstates

exp(ikr) =
∞∑
l=0

il(2l + 1)jl(kr)Pl(cos(θ)) (2.13)

where jl(kr) are spherical Bessel functions. Under the assumption of large
interparticle distances, we use the large r limit of Bessel functions

jl(kr) −−−→
r→∞

sin(kr − lπ/2)

kr
(2.14)

We limit ourselves to elastic scattering, so the f(k′,k) is actually a function
of k and angle θ between k and k′. This allows us to expand the scattering
amplitude as a sum of angular momentum eigenstates as well

f(k′,k) =
∞∑
l=0

(2l + 1)fl(k)Pl(cos(θ)) (2.15)
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where Pl are Legendre polynomials of order l, and fl(k) are to be determined.
Putting the Eqs. (2.13) and (2.15) into Eq. (2.10) we get

ψ = A

∞∑
l=0

(2l + 1)Pl(cos(θ))

[
exp(−ikr + ilπ)

2ikr
+

exp(ikr)

r

(
fl(k) +

1

2ik

)]
(2.16)

In the absence of the interaction fl(k) = 0, and the solution is given by the
sum of incoming and outgoing spherical waves with definite angular momen-
tum. With the interaction turned on, the complex coeficients multiplying
outgoing spherical components change. In other words, turning the interac-
tion can be seen as an unitary transformation which changes the phase of
each angular momentum eigenstate. This defines the phase shifts δl(k) as

exp(2iδl(k)) = 1 + 2ikfl(k) (2.17)

In the experiments with ultracold atoms, the energy of each atom is much
smaller than the centrifugal barrier ∼ l(l+ 1)/r2 arising from particles being
in different angular momentum eigenstates. Therefore it is a good approx-
imation to say that only l = 0 state is affected by the interaction. For the
two-atom problem in this aproximation the scattering amplitude is written
as

f(k,k′) = f0(k) =
exp(2iδ0(k))− 1

2ik
=

1

k cot(δ0(k))− ik
(2.18)

In the low-energy scattering approximation it is useful to define the scattering
length a as

a = − lim
k→0

δ0(k)

k
(2.19)

because we can relate the scattering length with the scattering amplitude of
zeroth partial wave

lim
k→0

f0(k) = −a (2.20)

where we used the expansion [22]

k cot [δ0(k)] = −1

a
+

1

2
reffk

2 + ... (2.21)

The parameter reff in the expansion (2.21) is called the effective range of
the potential, which needs to be taken into account for more precise deter-
mination of system properties. This term is usually omitted when studying
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ultracold atoms since both k and reff are very small, which makes the first
term in Eq. (2.21) the most relevant one. Therefore, the effect of two-body
interaction is encoded in a single parameter, the scattering length a. This
is an important result that is later used for solving the many-body problem.
Since the scattering length can be controlled using external magnetic field, it
allows us to study systems ab initio with the control of interaction. This is
also the reason why numerical studies of ultracold systems can give the exact
description of bosonic system, since it is sufficient to use any potential that
reproduces wanted scattering length. In the next section 2.2 we construct
repulsive and attractive interaction which we will use for numerical studies.

But before proceding to construction of potentials with a given a, we will
discuss what is the physical meaning of scattering length. For k → 0 the
exponential factors in Eq. (2.10) can be considered very small. Then the
wavefunction will have the following asymptotic form

ψ ∼ 1− a

r
(2.22)

Wavefunction (2.22) is plotted in Figure 2.2, where we see two different long-
range behaviours that depend on the sign of a. For a > 0 the particles
prefer to be far apart, which is described as an effective repulsive interaction,
whereas for a < 0 the particles feel effective attractive interaction.

0 2 4 6 8 10 12 14

r[|a|]
0.0

0.5

1.0

1.5

2.0

1
−
a
/r

a> 0

a< 0

Figure 2.2: Asymptotic wavefunction for different values of scattering length
a. The tendency of a wavefunction to go out or to the region of interaction is
what gives the physical picture for the scattering length. Positive (negative)
scattering length means there is an effective repulsive (attractive) interaction
between the particles.
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2.2 Models of interaction

In our analysis of two component bosonic mixture we consider dilute systems
that interact both repulsively and attractivly. In this sections we construct
simple potentials that reproduce wanted scattering length. We model re-
pulsive interaction with hard-sphere potential, and attractive one with the
square-well potential. Solution to the two-boy problem is also given, which
will be used to construct the trial wave function of the many-body system.

Both the hard-sphere and attractive square well potentials can be written
as

Vsq(r) =

{
V0 r < R

0 r > R
(2.23)

where r is the distance between the two particles. It suffices to find the
solution to the two-body problem for the relative wavefunction{

−~2∇2

2µ
+ Vsq(r)

}
ψ(r) = Eψ(r) (2.24)

Since Vsq(r) is isotropic, the general solution in the form ψ = Rnl(r)Ylm(θ, φ).
However, we are interested only in the l = 0 solution, so the wavefunction is
ψ = u(r)/r, and u(r) satisfies{

d2

dr2
+ k2 − 2µVsq(r)

~2

}
u(r) = 0 (2.25)

where k2 = 2µE/~2. The solution to Eq. (2.25) is given by

u(r) =

{
A (exp(iκr)− exp(−iκr)) r < R

C exp(ikr) +D exp(−ikr) r > R
(2.26)

where κ2 = k2 − 2µV0/~2. We are interested in the asymptotic solution,
which is most relevant for the ultracold systems. The r → ∞ limit of u(r)
behaves as a Bessel function

lim
r→∞

u(r) =
C0

k
sin(kr + δ0) (2.27)

=
C0

k
exp(−iδ0) [exp(ikr) exp(2iδ0)− exp(−ikr)] (2.28)
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Dropping the numerical prefactors which are just normalization conditions,
we see that the solution is given by

u(r) =

{
exp(iκr)− exp(−iκr) r < R

exp(−ikr)− exp(ikr) exp(2iδ0) r > R
(2.29)

The only constant left undetermined is δ0. Requiring for the solutions u(R−) =
u(R+) and du/dr(R−) = du/dr(R+) we get

δ0(k) = −kR + arctan

[
k

κ
tan(κR)

]
(2.30)

2.2.1 Effective repulsive interaction

Taking the V0 →∞ limit of Eq. (2.30) we get

δ0(k) = −kR (2.31)

Comparing the result (2.31) with the definition of the scattering length (Eq.
2.19), we see that the hard-sphere radius coincides with the scattering length.
Therefore, the effective repulsive interaction with the given scattering length
a > 0 can be modeled as a hard-sphere potential

V (r) =

{
∞ r < a

0 r > a
(2.32)

in the low-energy limit.

2.2.2 Effective attractive interaction

Taking −∞ < V0 < 0, from Eq. (2.30) we get

a = R

(
1− tan γ

γ

)
(2.33)

γ = R

√
2µ |V0|
~2

(2.34)

In the low-energy limit whenever the square well potential supports new
bound state, the scattering length diverges. This turns out to be a general
property of interaction [22], but it will not be proven in this thesis.
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2.3 Mean field theory of Bose systems

The aim of this thesis is to investigate properties of dilute many-body Bose
gases. In this section the mainstream theoretical framework of such system
is presented: the mean-field theory. [4].

The general Hamiltonian of Bose systems can be written in second quan-
tisation formalism

Ĥ =

∫
d3rψ̂†(r)

[
−~2∇2

2m
+ V̂ext(r)

]
ψ̂(r) +

1

2

∫
d3rd3r′ψ̂†(r)ψ̂†

′
(r′)V̂ (r − r′)ψ̂(r)ψ̂′(r′) (2.35)

where the field operator is ψ̂† =
∑

i ϕia
†
i , ϕi being the single-particle state i,

and a†i is creation operator satisfying Bose commutation relation[
âi, âj

†] = δij (2.36)

[âi, âj] = 0 (2.37)

The equation of motion for ψ̂ is given by

i~
∂

∂t
ψ̂ =

[
ψ̂, Ĥ

]
(2.38)

=

{
−~2∇2

2m
+ Vext(r) +

∫
d3rψ̂†V̂ (r − r′)ψ̂

}
ψ̂ (2.39)

At ultracold temperatures, system occupyes the low energy part of the spec-
trum, and there is a macroscopic number of particles in the ground state ϕ0.
Mean field theory is a supstitution of â0 operator with its expectation value,
a complex number, which is proportional to

√
N0, where N0 is the number

of particles in the ground state. In that approximation the field operator
obtains the form

ψ̂ = ψ0 + δψ̂ (2.40)

In other words, low energy limit of the quantum field ψ is a classical field
ψ0, which we call the condensate wavefunction, and δψ̂ is the noncondensed
component of ψ̂. In order to make supstition ψ̂ → ψ0 in the Eq. 2.39,
we must also replace V (r − r′) with the effective potential that reproduces
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the samo low-energy part of the spectrum. The easiest potential to handle
analyticaly is point interaction

V (r − r′) =
4π~2a

m
δ(r − r′) (2.41)

This potential is chosen so that it reproduces wanted scattering length a,
which can be seen from Eq. (2.12) and (2.20). Putting the potential (2.41)
into (2.39), in the low-energy limit we obtain so called Gross-Pitaevski equa-
tion

− i~ ∂
∂t
ψ0 =

{
−~2∇2

2m
+ Vext(r) +

4π~2(N − 1)a

m
|ψ0(r)|2

}
ψ0(r) (2.42)

To obtain the time-independent Gross-Pitaevski equation, we first notice
that for big N the states |N〉 and |N + 1〉 are indistinguashble, so the

condensate wave function is ψ0(r, t) =
〈
ψ̂(r, t)

〉
= 〈N | ψ̂(t) |N + 1〉 =

exp(−iµt/~)ψ0(r), since |N(t)〉 = exp(−iE(n)t/~) |N〉 and µ = ∂E/∂N ≈
E(N + 1)− E(N). Then the equation becomes{

−~2∇2

2m
+ Vext(r) +

4π~2(N − 1)a

m
|ψ0(r)|2 − µ

}
ψ0(r) = 0 (2.43)

The Gross-Pitaevski equation is equivalent to the Hartree-Fock approxima-
tion, which can be seen by minimizing 〈ψH | Ĥeff |ψH〉 for a system wavefunc-
tion

ψH(r1, r2, ..., rN) =
N∏
i=0

ϕ(ri) (2.44)

where ϕ(ri) is single particle wavefunction and Ĥeff is the effective Hamilto-
nian

Ĥeff = −
N∑
i=0

~2∇2
i

2m
+
∑
i<j

4π~2a

m
δ(ri − rj) (2.45)

The most serious drawback of the Gross-Pitaevski is that it does not
include correlations among particles. Since correlations are suppresed in the
low density regime, the GP equation can predict a number of properties.
However, the main goal of this thesis is to investigate physics beyond mean
field regime. The main criteria that we test in our calculations is the stability
of two species condensate, which is obtained only when g2

12 < g11g22. This
stability requirement comes from imposing the interaction term

∑
gijninj to

be positive definite.
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Chapter 3

Numerical Methods

In this chapter numerical algorithms used to simulate bosonic systems are
presented. The acceptance-rejection Metropolis algorithm is used to calculate
integrals in multidimensional Hilbert space (Sec. 3.1). Data grouping is used
to estimate the standard deviation correctly, since two consecutive steps in
simulation are generally correlated (Sec. 3.2). Variational Monte Carlo (Sec.
3.3) and Diffusion Monte Carlo (Sec. 3.4) methods, which are used combined
to determine properties of the ground state of the system are also covered.

3.1 Metropolis algorithm

Metropolis algorithm is a method of sampling random events according to
the given distribution function. In Monte Carlo simulation presented in this
thesis the algorithm will be used to evaluate integrals that have the following
form ∫

dR f(R)ρ(R) (3.1)

This integral can be reduced to the sum∫
dR f(R)ρ(R) = lim

N→∞

1

N

N∑
i=1

f(Ri) (3.2)

where the Ri are randomly generated n-dimensional vectors, drawn from
the given distribution ρ(R). The sum in eq. 3.2 for finite N is obtained by
introducing the concept of walkers. A walker is a point in phase space Ω ⊆ Rn

of our system. The name walker comes from the fact that at each time step,
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the walker changes its position in Ω randomly, following the distribution ρ.
The rate of exploring the phase space is determined by the step size of walker.
The more walkers we have, the better the statistics, and the equation (3.2)
for Nw walkers is∫

dR f(R)ρ(R) =
Nw∑
i=1

1

Nw

(
Nsteps∑
i=1

1

Nsteps

f(Ri;iw)

)
(3.3)

where Nsteps is number of steps for each walker. Metropolis algorithm is given
below:

1. Generate random step ∆R

2. Calculate transition probability T = ρ(R+step×∆R)
ρ(R)

3. if T ≥ 1 the step 2 is accepted, and we proceed to 5

4. if T < 1 the step is accepted only if r ≤ T , where r is random number
in interval [0, 1]. If accepted, proceed to 5

5. Calculate f(Rnew), where Rnew = R + ∆R is the new position of the
walker

6. Update the size of the step: if the acceptance rate is greater (less) than
the wanted acceptance rate, then decrease (increase) the step size

Metropolis algorithm is used both to reach equilibrium distribution and to
sample over phase space of our system. This statistical process is called
Markov process, for which two different space points R and R′ are related
by

ρ(R)T (R→ R′) = ρ(R′)T (R′ → R) (3.4)

The relation (3.4) is called detailed balance and it is the most important
premise of Metropolis algorithm. Eq. (3.4) is fulfilled in equilibrium, so
imposing this in the algorithm makes the system reach equilibrium asymp-
totically. It is very important to note that the size of a step is a variable
during simulation. In most problems, the optimal percentage of accepted
steps is taken to be in the interval 30%− 50% to ensure that the the walker
moves through the phase space as quickly as possible.

The only problem left with calculating the integral with Metropolis al-
gorithm approach is correlation between two successive steps. Therefore the
binning of data, presented in section 3.2, needs to be done to ensure that the
deviation is correctly calculated.
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3.2 Data analysis

Measure of uncertainty in calculating the integral in eq. (3.2) must be treated
carefully because two successive steps of walkers are generally correlated.
For uncorrelated samples, the measure of uncertainty is determined from
standard deviation, given by

σ =

√√√√ 1

n

n∑
i

(fi − 〈f〉)2 −−→
n�1

√
〈f 2〉 − 〈f〉2 (3.5)

where n is the total number of data of a given function f . The main question
is how much steps we must take per block to safely say that two consecutive
blocks have very low correlation. The solution is to divide data into blocks,
calculate averages of f in each block and then take these averages to be
uncorrelated samples for sufficiently big block sizes.

Let ns be the number of steps in each block, and nb be the number of data
blocks per simulation. The correct way to calculate the standard deviation
is then given by

σ2
nb

=
1

nb − 1

nb∑
i

[〈
f 2
〉
i
− 〈f〉2

]
(3.6)

where 〈f 2〉i is the average of f 2 in the ith block, and 〈f〉 is average over
all samples. Usual procedure in simulations is done in the following way.
During the simulation the value of f is collected (or printed) in an array of
size n = nbns. After collecting the data, the deviation is calculated using Eq.
(3.6), changing the block size nb from 2 to some value (maximally allowed is
N/2), as well as ns, to keep the product to be the number of data n = nbns.
Case nb = 2 (nb = N/2) corresponds to large (small) groups of data. Finally,
from the graph (σ(nb), nb) the optimal value of n is determined to be the
point there σ reaches the plateu. The error cannot depend on the size of
each block nb, so the value of σ is constant for nb > noptimal. The behaviour
of (σnb

, nb) is presented in Fig. 3.1. For small number of data, like in Fig.
(3.1), the error estimate is not a smooth function of ns.
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Figure 3.1: Dependence of error estimation of energy with the size of each
data block for the 10 particles in an isotropic harmonic trap interacting with
the scattering length a = 10−1aho, obtained with VMC. Number of MC steps
is 200, 000 and the number of walkers is 100.

3.3 Variational Monte Carlo

Variational Monte Carlo is a variational stochastic method used to approxi-
mate the ground state properties. Variational formulation of the Schrödinger
equation (2.1) is given by equation

δE[ψ] = 0 (3.7)

where E[ψ] is given by

E[ψ] =

∫
ψ∗Ĥψ dR∫
ψ∗ψ dR

(3.8)

Wave function ψ can be written as

ψ =
∞∑
n=0

cnφn (3.9)

where cn are scalar coeficients and φn is the n-th eigenstate of time indepen-
dent Schrödinger equation

Hφn = Enφn (3.10)

19



With the normalization condition∑
i

|ci|2 = 1 (3.11)

Variational method gives upper bound to exact energy E0 , since from eq.
3.7 and eq. 3.9 we have∫

ψ∗Hψ dR =
∞∑
n

|cn|2En = E0 +
∞∑
n=1

|cn|2En ≥ E0 (3.12)

In a VMC method one writes a trial ground state wavefunction, calculates
its expectation value of energy using Metropolis algorithm for different varia-
tional parameters, and those parameters that minimise the energy define our
best guess of the true ground state. For a given trial wavefunction ψT (α,R),
where α = (α1, α2, . . . , αp) is a set of p numbers that parameterise ψT , the
energy of the ground state for a given ψT (α,R) is given by

E(α) =

∫
ψ∗T (α,R)HψT (α,R) dR∫
ψ∗T (α,R)ψT (α,R) dR

(3.13)

The global minimum of E(α) implicitly determines ψT (α,R) via parameters
α. Calculation of integral in eq. (3.13) can be rewritten in a form compatible
with the Metropolis algorithm

E(α) =

∫
EL(α,R)ρ(α,R) dR (3.14)

where

EL(α,R) =
Hψ(α,R)

ψ(α,R)
(3.15)

ρ(α,R) =
|ψ(α,R)|2∫

dRψ∗T (α,R)ψT (α,R)
(3.16)

More generally, the expectation value of some operator O can be written as

O(α) =

∫
OLρ(α,R) dR (3.17)

where

OL =
OψT (α,R)

ψT (α,R)
(3.18)
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Monte Carlo integration of eq. (3.14) is carried out numerically using
Metropolis algorithm(sec. 3.1). There are two key parts of the VMC method.
First, one equilibrates the system by moving the walkers using Metropolis al-
gorithm a large number of steps to make sure we sample the correct ρ(α,R).
Second, walkers are moved and energy is sampled for every step. In both
parts, the crucial step is updating the optimal step length to make sure
system goes optimally fast through the phase space. Additionaly, for large
systems it is desirable that Metropolis algorithm is changed in the following
way. Instead of moving one walker, which is a set of positions of particles
r1, r2, . . . , rn, particles are moved one by one. Moving particles as a configu-
ration ”freezes” each walker much more often than moving each particle one
by one. However, we still have correlations between steps, and the method
of blocking is used for evaluation of standard deviation.

Finally, the VMC code needs to be iterated over different values of α to
obtain optimal parameters. Pseudocode for VMC algorithm is in Alg. 1.
Usual dependence of estimators with the number of Monte Carlo steps in the
VMC integration is shown in Fig. 3.2. First part of this MC simulation (first
≈ 2, 000 MC steps) is interpreted as the equilibration of distribution function
which we want to sample, and is omitted when calculating the estimate value.

0 1000 2000 3000 4000 5000

MC step

3.000

3.005

3.010

3.015

3.020

3.025

E
/N

[ 1 2
ω
]

E/N

Figure 3.2: Dependence of energy estimator with the size of each data block
for 3 particles in an isotropic harmonic trap interacting with the scattering
length a = 10−2aho, obtained with VMC. The number of walkers is 100.
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Algorithm 1 VMC Pseudocode

Initialization of coordinates for every walker and every particle
for loop over steps do

for loop over walkers do
for loop over particles do
ri;new = ri;old + step×∆R
T = ρ(α,Rnew)/ρ(α,Rold)
if T > 1 then

Accept step

if T < 1 then
Generate random number r in the interval [0 : 1]
if r < T then

Accept step

Save EL(R, α)
if acceptance rate < wanted acceptance rate then

step = step * 0.95
else

step = step * 1.05

3.4 Diffusion Monte Carlo

Diffusion Monte Carlo [13] is a stochastic method of solving the imaginary-
time Schrödinger equation exactly, for a given potential surface. The distri-
bution function we are sampling in the Diffusion Monte Carlo (DMC) method
is

f(R, t) = φ(R, t)ψT (R) (3.19)

where ψT (R) is the optimized trial wavefunction, our best guess for the
ground state wavefunction. Function φ(R, t) is the exact wavefunction of
the system at time t, which can be written as

φ(R, t) =
∑
n

cne
−i(En−E0)t/~φn(R) (3.20)

where φn(R) is time-independent n-th eigenstate of the Hamiltonian. Rewrit-
ing the Eq. (3.20) in imaginary time t = iτ , we see that φ(R, τ) decays to
the ground state wavefunction φ0(R) in the τ → ∞ limit. This is the main
idea of DMC; to sample f from Eq. (3.19) in the t→∞ limit to obtain the
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ground state properties of the system. Since only ground state is considered,
this method is exact only for zero temperature. Complete formalism of DMC
method is made in imaginary time, so we will denote t to be imaginary time
from now on. Applying the Hamilton operator to Eq. (3.19) we get the
(imaginary) time dependent equation of f(R, t)

− ∂f

∂t
= − ~2

2m
∇2

Rf +
~2

2m
∇ · (F f) + (EL(R)− E) f (3.21)

where F is called the quantum force, EL is the local energy

F (R) = 2
∇ψT
ψT

(3.22)

EL =
ĤψT
ψT

(3.23)

The Eq. (3.21) is of the form

− ∂f

∂t
= Ôf =

(
Ô1 + Ô2 + Ô3

)
f (3.24)

where operators Ôi on the right hand side of Eq. (3.21) are associated with
diffusion, continuity and decay processes, respectively. Eq. (3.21) is solved
iteratively using the Green function formalism

f(R′, t+ ∆t) =

∫
dRG(R′,R,∆t)f(R, t) (3.25)

where
G(R′,R,∆t) = 〈R′| exp(−Ô∆t) |R〉 (3.26)

It is not possible to find Green function defined in Eq. (3.26) exactly, since
the operators Ôi do not commute with each other. But the Green func-
tion for each term can be solved independently, so what is usually done are
approximations with respect to the powers of ∆t, such as

e−Ô∆t = e−Ô3∆t/2e−Ô2∆t/2e−Ô1∆t/2e−Ô1∆t/2e−Ô2∆t/2e−Ô3∆t/2 +O(∆t3) (3.27)

From Eq. (3.27) we see that

〈R′| e−Ô∆t/2 |R〉 =

∫
dR′ dR′′ dR′′′G3

(
R′,R′′,

∆t

2

)
×G2

(
R′′,R′′′,

∆t

2

)
G1

(
R′′′,R,

∆t

2

)
(3.28)
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where

G3

(
R′,R′′,

∆t

2

)
= 〈R′| e−Ô3

∆t
2 |R′′〉 (3.29)

G2

(
R′′,R′′′,

∆t

2

)
= 〈R′′| e−Ô2

∆t
2 |R′′′〉 (3.30)

G1

(
R′′′,R,

∆t

2

)
= 〈R′′′| e−Ô1

∆t
2 |R〉 (3.31)

Analytical solutions to the Green functions (3.29)-(3.31) are given by [13]

G1(R′,R, t) =
(
2π~2t/m

)−3N/2
exp

[
−(R′ −R)

2

2~t/m

]
(3.32)

G2(R′,R, t) = δ (R′ −R(t)) where

{
R(0) = R
dR
dt

= ~2

2m
F

(3.33)

G3(R′,R, t) = exp [− (EL(R)− E)] δ(R′ −R) (3.34)

We see that the evolution of f in time ∆t can be approximated by three
consecutive operations: gaussian movement, move due to the quantum drift
force, and branching factor. One MC step of DMC method, for a given
walker, is summarized below.

1. Gaussian displacement R1 = R + χ, where χ is vector drawn from
gaussian distribution exp (−χ2/(2∆t~2/m)). This is numerically im-
plemented using gasdev number generator with the spread

√
~2∆t/m

2. Calculate quantum force F 1(R1)

3. First step: R2 = R1 + 1
2

~2

2m
∆tF 1

4. Calculate quantum force F 2(R2)

5. Second step: R2 = R1 + 1
2

~2

2m
∆tF 1+F 2

2

6. Calculation of local energy EL(R2), quantum force F (R2) and other
properties

7. Final step: R′ = R1 + ~2

2m
∆tF

8. For each walker calculate weight as w = exp [−∆t (0.5(EL(R2) + EL(R))− Eref)]
and replicate it int [w + ran()] times, where ran() is random number
drawn from uniform distribution in interval [0 : 1]
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3.4.1 Pure estimators

Estimators sampled by the DMC method are called the mixed estimators
since the probability distribution function we sample is f = φ0ψT . Therefore
we have a potential bias due to the trial wavefunction. For operators that
commute with the Hamiltonian, sampling the PDF f gives the same results
as it would if we sampled φ2

0. However, for operators that do not commute
with the Hamiltonian, we need to treat the trial wavefunction bias carefully
in order to obtain exact results, and this is usually done with the pure esti-
mators. Algorithm for pure estimators can be found in [9] [10], and our tests
of numerical implementation are presented in Fig. 4.3 and 5.1
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Chapter 4

Bose mixture with repulsive
interactions

In this chapter the Monte Carlo study of two-component bosonic mixture
with repulsive interspecies and intraspecies interactions in a harmonic trap
at zero temperature is presented. Two-body repulsive interaction is modeled
as hard-sphere potential (Eq. 2.31)

Vint(r) =

{
∞ r < aij

0 r > aij
(4.1)

Repulsive interactions produce positive scattering lengths: a11, a22, a12 >
0. The Hamiltonian is given by

Ĥ = −
N1+N2∑

i

~2

2mi

∇2
i +

N1+N2∑
i<j

Vint(rij) +

N1+N2∑
i

1

2
miω

2r2
i (4.2)

where Ni is number of particles of species i, mi is mass of species i particle.
The trial wavefunction we use is constructed as product of two-body and
one-body solutions

ψT (R) =

N1∏
i<j

f11(rij)

N2∏
i<j

f22(rij)

N1,N2∏
i,j

f12(rij)

N1+N2∏
i

φ(ri) (4.3)

where the two-body term is

fij(r) =

{
0 r < aij

1− aij
r

r > aij
(4.4)
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and one-body term due to harmonic confinement is

φ(ri) = exp(−αir2
i ) (4.5)

Trial wavefunction (4.3) has only two variational parameters: α1 and α2, and
their values for the single-body problem are

αi =
1

2a2
ho,i

(4.6)

where the aho,i is length unit associated with the confinement

aho,i =

√
~
miω

(4.7)

where ω is characteristic harmonic frequency of the trapping potential. Trial
wavefunction does not have a variational parameter for the repulsive two-
body interaction. It is shown in Sec. 4.2 and 4.3 that even this trial wave-
function can give very accurate description of the system at the VMC level.

4.1 Test run of the code: one particle in isotropic

harmonic trap

To see if our implementation is correct, we will make a test run for a system
where all the properties are known exactly: single particle in an isotropic
harmonic trap. Ground state energy and wavefunction are given by [21]

E0 =
3

2
~ω (4.8)

ψ0 =
(mω
~π

)3/4

exp

(
−mωr

2

2~

)
(4.9)

We can use the exact wavefunction to be the trial wavefunction for the input
in the DMC code, but with different value of the variational parameter from
the exact one to check whether our code is sensitive to the choice of the input
trial wavefunction. We will use the trial wavefunction of the form

ψ0 = exp(−αr2/2) (4.10)
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where we take α to be the variational parameter. The exact value of α is

αLHO =
mω

2~
(4.11)

If Fig. 4.1 we plotted energy versus ∆t for α = 0.5αLHO. At the VMC
level, energy is E = 3.74(8)~ω

2
. Even tough we use quadratic DMC algo-

rithm, timestep analysis shows linear dependence of energy versus timestep.
However, we see correct extrapolation of energy to ∆t = 0. In Fig. 4.2 we
plotted kinetic energy, potential energy and the number of walkers versus
the timestep of the simulations, where we see that kinetic and potential en-
ergy are not fluctuating about the exact value since the DMC code samples
mixed estimators. On Fig. 4.3 we plotted single particle density profile in an
isotropic trap for different values of initial variational parameters, to test the
implementation of pure estimator algorithm. Finally, in Table 4.1 we give
energies of two particle system in harmonic trap for two different values of
scattering length, which are in agreement with those reported in [6].
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Figure 4.1: Dependence of the single particle energy in a harmonic trap on
imaginary timestep ∆t, for the trial wavefunction (Eq. 4.3), with a vari-
ational parameter set far from exact value: α = 0.5αLHO. Number of MC
steps is 200000. Extrapolation of the linear fit to ∆t = 0 predicts 3.001(7)~ω

2
.
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Figure 4.2: Evolution of the number of walkers Nw, kinetic and potential
energy with the simulation timestep. Imaginary timestep used is ∆t = 3 ×
10−3.
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Figure 4.3: Density profile of a single particle in isotropic trap predicted by
VMC and DMC for the wavefunction parameter α = 0.5αLHO. Number of
steps per block in pure estimator algorithm is 5000, and imaginary timestep
used is ∆t = 3× 10−3ω−1.
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Table 4.1: Comparison of results from our code with those reported in [6]
for a two-particle system in a harmonic trap. Imaginary timestep used is
∆t = 1.5× 10−4ω−1.

a [aho,1] Our DMC code Results from [6]
0.00433 3.00346(3)~ω 3.00346(1)~ω
0.433 3.38(1)~ω 3.3831(7)~ω

4.2 Single component analysis

In this section the results for the single component weakly repulsive Bose gas
in a harmonic trap are presented. Usual description of such systems is based
on the Gross-Pitaevski equation, which can be written in nondimensional
form, rescaling the lengths with the harmonic length aho and energies with
~2/(2ma2

ho) (
−∇̃2 + r̃2 + 8π

Na

aho
φ̃2(r̃)

)
φ̃(r̃) = 2µ̃φ̃(r̃) (4.12)

We see that the system properties in the mean-field regime are completely
determined by the factor Na/aho. It is shown in [14] that such description
is valid in the limit N → ∞ and a → 0, keeping the Na/aho constant.
Physical interpretation of this parameter is the importance of interaction in
the system, since Eint/Ekin ∼ Na/aho [15].

First we compare the results obtained using our trial wave function (Eq.
5.4) with the DMC calculations from [6], summarized in Table 4.2. Varia-
tional parameters are set to ideal one. We see that even without varying the
parameters there is a great overlap between input trial wavefunction and the
exact one.

Table 4.2: Comparison of VMC and DMC energies of a single component
system, for a = 0.433aho. Variational parameters used are exact one: α =
1/(2a2

ho).

N EVMC [~ω] EDMC [~ω]
3 5.59(8) 5.553(3)
5 10.693(5) 10.577(2)
10 26.478(5) 26.22(8)
20 67.36(1) 66.9(4)
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We have two universalities in our physics: the Gross-Pitaevski univer-
sality valid in the limit (N → ∞, a → 0) for a given Na/aho, and the
”real” universality, where we describe physics with only one parameter: the
scattering length a, that includes beyond mean field effects. Therefore, the
Gross-Pitaevski equation is valid only for very dilute systems.

We search for the range of validity of the Gross-Pitaevski universality
by calculating the DMC energies as a function of Gross-Pitaevski parameter
Na/aho in Fig. (4.4). Since the results for different number of particles do
not fall on a single curve, as predicted by the Gross-Pitaevski equation, we
conclude that our calculations are picking up fluctuations not included in the
mean-field physics. Our DMC results show that Gross-Pitaevski universality
is recovered only for small values ofNa/aho, but as we increase the interaction
strength we see that energy starts to depend separately on N and a. It is also
interesting to note there is a convergence toward a single curve as we increase
the number of particles. We do not have the Gross-Pitaevski numerical solver
to compare the results, but we get the same qualitative results like in the
literature, [19], [6].

Another important question to solve is for which values of parameters
we have universal physics, such that the interaction is described solely by
the scattering length a. This was analyzed in [6] for the types of systems
we focus on, and the author claims that the universal description is valid
for approximately n(0)a3 ≤ 2 · 10−3, where ρ is density at the center of
mass. In Fig. 4.6 we see the effect of repulsive interactions on the overall
density profile is to reduce the central density and make the system more
flat. Increasing the interaction we approach the Thomas-Fermi limit, valid
in for Na/aho � 1 and N � 1, where the system can be well approximated
to be locally homogenous.

In Fig. 4.6 we calculate the dependence of gas parameter n(0)a3 on
Na/aho, and see that the universality breaks sooner for smaller systems,
where we follow the rule that the universality is recovered only for n(0)a3 <
2 × 10−3 [6]. Our interest is to investigate strongly interacting systems for
which the Gross-Pitaevski parameter is big, and we see that for 100 particles
(and above) we can use the scattering length as the only parameter of the
interaction for Gross-Pitaevski parameter up to 10.
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Figure 4.4: Dependence of EDMC/N with the Gross-Pitaevski universal pa-
rameter Na/aho. The mean-field breakdown, resulting from the fact that the
energy does not depend solely on GP parameter for a fixed value of Na/aho,
is occuring sooner for smaller systems with big scattering lengths.
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estimators for a system of 100 particles. Lowering of the density, called the
quantum depletion, happens due to the repulsive interactions.
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Figure 4.6: Dependence of diluteness parameter n(0)a3 with the Gross-
Pitaevski parameter Na/aho, where we see that the universality breaks down
sooner for smaller systems.

4.3 Phase diagram of two-component mixture

In this section the QMC study of repulsive Bose-Bose mixture is presented.
Usually, system properties of ultracold systems are obtained by solving the
Gross-Pitaevski equation (2.43), which is a mean-field approximation. From
the mean-field point of view the properties of the bosonic mixture are charac-
terised by the coupling constants gij = 2π~2aij/mij, where aij is interaction
between species i and j, and mij = mimj/(mi + mj) is reduced mass of
two-particle system with mass mi and mj. Miscibility of the system in the
mean-field approximation for a homogenous system is determined by the re-
lationship of g12, g11 and g22. For g2

12 < g11g22 the condensates overlap in
space, while for g2

12 > g11g22 they phase-separate. In this section, we will
test the applicability of this miscibility criterion for the strongly interacting
small systems in the harmonic trap, and present what are the beyond mean
field effects on the system properties.

There is no universal parametar determining the properties of two-component
systems from the mean-field perspective, like we had in a single component
one. Additionally, there is no diluteness parameter from which we can deter-
mine the validity of constructing potentials knowing only scattering length.
So we focus only on those coupling constants (g11, g22, g12) that slightly devi-
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ate from the single component values that have universal interaction. In other
words, we will use m2 ∼ m1, a12 ∼ a11 ∼ a22. We define the phase diagram
as in [12], where the system states are defined with (g12/g22, g11/g12, N1, N2),
because the authors find that for trapped gases the location of the phase
boundary between mixed and separated states depends also on the particle
number. This is where we make comparisson with the mean-field, since in the
paper [12] the structural properties of two-component Bose systems in har-
monic trap are determined with Gross-Pitaevski equation, and the authors
claim that this is a good way of characterizing the system. Our results sug-
gest that we should use additional parameters, to account the effects of mass
disbalance and the effect of interaction strength, for the systems containing
at most 100 particles. Results that back up this indication are presented in
subsection 4.3.2.

4.3.1 Same scattering lengths, different mass

We first present the results for the system with and a11 = a22 = a12. Different
mass ratios are used: m2 = m1, m2 = 1.5m1, m2 = 4m1. Parameters for the
optimized trial wavefunction, VMC and DMC energies are shown in Tables
(4.3-4.5). We see that the VMC and DMC energies are very close, so we
conclude that there is great overlap between the trial wavefunction and the
exact ground state wavefunction. The dependence of energy on different
mass ratios can be qualitatively understood by the fact that the repulsion
drives the lighter particles toward energetically higher single-particle states
[20]. In the ideal case the lighter particles are more delocalized in a trap,
so the repulsive interspecies interaction can push them to the edge of the
drop more easily. This can be seen on Fig. (4.7,4.8), where partial densities
from the center of mass are plotted. For large enough scattering lengths
the separation occurs, and this separation is more pronounced for bigger
differences between m2 and m1.
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Table 4.3: Optimal variational parameters, VMC and DMC energies for
a11 = a22 = a12 = a, m2 = m1, where aho,i =

√
~/(miω). The number of

particles is 100.

Na/aho α1

[
1/a2

ho,1

]
α2

[
1/a2

ho,2

]
EVMC/N

[
1
2
~ω
]

EDMC/N
[

1
2
~ω
]

2 0.48 0.47 4.0820(1) 4.0810(1)
8 0.52 0.51 5.939(1) 5.929(3)
14 0.55 0.56 7.322(5) 7.30(5)

Table 4.4: Optimal variational parameters, VMC and DMC energies for
a11 = a22 = a12 = a, m2 = 1.5m1, where aho,i =

√
~/(miω). The number of

particles is 50 + 50.

Na/aho α1

[
1/a2

ho,1

]
α2

[
1/a2

ho,2

]
EVMC/N

[
1
2
~ω
]

EDMC/N
[

1
2
~ω
]

2 0.48 0.49 4.157(4) 4.157(0)
8 0.516 0.552 6.085(1) 6.083(7)
14 0.541 0.567 7.507(9) 7.506(2)

Table 4.5: Optimal variational parameters, VMC and DMC energies for
a11 = a22 = a12 = a, m2 = 4m1, where aho,i =

√
~/(miω). The number of

particles is 50 + 50.

Na/aho α1

[
1/a2

ho,1

]
α2

[
1/a2

ho,2

]
EVMC/N

[
1
2
~ω
]

EDMC/N
[

1
2
~ω
]

2 0.48 0.49 4.290(4) 4.287(5)
8 0.60 0.58 6.308(2) 6.28(7)
14 0.67 0.56 7.837(9) 7.83(3)
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Figure 4.7: Evolution of density profiles with the increase of interaction
a11 = a22 = a12 = a. Mass ratio is m2/m1 = 1.5. Number of particles
N1 = N2 = 50.
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Figure 4.8: Evolution of density profiles with the increase of interaction
a11 = a22 = a12 = a. Mass ratio is m2/m1 = 4. Number of particles
N1 = N2 = 50.

4.3.2 Different phases of two-component Bose system

In this subsection we want to test the predictions from [12], where the au-
thors claim the phase diagram can be spanned, for a given N1 and N2, with
g12/g22 and g11/g12 only. We focus on the parameters given in Table 4.6,
which are about the same points that have been used in [12], where all the
results are obtained by solving the Gross-Pitaevski equations. The points
are also graphically represented in Fig. 4.9. Here we use the full power of
quantum Monte Carlo to exactly solve the many-body Schroedinger equation
and predict the properties exactly.
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Table 4.6: Phase space points on which we focus on. Mean field prediction for
homogeneous systems is based on the relative strenghts of coupling constants;
we have separation for g2

12 > g11g22, mixing for g2
12 < g11g22, critical point for

g2
12 = g11g22.

Label g12/g22 g11/g12 Mean field prediction
a 3.0 0.33 Separation
b 0.75 0.75 Critical point
c 0.75 1.7 Mixing
d 1.2 1.7 Mixing
e 1.7 1.7 Critical point

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

g11/g12

0.0
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1.0
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2.0
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/g
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2

Mean field crossover
A
B
C
D
E

Figure 4.9: Graphical representation of the phase space points from Table
4.6. Mean field theory for homogeneous system predicts separation (mixing)
for all the points above (below) the mean field crossover (dashed line).

From the mean field point of view, the structural properties do not depend
separately on mass and scattering length, but only through the combination
defined by the coupling constants gij = 2π~2aij/mij. In the subsections
4.3.2-4.3.2 we present density profiles obtained with the DMC mixed estima-
tor algorithm, changing the interaction from weakly to strongly interacting,
to present how the interaction strength changes the profile of the system.
We plotted mixed estimators since they have much smaller noise than the
pure estimators, and we justify this supstitution because of the small differ-
ence between VMC and DMC energies, meaning that the trial wavefunction
greatly overlaps the exact wavefunction.
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Generally we find that mean field separation criteria g2
12 > g11g22 for

homogeneous is not applicable any more. This was also observed in [12].
Since this system is not homogeneous, but trap favours overlap in numerical
studies mentioned in [12], three different types of density profiles were inden-
tified. The phase is considered mixed when both components overlap at the
trap centre. In a symmetrical demixed phase one component forms a shell
structure around the other. In an asymmetrical demixed phase the centers
of mass of the two components do not coincide.

The authors have thus identified a new characterization of the mixture,
by the difference in the normalized trap-centre density

∆nnorm =
nc,1(0)

maxnc,1(r)
− nc,2(0)

maxnc,2(r)
(4.13)

When two components overlap strongly than ∆nnorm is zero, and when they
are in a strongly demixed phase where one pushes the other from the centre
∆nnorm is either 1 or −1. In the following we will compare our results both
with the mean field criterion for the homogeneous systems and the predictions
of [12].

For the weakly interacting trapped system (Na11/aho,1 = 2), for all the
points in the phase diagram except those in Fig. 4.20, we have partially mixed
phase, contrary to the mean field predictions and the predictions by [12].
This property can be explained by the fact that for the weak interparticle
interaction, the harmonic trap plays a major role in structural properties. As
we increase the interaction strength, all the clouds become more delocalized,
and the density profiles start to form different shapes. Separation types for
the strongly interacting system Na11/aho,1 = 14 are summarized in Table
4.7.
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Table 4.7: Summary of the structural properties of the strongly interacting
systems for which Na11/aho,1 = 14.

Points 4.6 Our results Mean field prediction
mB = mA Asym. phase

A mB = 1.5mA Symm. demixed Separation
mB = 4mA Symm. demixed
mB = mA Mixed

B mB = 1.5mA Mixed Critical point
mB = 4mA Mixed
mB = mA Mixed

C mB = 1.5mA Mixed Mixing
mB = 4mA Mixed
mB = mA Mixed

D mB = 1.5mA Mixed Mixing
mB = 4mA Symm. demixed
mB = mA Mixed

E mB = 1.5mA Symm. demixed Critical point
mB = 4mA Symm. demixed

In most points of the phase diagram we do not have a unique way of
defining whether the specied are mixed or separated since there is relatively
large overlap between two species even in the strongly interacting regime.
This is probably because the harmonic trap still plays major role in stabilizing
the system. Density profiles for the same coupling constant fractions from
Table (4.6), but with different mass ratios show different behaviour. We
observe that with the large difference in mass we don’t need to have strong
interaction to separate the species.

In point A (4.6) we have an agreement with [12] only for mB = mA

case, but a bad agreement for mB 6= mA. We obtain partial mixing for
mB = 1.5mA, and fully symmetrically demixed phase for mB = 4mA.

In point B (4.6) we have qualitatively same density profiles for mB = mA

and mB = 1.5mA with the results from [12]. We have not obtained the full
separation of species as in [12] but rather the partial mixing, indicating the
stabilizing role of the harmonic trap. For the mB = 4mA case we obtain a
strong shell-like structure of species B, a completely different profile from the
one we get with the other mass ratios. We suspect this is a result of relatively
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strong interaction between species B, compared with the other interaction
strengths.

In point C (4.6) we obtain qualitatively the same results as [12] only for
mB = mA. The species mix almost completely for mB = mA, but as we
increase the mass ratio mB/mA the species A goes more toward the edge of
the trap.

In point D and E (4.6) we see very similar profiles as in [12]. Species
partially mix, with the species A more delocalized.

Density profiles for m2 = m1
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Figure 4.10: Point A from Table 4.6 for m2 = m1. Mean field prediction:
separation.
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Figure 4.11: Point B from Table 4.6 for m2 = m1. Mean field prediction:
critical point.
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Figure 4.12: Point C from Table 4.6 for m2 = m1. Mean field prediction:
mixing.
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Figure 4.13: Point D from Table 4.6 for m2 = m1. Mean field prediction:
mixing.
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Figure 4.14: Point E from Table 4.6 for m2 = m1. Mean field prediction:
critical point.
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Density profiles for m2 = 1.5m1
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Figure 4.15: Point A from Table 4.6 for m2 = 1.5m1. Mean field prediction:
separation.
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Figure 4.16: Point B from Table 4.6 for m2 = 1.5m1. Mean field prediction:
critical point.
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Figure 4.17: Point C from Table 4.6 for m2 = 1.5m1. Mean field prediction:
mixing.
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Figure 4.18: Point D from Table 4.6 for m2 = 1.5m1. Mean field prediction:
mixing.
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Figure 4.19: Point E from Table 4.6 for m2 = 1.5m1. Mean field prediction:
critical point.

Density profiles for m2 = 4m1
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Figure 4.20: Point A from Table 4.6 for m2 = 4m1. Mean field prediction:
separation.

43



0 1 2 3 4 5

r[aho, 1]

0

1

2

3

4

5

6
ρ
(r

)[
a
−

3
h
o,

1
]

A

B

(a) Na11/aho,1 = 2

0 1 2 3 4 5

r[aho, 1]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

ρ
(r

)[
a
−

3
h
o,

1
]

A

B

(b) Na11/aho,1 = 8

0 1 2 3 4 5

r[aho, 1]

0.0

0.2

0.4

0.6

0.8

ρ
(r

)[
a
−

3
h
o,

1
]

A

B

(c) Na11/aho,1 = 14

Figure 4.21: Point B from Table 4.6 for m2 = 4m1. Mean field prediction:
critical point.
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Figure 4.22: Point C from Table 4.6 for m2 = 4m1. Mean field prediction:
mixing.
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Figure 4.23: Point D from Table 4.6 for m2 = 4m1. Mean field prediction:
mixing.
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Figure 4.24: Point E from Table 4.6 for m2 = 4m1. Mean field prediction:
critical point.

4.4 Summary

In this chapter we analyzed both single-component and two-component Bose
gases in harmonic confinement. We tested the implementation of VMC and
DMC codes, found the range of universality for the systems containing 100
particles at most for the single component system, and analyzed the phase
diagram of two-component system. We obtain qualitative agreement of our
results with one obtained in the mean field approximation [12] in some points
of the phase diagram, but the deviations in other. We suspect that the more
general description of two-component Bose gases in a harmonic trap should
incorporate mass difference and interaction strength, on top of the way the
phase diagram is spanned in [12].
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Chapter 5

Bose mixture with the repulsive
intraspecies and attractive
interspecies interaction

In this chapter the Monte Carlo study of two-component bosonic mixture
with repulsive intraspecies and attractive intraspecies interactions in vac-
uum is presented. In the low-density regime, we describe the interaction
between particles by one parameter: the scattering length a which is positive
(negative) for repulsive (attractive) interactions. Since this is the only pa-
rameter describing the system, we can choose the forms of the potential to be
as simple as possible: hard-core potential for the repulsive, and square well
potential for the attractive interactions. Relation between scattering lengths
and all the details of interaction for such potentials are given in subsections
2.2.1 and 2.2.2. The Hamiltoian of the system is

H = −
N∑
i

~2∇2
i

2mi

+
N∑
i<j

Vij(rij) (5.1)

where for i = 1, 2

Vii =

{
∞ r < aii

0 r > aii
(5.2)

V12 =

{
−V0 r < R0

0 r > R0

(5.3)
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We choose trial wavefunction of the system to be

ψT (R) =

N1∏
i<j

f11(rij)

N2∏
i<j

f22(rij)

N1,N2∏
i,j

f12(rij) (5.4)

where for i = 1, 2

fii(r) =

{
0 r < aii

1− aii
r

r > aii
(5.5)

f12(r) =

{
sin(kr)
r

r < L

exp
[
k(r−L)
tan(kL)

]
sin(kL)

r
r > L

(5.6)

Variational parameters of the problem are only k and L.

5.1 Test run of the code: two particles inter-

acting with square well potential

To check the implementation of attractive two-particle square well interac-
tion, we will compare the results of our code with the system that is analiti-
cally solvable: dimer of two spinless particles. The square well is character-
ized by the potential depth V0 and the range R. The wavefunction of bound
system is given by [22]

f12(r) =

{
A sin(kr)

r
r < R

B exp(−k2r)
r

r > R
(5.7)

where r is separation between particles, µ = m1m2/(m1 + m2) is reduced
mass of the system, A and B are normalization constant which are mutually
dependent because of continuity conditions, and k1 and k2 are given by

k1 =

√
2µ(V0 + E)

~2
(5.8)

k2 =

√
−2µE

~2
(5.9)

There is at least one bound state for the potential depths above Vmin [21]
given by

Vmin =
π2~2

8µR2
(5.10)
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Relation between energy and the parameters of interaction is obtained from
the continuity requirements, and is given by√

2µ

~2
(V0 +R) cot

[√
R

2µ

~2
(V0 + E)

]
= −

√
−2µE

~2
(5.11)

We check our code by setting R = 10a11, and changing V0 in the range
where two particles have only one bound state. Lengths are scaled with the
scattering lengths asociated with intraspecies interaction. Parameters of the
trial wavefunction are set deliberately wrong: L = 14a11 and k = 0.6π/L.
In Fig. 5.1 we compare predictions of VMC and DMC methods with the
exact ones. DMC gives results in excelent agreement with the exact ones.
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Figure 5.1: Check of our DMC code for R = 10a11.

5.2 Test run of the code: deeply bound 5 + 5

system

To make further test of the code, we calculate energy of the deeply bound
5 + 5 system, with the parameters of attractive interaction set to R = 5a11

and V0 = ~2/(2ma2
11). Optimal variational parameters and minimum VMC

energy are presented in Table 5.1, with energies obtained using wavefunc-
tion parameters other than the optimal ones. We test whether the DMC
energies give the same value for different input parameters. Results show a
bias because of the trial wavefunction, which can be removed by introduc-
ing larger number of walkers. This property is presented in Fig. 5.2, where
we make timestep analysis for different number of walkers, and for different
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wavefunction parameters. We have not obtained convergence with respect to
the number of walkers due to the strong bias of the wavefunction other than
the optimized one because we were limited by numerical requirements at the
time. The convergence of DMC energy for the optimized trial wavefunction is
obtained however. This is because the overlap between the true ground state
and the optimized trial wavefunction is great. Large overlap is also reflected
in the very small difference between mixed and pure estimators of density
profile of species A, shown in Fig. 5.3 , whereas we see big difference when
we use other input parameters. In Fig. 5.3 can also be seen the comparison
of noise between mixed and pure estimators. Comparison of density profiles
obtained with pure estimators for different trial wavefunction is shown in
Fig. 5.4, where we see that the pure estimator is insensitive to the choice
trial wavefunction, within the statistical uncertainty.

Table 5.1: Variational MC energies for different values of input parameters.
Parameters of interaction are R = 5a11, V0 = ~2/(2ma2

11).

Wavefunction parameters EVMC/N [~2/(2ma2
11)]

L = 10a11 ; k = 0.6π/L a−1
11 −0.593(2)

L = 15a11 ; k = 0.6π/L a−1
11 −0.242(8)

L = 5.66a11 ; k = 0.37a−1
11 (Optimal VMC) −1.417(8)
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Figure 5.2: Timestep analysis for different number of walkers, and for differ-
ent input trial wavefunction parameters. The wavefunction bias is gradually
removed by introducing larger number of walkers.
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Figure 5.3: Comparison of mixed and pure estimators of density profile of
species A from the center-of-mass. Species B has the same profile. Number
of walkers used is 500, and the number of steps per block used is 10000 for
and pure estimators.
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Figure 5.4: Comparison of density profiles of species A obtained using pure
estimator algorithm. Number of walkers is 500, number of steps per block is
10000.

5.3 Properties of the weakly bound droplet

Droplet formation in systems with repulsive intraspecies and attractive in-
terspecies is predicted by [7], where the author claims that the mean-field
collapse in the regime g2

12 > g11g22 is stabilized by quantum fluctuations,
resulting in a very dilute droplet. In this section we will present properties
of the symmetric systems: m2 = m1, a11 = a22, N1 = N2, in the regime
where the mean-field predicts collapse. First we will search the critical value
of g12 for which the droplet forms, and then calculate the central density
of the drop in order to validate the low-density regime of the stabilization
phenomena and to predict the density of the homogeneous system. All the
calculations are made by means of VMC and DMC methods.

5.3.1 VMC analysis

Trial wavefunction used is in a form (5.4), where the two-particle correlations
are described by (5.5) and (5.6). We scan a12 line, varying the parameters for
each a12, to give the prediction of acrit12 on a VMC level. In Fig. 5.5 minimum
VMC energies vs. a12 are plotted, for different number of particles and for
different square-well ranges. It is expected that in the low-density regime the
energy depends on the scattering length solely, which is not obtained on the
VMC level. Therefore we cannot exactly predict the critical value of a12 with
the current trial wavefunction. However we see the trend of increasing acrit12
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by increasing the number of particles. In Table 5.2 we write lower bound
estimations of critical a12 values with respect to the number of particles. We
see that the droplet formation in our case happens for different interaction
strengths than discussed in [7], where the stabilization is predicted to happen
at g12 ≈

√
g11g22. There are two sources of dicrepancy between our results

and predictions from [7]: VMC calculations are model-dependent, and our
droplets have too few particles. Therefore our future predictions will be based
on the DMC calculations with large number of particles, which is outside
the scope of this thesis. Finally, we plot partial density of the droplet for
different number of particles in Fig. 5.6, for the scattering lengths in Table
5.2. Droplet grows in size while with N , but interestingly the saturation is
not obtained even for the 100 + 100 system. However, this can also be a
result of a trial wavefuncion bias.
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Figure 5.5: Dependence of energy vs. a12 scattering lengths for different
number of particles.
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Table 5.2: Lower bound of critical values of scattering lengths on the VMC
level for different number of particles. Values used are obtained for square-
wells ranges R0 = 10a11.

N acrit12 [a11]
10 + 10 −7.5
25 + 25 −4
50 + 50 −3

100 + 100 −2.5
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Figure 5.6: VMC density profiles for a12 from Table 5.2.

5.4 Summary

In this chapter, the study of two-component Bose mixture with attractive
interspecies and repulsive intraspecies interactions is presented, on a varia-
tional level. We made sure the code is implemented correctly, and presented
crude estimations of critical values of a12 for which the droplet appears.
Calculations on a variational lever show dependence on another parameter
besides the scattering length, which could be a result of a trial wavefunction
model, or an effect due to finite number of particles. In future, the exact
DMC calculations for large number of particles will be performed in order to
reach final conclusions about the system properties.
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