
Linear feature detection on SDSS images

Bektešević, Dino

Master's thesis / Diplomski rad

2015

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of
Split, University of Split, Faculty of science / Sveučilište u Splitu, Prirodoslovno-matematički
fakultet

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:166:540014

Rights / Prava: Attribution-NonCommercial-ShareAlike 4.0 International / Imenovanje-Nekomercijalno-
Dijeli pod istim uvjetima 4.0 međunarodna

Download date / Datum preuzimanja: 2024-11-04

Repository / Repozitorij:

Repository of Faculty of Science

https://urn.nsk.hr/urn:nbn:hr:166:540014
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
https://repozitorij.pmfst.unist.hr
https://zir.nsk.hr/islandora/object/pmfst:223
https://repozitorij.svkst.unist.hr/islandora/object/pmfst:223
https://dabar.srce.hr/islandora/object/pmfst:223

Linear feature detection on
SDSS images

Dino Bektešević
Supervisor: izv.prof.dr.sc. Dejan Vinković

Split, September 2015

Master Thesis in Physics

Department of Physics
Faculty of Science
University of Split

Abstract

Sloan Digital Sky Survey (SDSS), covering just over 35% of the full sky, is
the largest sky survey conducted. Many of the images made contain linear
features that can only be explained by objects traveling at different angular
velocities than the background sky. Certain number of linear features can be
attributed to meteors, which makes their extraction from images scientifi-
cally interesting. In this work I present and discuss the full technical details
of a software tool capable of searching through the entire SDSS imaging
database for such linear features.

Acknowledgements

This project started almost 4 years ago when enrolled in a Research project
in Astrophysics I course wanting to continue experiment of detecting lunar
meteor impacts started earlier that summer. I was unpleasantly surprised
when I was met with opposition from professor Dejan Vinković, insisting
instead that I start working on a different topic of removing stars from
SDSS images. Dejan wanted me to continue the work on a topic of his
interest and that did not sit with me well at the time. In hindsight his
opposition and stubbornness is the best thing that could have happened to
me and as the saying goes, hindsight is always 20/20. Therefore, I would
like to extend my deepest gratitude to Dejan Vinković for his persona, his
incredible optimism, his stubbornness, the only one I found outmatching my
own and his belief in me through the years even when I was sure I do not
know what to do next. Through our work I had learned more than I could
have ever imagined and for that I will forever be indebted to him.

In addition, special thanks are due to Darko Jevremović for granting
access to the cluster Fermi, on which the LFDS was run. Without his
technical knowledge and efforts in obtaining the large data set necessary
LFDS would never become a true technical sollution, but remain just a
proof of concept. I would also like to extend my gratitude for his incredible
patience and good will when it came to tolerating all the accidents I caused.
I would also like to apologize to Darko, for all the times I managed to
completely crash the Fermi cluster and halt program executions of all other
users.

I would also like to acknowledge the SDSS and extend my gratitude for
sharing their data so openly. Funding for the Sloan Digital Sky Survey IV
has been provided by the Alfred P. Sloan Foundation, the U.S. Department
of Energy Office of Science, and the Participating Institutions. SDSS-IV
acknowledges support and resources from the Center for High-Performance
Computing at the University of Utah. The SDSS web site is www.sdss.org.

SDSS-IV is managed by the Astrophysical Research Consortium for the
Participating Institutions of the SDSS Collaboration including the Brazil-
ian Participation Group, the Carnegie Institution for Science, Carnegie
Mellon University, the Chilean Participation Group, the French Partici-
pation Group, Harvard-Smithsonian Center for Astrophysics, Instituto de

Astrofísica de Canarias, The Johns Hopkins University, Kavli Institute for
the Physics and Mathematics of the Universe (IPMU), University of Tokyo,
Lawrence Berkeley National Laboratory, Leibniz Institut für Astrophysik
Potsdam (AIP), Max-Planck-Institut für Astronomie (MPIA Heidelberg),
Max-Planck-Institut für Astrophysik (MPA Garching), Max-Planck-Institut
für Extraterrestrische Physik (MPE), National Astronomical Observatory
of China, New Mexico State University, New York University, University
of Notre Dame, Observatário Nacional, MCTI, The Ohio State University,
Pennsylvania State University, Shanghai Astronomical Observatory, United
Kingdom Participation Group, Universidad Nacional Autónoma de México,
University of Arizona, University of Colorado Boulder, University of Ox-
ford, University of Portsmouth, University of Utah, University of Virginia,
University of Washington, University of Wisconsin, Vanderbilt University,
and Yale University.

3

Contents

1 Introduction 10
1.1 Meteors . 11
1.2 Introduction to SDSS . 13

1.2.1 Camera . 13
1.2.2 Run, camcol, filter, field 15
1.2.3 Data access, files and folder structure 16

1.3 Space and time constraint estimates 18
1.4 Why Python? . 21

2 Linear Feature Detection Software 23
2.1 Dependencies . 24

2.1.1 Erin Sheldon’s SDSSPY 24
2.1.2 Erin Sheldon’s FITSIO 26
2.1.3 OpenCV . 26

2.1.3.1 Erosion and Dilatation 27
2.1.3.2 Histogram equalization 27
2.1.3.3 Canny edge detection 27
2.1.3.4 Contours detection 28
2.1.3.5 Minimal Area Rectangle 28
2.1.3.6 Hough transform 29

2.2 LFDS Modules . 32
2.2.1 analyse . 33
2.2.2 createjobs . 34
2.2.3 errors . 40
2.2.4 results . 41

2.2.4.1 imagechecker 44
2.2.5 detecttrails . 46

2.2.5.1 processfield 50
2.2.5.2 removestars 62

2.3 LFDS recap and processing examples 71

4

3 LFDS benchmarking 76
3.1 Execution time . 76
3.2 Detection rates . 80

4 Conclusion 82

Bibliography 83

5

Listings

1.1 sdssFileTypes.par . 18
1.2 bunzip time test . 20
2.1 start.sh . 24
2.2 original SDSSPY files module 24
2.3 edited SDSSPY files module 25
2.4 original _glob_hdfs_pattern function 25
2.5 edited _glob_hdfs_pattern function 25
2.6 Generic dqs file . 35
2.7 Jobs use case 1 . 37
2.8 Jobs use case 2 . 37
2.9 Jobs use case 2, further specification 38
2.10 Jobs use case 2, fully specified. 38
2.11 Jobs use case, overriding COMMAND 39
2.12 Example of a command attribute overriding COMMAND string

in a dqs file. 39
2.13 Jobs use case 3 . 40
2.14 Error format . 41
2.15 Results format . 44
2.16 Running imagechecker. 44
2.17 DetectTrails instantiation, case 1 47
2.18 DetectTrails instantiation, case 2 48
2.19 process_field_bright, step 1 51
2.20 process_field_dim, step 1 . 51
2.21 process_field_bright, step 2 53
2.22 process_field_dim, step 2 . 53
2.23 process_field_dim/bright, step 3 56
2.24 process_field_dim/bright, step 4 59
2.25 Command used to run LFDS 72

6

List of Figures

1.1 SDSS Camera layout. 14
1.2 SDSS telescopes focal plane. 15
1.3 CAS folder structure. 16

2.1 Hough space of an image with 3 dots. 30
2.2 Hough space of an image with a circle and a line. 31
2.3 Hough space of an image with a line and lot of circles. 31
2.4 Modules and submodules of LFDS 33
2.5 Design of Results class. 42
2.6 Composition diagram of Results class. 43
2.7 imagechecker GUI design. 45
2.8 How resizing affects line width and intensity. 46
2.9 detecttrails module layout. 47
2.10 frame-irg-002888-1-0017, a composit image made out of i, r

and g filters. 51
2.11 Processing result of BRIGHT on the left and DIM on the right. 53
2.12 Zoomed in view of the remains of an elongated object after

erosion (left) and comparison with that same area after di-
latation (right). 54

2.13 Aftermath of erosion and dilatation on DIM (right) and di-
latation operator on BRIGHT (left) 55

2.14 Canny edges found on our example image. 57
2.15 Contours found among Canny edges. 58
2.16 Minimal area rectangles that passed the lwTresh condition. . 58
2.17 Two sets of hough lines fitted to the image. Minimal area

rectangle line set is in red while the lineset in blue belongs to
lines fitted to DIM image. 61

2.18 Original frame-i-002888-1-0139 data. 64
2.19 Reconstructed frame using photoObj-002888-1-0139 data. . . 64
2.20 Reconstructed frame-i-002888-1-0139 with variable square sizes. 65
2.21 Star mask with variable square sizes and filter caps. 66
2.22 Star mask with variable square sizes, filter caps and magni-

tude difference condition. 68
2.23 Final mask used for removal of known objects from the image. 69

7

2.24 Final mask subtracted from the original image. 69
2.25 Final mask for frame-i-002888-1-0017 70
2.26 Image recovered by subtracting appropriate mask from the

original frame-i-002888-1-0017. 71
2.27 frame-i-00787-1-0045 processing steps displayed visually for

the detect_bright (left) and detect_dim functions (right) . . 74
2.28 Processing steps that produced output for frame-i-002888-1-

139(left) and frame-u-005973-3-0128 (right). 75

3.1 Execution times of functions remove_stars, detect_bright and
detect_dim. 77

3.2 Execution times of functions in more details. 77
3.3 Total execution time per frame. 79
3.4 Zoomed section of transparent trail. 80

8

List of Tables

2.1 Contours mode options. 28
2.2 Contours method options. 28
2.3 Generic dqs file parameter names and description. 36
2.4 All adjustable processing parameters and their description. . 50
2.5 Data model of usefull photoObj data tables. 63

3.1 Contours mode options. 78

9

Chapter 1

Introduction

Sloan Digital Sky survey (SDSS) has been one of the most successful surveys
in the history of astronomy. In its operational period it categorized 932 891
133 unique objects (Alam et al., 2015) and provided us with their precise
astrometric and photometric measurements. Majority of those objects are
most certainly stars, galaxies, nebulas and other deep-space objects but a
certain minority of detected objects are much closer to us. Search for solar
system objects such as asteroids, comets and other trans-Neptunian objects
(TNO’s)1 has been attempted before (Ivezić et al., 2001; Solontoi et al.,
2010).

The “closest”2 of the listed objects are asteroids. Majority of asteroids
occupy the asteroid belt located between Mars and Jupiter at 2.1 to 3.3
astronomical units (AU)3. These are still incredibly large distances that can
not be put into perspective of everyday life. Every now and then, however,
SDSS fortuitously manages to image a family of objects that are closer still
than asteroids. These objects are meteors and they are visible for a short
period in Earth’s atmosphere at 80-110km in height.

Meteors are generally prerogatively investigated by the International Me-
teor Organization (IMO) through the combination of visual, video and radar
observations. All currently used tools for meteor observation suffer from the
same issue - a high limiting magnitude. In recent years efforts in detecting
fainter meteors has been made by telescopic observations of meteors. Iye
et al. (2007) reports on the findings of 13 meteors and 44 artificial objects on
the 8.2m large Subaru telescope. However, no larger effort has been made
to systematically detect telescopic meteors yet.

Unlike IMO or Subaru, SDSS does not suffer from high limiting magni-
tude or a narrow field of view. SDSS also prides itself in keeping all its data

1such as minor planets, Kuiper belt objects (KBO’s), Oort cloud objects (OCO’s) etc...
2Reader should note that some of these objects have a very elongated and/or irregular

orbits which can lead them very close to Earth. Objects that pose a possible collision
threat are known as Near-Earth objects (NEO’s).

31 AU is roughly the distance between Earth and Sun, 150 million km.

10

publically availible. In this thesis I present the first ever software tool written
for a fast systematic search of the large SDSS database in search for linear
features left behind by meteors or satellites. I detail its mode of operation,
performance and detection limits and describe possible improvements.

1.1 Meteors

Meteoroid is 10µm to 1m in size naturally formed body moving in inter-
planetary space. A micrometeroid is a meteoroid 10µm to 20mm in size
(Rubin and Grossman, 2010). Meteor is the light phenomenon resulting
from the passage of a meteoroid or a micrometeoroid through the Earth’s
atmosphere (IMO, 1997). Most meteors are fragments or remains of a comet
(Jenniskens, 2006) or an asteroid (Vokrouhlický and Farinella, 2000) while
others can be attributed to collision impact debris ejected from larger bodies
such as planets (Morris et al., 2000). Meteors whose origin can be attributed
to a comet appear annually around the same dates. These events are known
as meteor showers.

A point on the sky from which meteors apparently originate is called
the radiant. Thus meteors whose origin body is a comet are known under
the name of the radiant’s (Perseids,...) they originate from, while meteors
whose apparent origin on the sky does not belong to any known radiant is
referred to as a sporadic.

Initial danger at detection meteor trails would most definitely come from
short trails. Trails that are tens of pixels long would be incredibly hard
to detect among other objects present on the images. Meteors are fast
moving transient phenomena hence, due to their large angular velocities
it is not expected that they will leave short trails. Approximating their
expected minimal trail lengths, however, is a nontrivial matter. According
to the McLeod (1993) a good trail length measuring comparisons for visual
observations include

Pointers of the Big Dipper, Pollux and Castor, and Aquila’s
head (all 5 degrees), Orion’s Belt (3 degrees), and the open side
of the Big Dipper’s bowl (l0 degrees)

indicating that not very often a meteor trail spanning less than 3◦ on the
night sky is recorded. Such a meteor would surely cover the entire SDSS
imaging field (see section-1.2.1), and in the worst case scenario, if imaged
fully, would produce a trail at least 1489 pixels long. Considering these are
visual observations, it is likely that values are biased towards the longer
trails than actually occurring.

We can approximate the angular trail length even further by using the
formulas and tables for their angular velocities provided by IMO (1995a).
Theoretical angular velocities of meteors range from 0.2◦/s for meteors

11

whose end-point is within 5◦ of their radiant that is located no higher than
10◦ above the horizon, to 33◦/s for meteors whose end-point is perpendic-
ular to their radiant located in the zenith, therefore with the meteor close
to horizon. Meteors appearing at lower altitudes (closer to the horizon)
and meteors appearing and ending near the radiant point are dramatically
slower. These are extreme cases of the slowest and fastest angular velocity
theoretically possible. Mostly, depending on the position of the observer
relative to the radiant, meteor angular speeds are inside the 7-17◦/s range.
According to McLeod (1993):

A streak or flash with no moving body visible is 0.2 to 0.3
second, which constitutes the majority of meteors. Rather rare
is 0.1 second, only a few per year at most.

which means that the worst case scenario is a trail length of 0.7◦. If imaged
fully, corresponding trail length would be approximately 1000 pixels long.

Another criterion for assessing of meteor trail length is posed by the
limits of SDSS instruments. Large telescopes are often limited from ob-
serving bellow certain elevations above horizon due to atmospheric extinc-
tion and mirror deformations that occur. According to York et al. (2000)
SDSS reaches this limit at 35◦ of elevation. Furthermore according to IMO
(1995b):

For radiant elevations higher than 30◦ the apparent path
length l of a shower meteor amounts at most to half the dis-
tance from the radiant to the start point.

Which means that even for a meteor originating 1◦ from its radiant, if imaged
fully, the trail would be at least approximately 400 pixels long.

Even in the worst-case scenario the trails visible on the images are span-
ning a little under 1/3rd of the entire image. These trails, therefore, present
major objects on the images and will dominate over the noise, large stars
and galaxies that could also be present in them.

Another trail characteristic alongisde its length, is its width. At 110-
70km in height, compared to 300-32 000 km distant satelites, we can expect
meteors to leave a wider trail on the SDSS camera. Because meteors en-
ter Earth’s atmosphere under an angle, decreasing their height by 10-30km
during their duration, we can also expect the starting parts of their trails to
be thinner than the ending parts of their trails. This can be attributed to
the defocusing effect (Iye et al., 2007) of SDSS optical systems focused at
infinity.

Considering that we expect to see more satelite trails than meteor trails,
a precise differentiation criteria will be needed separating the two. Alongside
to the trail thickness, which is expected to be larger for meteors due to
defocusing effects, meteors would not exhibit significant periodicity in their

12

light curves. Satelites could, and usually do, exhibit periodical brightness
change that can be attributed to their rotation and subsequent periodical
reflection of sunlight from their solar panels.

Additionally it is expected that there will be a significant difference in
velocities. Fastest meteors recorded are those in retrograde orbits with re-
spect to Earth. Such meteors have speeds of ~70km/s (Trigo-Rodriguez
et al., 2008). By using the equation-1.1 we can calculate that at the height
of 200km orbital speed of a satelite would have to be 8km/s, at 300km
7.5km/s etc. For the fastest satelite orbiting the Earth, we still have an
order of magnitude difference in velocity from that of a meteor. We can
additionally calculate the largest satelite angular speed to be 1.5◦/s.

vsatelite =
√

GMz

Rz + h
(1.1)

Following the tables and formulas provided by IMO (1995a), including in
SDSS observing height limitation, we can see that this would match the
angular speed of a shower meteor traveling 25km/s ending within 10◦ radius
from its radiant. Speeds of 25km/s are among the slowest speeds meteoroids
can have and are attributed to meteoroids moving in the same direction
as Earth (Trigo-Rodriguez et al., 2008). Therefore only a small subset of
meteors will produce a potentially ambiguous trail.

1.2 Introduction to SDSS
The Sloan Digital Sky Survey (SDSS) is a high resolution, deep space, multi-
filter imaging and spectroscopic redshift survey dedicated to categorization
and measurement of all detected objects and their characteristics. SDSS is
separated into 3 different phases (SDSS-I, 2000-2005; SDSS-II, 2005-2008;
SDSS-III, 2008-2014), with different goals but has always maintained all
data publicly available and regularly issued. So far there have been 12
different data releases (DR’s) totaling to 60TB of data. Considering that a
systematic astrometry error has been fixed no earlier than DR9 (Ahn et al.,
2012), caution is advised when using the software on any of the older DR’s.
In this paper I have used DR12 (Alam et al., 2015), the latest DR available.
SDSS uses a 2.5m modified version of Ritchey-Chretien telescope which, due
to its hyperbolic mirrors, has a 3◦ field of view devoid of any major optical
errors (Gunn et al., 2006). Telescope is located at Apache Point Observatory
(APO) in Sunspot, New Mexico.

1.2.1 Camera

Light collected by the telescope is directed at a large imaging camera, shown
on figure-1.1, with a 2.5◦ field of view, constructed from two arrays of time
delay and integrate charged coupled devices (Gunn et al., 1998).

13

Time delay integration (TDI), or drift scanning, is an imaging tech-
nique developed in the 1950-1960’s for aerial reconnaissance. TDI enabled
longer exposure and prevented image smear. The gist of the technique is
to have a very long roll of film, which would then be dragged in front of
constantly opened shutter at the same relative speed as the imaging tar-
get. This meant that for a camera mounted on underbelly of an airplane
the film would roll at the, preferably constant, air-to-ground speed of the
aircraft. The survey operates under the same assumptions: imaging target
(the sky) is moving at a constant velocity relative to the CCD arrays. If the
registers of the CCD are clocked in synchronization with the imaging target
then the signal is added to the same register each clock cycle, therefore the
end signal is integrated through the full length it traversed over the CCD.

Figure 1.1: SDSS Camera layout.

As mentioned, the cam-
era is constructed out of two
CCD arrays: the photomet-
ric array and the astromet-
ric array. On a technical
figure-1.2 of the telescopes
focal plane, the photomet-
ric array is represented by
the array of squares in the
middle. It is constructed
out of 30 SITe/Tektronix
2048x1489 pixel CCDs ar-
ranged in six columns of five
CCDs, each aligned with the
pixel columns of the CCDs
themselves. Filters r, i, u, z,
and g cover the rows of the
array respectively. These CCDs produce the images that I will be process-
ing. Astrometric array, see figure-1.2, is represented by the rectangles above
and below the photometric array. Astrometric imaging array is constructed
out of 24 additional 2048x400 pixels CCDs placed around the photometric
array. This array produces the precise object astrometry and keeps track of
the focus of the telescope.

Because of the way camera is designed and the fact it functions in a
drift scan mode, it produces five images of a given object, all from the same
column of CCDs, one from each CCD in that column. It takes an object 54
seconds to move from the beginning of a CCD to the end, so the effective
exposure time in each filter is 54 seconds. Because there is some space
between the rows of CCDs it takes an image 71.7 seconds to move from the
beginning of one row to the next. Each row corresponds to a different filter,
so each object has one image in each filter, taken at 71.7 second intervals.

14

Figure 1.2: SDSS telescopes focal plane.

1.2.2 Run, camcol, filter, field

Consider a situation in which the telescope is tracking in such a way that it is
guaranteed that the sky will drift in parallel with the columns of the camera
shown in figure-1.2. One such continuous scan of the imaging telescope is
called a run. Each run therefore scans six long separated tracks on the sky,
one for each of the camera columns. These six tracks taken together are also
called a strip. For science quality runs, the lowest run number is 94, and
the highest is 8162.
Each column of CCDs is assigned an integer value from 1 to 6. These
columns are referred to as camcols. As noticeable from figure-1.2 between
each camcol there is a large gap. These gaps are filled by another overlapping
run. Two strips from the two overlapping runs make for a stripe.

It is possible to access each of six individual tracks of a run by referring to
them with a run-camcol designation. This would return us a single track
of the sky in five different filters. Naturally, it is also possible to further
make the selection by specifying a filter. This run-camcol-filter sky track
is then further divided into sections 2048x1361 pixels large, which are called
fields. Each field has the first 128 rows of the following field attached to
it, so that all survey images actually have a size of 2048x1489 pixels. Such
fields, that have the attached adjacent fields, are often referred to as frames.

15

Finally, there have been multiple reprocessing of the data over the years.
Each reprocessing, called a rerun. Rerun is not necessarily a repeated run;
a rerun could be any re-processing of the data. Usually reruns are just
old data reprocessed by newer software. Reruns have arbitrarily assigned
indices, therefore different runs with the same reruns are not necessarily
produced with the same software. However, currently, all runs, except very
few exceptional ones used for supernova search, have the same rerun: 301.

1.2.3 Data access, files and folder structure

Gray et al. (2002) projected that each year of operation, SDSS gathered
about 5TB of new data. According to data volume table standings on SDSS3
webpages4 in October 2015. database “weighed” around 60TB. Fortunately,
not all the data are needed in order to look for linear features.

In essence there are two ways to access SDSS data. Using Science Archive
Server (SAS)5 and Catalog Archive Server (CAS)6. SAS serves the binary
image files and full spectroscopic results, it allows users to download raw
(FITS) images and spectra from the survey. CAS provides access to the
database that contains the object catalogs and related data such as vari-
ous derived parameters. CAS’s data is stored in a commercial relational
database management system (DBMS) - Microsoft’s SQL Server. A for-
mer attempt at writing the software, (Bektešević, 2013), utilized both data
access points. That approach, however, proved hard to maintain and inef-
ficient to apply in a production environment. Currently only CAS files are
used in the processing of images.

Figure 1.3: CAS folder structure.

Maintaining a constant
folder structure, shown on
figure-1.3, is of crucial value
when dealing with such a
large number of files. SDSS
maintains a very logical
per-experiment based folder
structure. Top-most folder
is named after the DR in
question. That folder, i.e.
for DR12: /SAS/DR12, con-
tains folders of all the exper-
iments currently preformed
at SDSS such as APO,
APOGEE, MAnGA, MAR-
VELs and BOSS.

4https://www.sdss3.org/dr9/data_access/volume.php
5http://data.sdss3.org/
6http://skyserver.sdss.org/

16

https://www.sdss3.org/dr9/data_access/volume.php
http://data.sdss3.org/
http://skyserver.sdss.org/

BOSS, short for Baryon Oscillation Spectroscopic Survey (Dawson et al.,
2013), is the folder I am most interested in. It contains the frames taken
by the camera, corrected for distorsions and CCD anomalies, and their pho-
tometric calibrations. Corrected frame files in FITS format are located in
/boss/photoObj/frames/301/run/camcol/, where, of course, the run and
camcol have to be replaced with the actual values.

Each frame fits file has a naming convention of its own:

frame-[ugriz]-[0-9]6-[1-6]-[0-9]4.fits.bz2

where [ugriz] is the filter, [0-9]{6} is a zero-padded six-digit number contain-
ing the run number, [1-6] is the camera column (’camcol’) and [0-9]{4} is
the zero-padded, four-digit frame sequence number. For example, run 94’s
first field was numbered 11. If we then still specify that we want the first
camcol in the near infrared area, filter i, we would locate that file as:

/boss/photoObj/frames/301/94/1/frame-i-000094-1-0011.fits.bz2

Notice how the path values for run and camcol are not padded while the file
ones are. In addition notice that the fits file itself is compressed in a bz2
format.

Frame files have 4 header units, HDU[0-3]. HDU0 is a 2048x1489 “image”
of the sky. It is a 2048x1489 array of floating point values that represent sky-
subtracted corrected frame. HDU1 is the calibration vector, a 2048 element
float32 array used to calibrate HDU0. It is mostly used to de-calibrate the
frame back to the original state. HDU2 is a 259x192 float32 array that
represents the noise values of the sky. It has been already subtracted from
the raw data to obtain HDU0. HDU3 is an asTrans structure. asTrans
provides us with precise astrometric conversion coefficients for each field.
Full description of frame files can be found on the data model webpages7.

Another file type we are interested in, are the photoObj files. They are
located in /boss/photoObj/301/run/camcol/ and have the similar naming
convention as frame files:

photoObj-[0-9]{6}-[1-6]-[0-9]{4}.fits

photoObj files contain the full calibrated outputs of SDSS photometric
pipeline. Each photoObj file has two headers. HDU0 is just the keyword
template for HDU1. HDU1 contains a table of all objects registered by the
deblender and resolver pipeline and their full photometric profiles. These
files provide us with already calculated object center in pixel coordinates
on the image itself, while the asTrans provide only the means to calculate
them, with the radii containing 50% and 90% of petrosian flux, with an

7http://data.sdss3.org/datamodel/files/BOSS_PHOTOOBJ/frames/RERUN/RUN/
CAMCOL/frame.html

17

http://data.sdss3.org/datamodel/files/BOSS_PHOTOOBJ/frames/RERUN/RUN/CAMCOL/frame.html
http://data.sdss3.org/datamodel/files/BOSS_PHOTOOBJ/frames/RERUN/RUN/CAMCOL/frame.html

object type estimate (star, galaxy...), likelihoods that those estimates are
correct, various usefull warning flags and if possible with deVaucouleurs fit8.
These information are then used in removestars (see section-2.2.5.2) module
to delete these objects from the image.

In addition to data files SDSS maintains so called parameter files. These
files end with a “.par” extension. Parameter files are ASCII encoded and
are informally called “Yanny” files, or, rarely, FTCL files. They are used
in SDSS-III for storing moderate amounts of data in a form that is both
human and machine readable. Parameter file I am most interested in is
called runList. From this file it is possible to extract a list of all the runs,
their starting and ending frames, and state of completeness. runList.par file
is located in /boss/photo/redux/runList.par and its internal structure is
shown in listing-1.1.

Listing 1.1: sdssFileTypes.par
1 typedef struct {
2 int run; # Run number
3 char rerun []; # Relevant rerun directory
4 int exist; # Does a directory exist (has it ever been

queued) (0/1)?
5 int done; # Is this field done (0- Not done /1- Done)?
6 int calib; # Is this field calibrated (0-No/1- Yes)?
7 # All the fields below are only updated if

the run is done
8 # Otherwise , they are set to zero.
9 int startfield ; # Starting field - determined from fpObjc

present
10 int endfield ; # Ending field
11 char machine []; # The machine the data is on
12 char disk []; # The disk this run is on
13 } RUNDATA ;
14
15 RUNDATA 1933 157 1 1 1 0011 0122 unknown unknown
16 RUNDATA 3172 157 1 0 0 0 0 unknown unknown
17 RUNDATA 94 301 1 1 1 0011 0546 unknown unknown
18 ...
19 ...

1.3 Space and time constraint estimates

Using the runList.par file it is easy to find there are 842 runs. If we summed
the difference between endfields and startfields of each run, we would find
that the total number of 2048x1489pixel “sections” the runs were divided
into, is 187 044. Following the definition of a run (5 filters, 6 camcols), it
is easy to calculate that there are total of 5 611 320 frame files. If I was to

8de Vaucouleurs profile describes how the surface brightness of an elliptical galaxy
varies as a function of apparent distance from its center

18

spend a second of processing per frame the total time required to process
all the frames would be 65 days. If such a job would be done in parallel
over multiple different runs at the same time it would be possible to shorten
the total duration of the execution depending on the number of parallel
executions started. For example, if we run this task on a cluster with 10,
single-core, machines total execution time would be just about six and a half
days. For a cluster with, either, more machines, more cores or more CPUs
per machine, multiple independent processes can be started thus shortening
the execution time necessary even further.

However, the question if it is possible to constrain my calculations to a
second of execution remains! Quoting Bektešević (2013)

Execution times of presented code [for detection of linear fea-
tures] varies between 15 and 360 seconds and increases drasti-
cally with the size of the image, after all it is executing a number
of higher level operations per image pixel.

Stated later was that with the use of OpenCV library functions a perfor-
mance gain could be achieved that reduces the execution time of some frames
to under 10 seconds. However, based on a code listing titled Code Organi-
zation, average execution time was still about 28 seconds. If we spend half
a minute per frame file the total execution time is approximately 2000 days.
This is unsustainable execution time for any production environment.

Apart from the concerns about execution times there is also a concern
about the amount of HDD and RAM space required. In section-1.2.3 I stated
that “fortunately, not all 60TB of data are needed”. However the data we
do need ranks first in the SDSS data volume table. Corrected frame files
constitute the largest dataset of SDSS with 15.37TB of data. Complete
photometric catalogue is fifth on the list, constituting another 3.4TB of
data. Thus total of 18.8TB of HDD space is needed.

Consider, additionally, that the space requirements listed above are stated
for compressed bz2 files. It is safe to assume the largest contribution to
the size of a frame file is the HDU0. A 2048x1489 float32 array takes up
11.63MB of RAM. This is without taking into consideration the extra in-
formation stored in HDU1-3. HDU1-3 for all frames contain the same data
types and the same number of fits fields, just different values in them, there-
fore they all take the same amount of space. Thus, the exact, constant, size
of the frame fits files can be calculated to be 12.4MB. The average fits file
is therefore about 3.3 to 3.7 times bigger than its bz2 compressed file. This
means that the total size of all bz2 files, extracted, would be in the range of
51-57TB.

If such HDD space cannot be allocated in advance, then each file will
have to be bunziped during the program execution, hindering its time per-
formance. A short test example, such as in listing-1.2, demonstrates the
effect of bunzip on time performance. Two tests, 100 samples each with

19

resets in between, were conducted on an Intel i5 Asus laptop with 7.7GB
RAM and 500GB 7200rpm Seagate Momentus (ST9500420AS) HDD. HDD
benchmark on a 1000 samples, 10MB each, showed the average read rate to
be 78.6MB/s with 15.76 ms access time.

Listing 1.2: bunzip time test
1 >>> timeit . timeit (stmt="os.popen(’ bunzip2 -qkc .../ boss/

photoObj / frames /301/125/1/ frame -i -000125 -1 -0216. fits.bz2 >
test ’)", setup=" import os", number =100)

Results of the first test indicate that the average time per a bunzip command
is 0.807 seconds while the average of the second test was 0.804 seconds.
Similar times returned by the tests indicate that bunzip command is stable
and executes constantly in time. Remember, for a 1 second of processing
per frame, total execution time was 65 days on a single-core CPU. Even if
the workload is split over several machines these data extraction times alone
do not permit me longer processing times.

It is also highly likely that a multiple of different copies of the original
image will be made in the program. For example, for 10 copies of the
frame file HDU0 in a single process, 120-130MB of RAM has been allocated.
Ten copies of the “same” array might sound unreasonable; however it is
worthwhile noticing that numpy arrays9 (the HDU0 is represented by numpy
array) are immutable. That means a copy will have to be made every time a
function is called on that array. It might also be mandatory to keep several
copies, all processed in a different way, in order to compare the results of
linear feature search to achieve a more trustworthy result. Additionally it
will be necessary to store other variables (photoObj data, lists, dictionaries,
objects, etc..). It is not unreasonable to expect that a single process can
take up to 250MB-300MB of RAM. If we presume we are working on nodes
with quad-core CPU the amount of RAM needed increases four times, for
a node with two quad core CPUs RAM requirements increase eight times,
for a node with 3 quad core CPUs - twelve times... This might present a
problem if the production environment is a cluster with a high number of
CPUs when the required RAM per machine increases drastically. However,
I find it unlikely that the limiting factor to execution of the software will be
RAM requirements.

Lastly, when trying to analyze 5.6 million frames minimizing Type I
(“false positive”) and Type II (“false negative”) errors is crucial. If we
imagine that the software rejects 99% of images, as images without linear
features, software would still return 56 000 images possibly containing trails.
Each one of those would have to be checked manually to determine if it is

9Numpy is the fundamental package for scientific computing in Python. It contains
a special N-dimensional array type called ndarray that enables fast computation due to
its wrapped C++/FORTRAN implementation. See http://docs.scipy.org/doc/numpy/
reference/generated/numpy.ndarray.html.

20

http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html

a false positive or not. On the other hand severely restricting detection
parameters to let through only the most confident of detections would cer-
tainly introduce a very biased sample of only the most-brightest, longest
and thickest linear features and would therefore be a poor statistical sample
unfit for further analysis.

1.4 Why Python?
SDSS, officially, supports and offers solutions only for IDL programming
language10 which comes with a hefty price. Obvious choices are fast, com-
piled languages such as C, C++, Google’s Go or even Scala. However, while
researching I noticed that there are no wrappers or, code rewrites, of the
original IDL code for any of them which meant I would have to code ev-
erything myself. SDSS IDL library is quite encompassing and to do that
would certainly be a daunting task, if not impossible, for me. However, I
did find the entire IDL code written or, parts that allowed it, wrapped, as
a Python module. Alongside Pythons fast learning curve, this contributed
significantly to the decision to choose python as the programing language
for this project.

Python is a dynamically and strongly typed, object oriented program-
ming language with high interactive capabilities. It is open source and very
popular which means it has a plethora of available tools and easy-to-find sup-
port. In retrospective the meritorious efforts of other Python users when it
comes to programming support and education is the main reason LFDS was
written. Python, additionally, offers incredible introspective abilities which
are invaluable as a tool for debugging. Because it is an interpreted language
it will alleviate me from a series of non-obvious environment dependencies
that accompany compiled languages. This meant I could code on a PC,
with all the benefits of GUIs, debuggers, IDEs etc. and expect it to work
with minimal adjustments, on any other machine with installed Python and
necessary modules.

Unfortunately interpreted languages come with serious performance costs.
Python is slower than C++ by a factor of 10 to a 150 times, depending on
the task at hand11. Other programs usually rang slower than C++, with
exception of C, but not by much and not always. Because C++ is so easily
wrapped for Python12 and I had the most experience with it, I had decided
that any and all demanding operations must be written in C++ in order to
shorten the execution time. There are couple of ways of doing this. Easiest
way is through a module as a mediator, which thankfully exist in abundance

10http://www.exelisvis.com/ProductsServices/IDL.aspx
11http://benchmarksgame.alioth.debian.org/u32q/compare.php?lang=python3&

lang2=gcc.
12there is even a way to write C++ code directly in Python source code and then

compile it just-in-time with numpy’s weave

21

http://www.exelisvis.com/ProductsServices/IDL.aspx
http://benchmarksgame.alioth.debian.org/u32q/compare.php?lang=python3&lang2=gcc
http://benchmarksgame.alioth.debian.org/u32q/compare.php?lang=python3&lang2=gcc

for Python. Second way is by wrapping my own code either by “weaveing”
it in Python source itself, or by using outside helping tools such as SWIG.

Additionaly, the choice of Python proved to be fortuitous as information
spread that Large Synoptic Sky Survey (LSST) was to be coded entirely in
Python. LSST, currenlty under construction in Chile, is a scaled-up heir
of SDSST. It will use an 8.4m telescope and a 3 200 megapixel camera to
cover the entire visible sky in just a few nights. It is predicted that LSST
will produce 15 TB of data each night. Considering that the predicted field
of view of LSST is three times that of SDSS, it is a far better candidate for
telescopic meteor search than SDSS is.

22

Chapter 2

Linear Feature Detection
Software

In the previous section-1.3 I tried to provide an overview of all the problems
I will have to solve and think about in advance while writing the linear
feature detection software (LFDS). I believe section-1.3 can shed a lot of
light on topics discussed here.

In this chapter I will attempt to, as briefly as possible, describe the most
important modules used in my program, their function in my program and
explain how a few selected functions, that I consider important, work. After
that follows a general layout of my software and reasons it is organized the
way it is. I will try to describe everything LFDS can do, how to use it, all
the benefits and downfalls of current solutions and future prospects for de-
veloping. Finally I will try to explain the internals of the module responsible
for feature detection, how it works, what a normal frame file goes through
when it is being processed and its current performance achievements.

LFDS main purpose is to detect linear features on images and extract
data describing these features and images they were located on. There are
two main ways LFDS was intended to run. One is in a large-scale production
environment described in section-2.2.2 where only the detecttrails module,
described in section-2.2.5, is needed and the other is locally where user can
exploit all available modules. To run LFDS in the production enviroment
see section-2.2.2. To run a job locally user should run the start.sh scrip
located in the home folder of LFDS. Contents of the start.sh script are
displayed in listing-2.1. Each user should modify the BOSS environmental
variable and python version (s)he is using. Locally start.sh script will
run a python-idle, its default GUI, in an environment that enables the sdss,
section-2.1.1, to work.

23

Listing 2.1: start.sh
1 #!/ bin/bash
2 ##Copy the exact SDSS tree structure from boss onwards ,
3 ## somewhere on your machine and point BOSS to that address
4 export BOSS =~/ Desktop /boss
5 export FITSDMP =~/ Desktop / fits_dump /
6 ## change following env.var. at your own risk:
7 export PHOTO_REDUX =$BOSS/photo/redux
8 export BOSS_PHOTOOBJ =$BOSS/ photoObj
9 export BOSS_CAS =$BOSS/CAS

10 ##Feel free to change your Python version
11 ##not compatible to Python3
12 idle - python2 .7&

2.1 Dependencies
Less known non-built-in modules are described in their respective subsec-
tions. Additionally there is a set of popularly used non-built-in modules that
do not need any special attention such as: numpy, scipy, AstroPy, matplotlib
and PIL.

2.1.1 Erin Sheldon’s SDSSPY

SDSSPY 1 module consists of 10 different sub-modules: astrom, atlas, fam-
ily, files, flags, util, yanny and window. Its dependencies are numpy and
esutil. Because I will be using a lot of modules, but at the same time want
to stay user-friendly I will be getting rid of the modules I will not need and
do not use. Therefore I downloaded esutil2 and sdsspy3 modules and started
deleting files and dependencies I will not need. From sdsspy I deleted ev-
erything except files, util and yanny modules. I nested the esutil module
folder within the sdsspy module folder and deleted fits, random and recfile
modules from it. I wanted to avoid having to alter the PYTHONPATH
environmental variable to be dependent on the location of the esutil folder,
so all the import statements in sdsspy have to be changed to relative import
statements, as shown for files module by listings 2.2 and 2.3.

Listing 2.2: original SDSSPY files module
1 import esutil
2 from esutil . ostools import path_join
3 from esutil . numpy_util import where1
4
5 import sdsspy
6 from .util import FILTERNUM , FILTERCHARS

1https://code.google.com/p/sdsspy
2http://code.google.com/p/esutil/
3http://code.google.com/p/sdsspy/

24

https://code.google.com/p/sdsspy
http://code.google.com/p/esutil/
http://code.google.com/p/sdsspy/

Listing 2.3: edited SDSSPY files module
1 from esutil . ostools import path_join
2 from esutil . numpy_util import where1
3 from esutil import io
4 from esutil import ostools
5 from esutil import sqlite_util
6
7 from .util import FILTERNUM , FILTERCHARS

Notice how the esutil is no longer a global name. Now I am accessing the
folder within the sdsspy module folder, not the esutil module installed in the
default \usr\local\lib\python2.7\dist-packages. This also means that
all the functions referencing esutil module will have to change to reflect this.
As an example, again, let us use the files module. It contains 3 functions that
need to be updated: read, _glob_hdfs_pattern and array2sqlite. Shortest
among them is the _glob_hdfs_pattern, so let us display the change that
has to be made in listings 2.4 and 2.5 (line 4).

Listing 2.4: original _glob_hdfs_pattern function
1 def _glob_hdfs_pattern (pattern):
2 # must make an external call
3 command = " hadoop fs -ls "+ pattern +"|awk ’NF ==8{ print $8}’"
4 exit_code ,stdo ,stde= esutil . ostools . exec_process (command)
5 if exit_code != 0:
6 raise ValueError ("Error executing command ’%s ’: ’%s’" %

(command ,stde))
7 fl = stdo.split(’\n’)
8 fl = [’hdfs :// ’+f for f in fl if f != ’’]
9 return fl

Listing 2.5: edited _glob_hdfs_pattern function
1 def _glob_hdfs_pattern (pattern):
2 # must make an external call
3 command = " hadoop fs -ls "+ pattern +"|awk ’NF ==8{ print $8}’"
4 exit_code ,stdo ,stde= ostools . exec_process (command)
5 if exit_code != 0:
6 raise ValueError ("Error executing command ’%s ’: ’%s’" %

(command ,stde))
7 fl = stdo.split(’\n’)
8 fl = [’hdfs :// ’+f for f in fl if f != ’’]
9 return fl

These types of changes have to happen in all files that rely on esutil
module. This way I removed the need to install esutil and sdsspy. I can
now place sdsspy, renamed into sdss, where I need it and import it straight
from there. files module basically does everything described in section-
1.2.3. It creates filenames, folder names, retrieves lists of runs from which
startfields and endfields can be read, expands sdss environmental variables
etc... One crucial design decision that allowed this was the fact that sdsspy

25

uses environmental variables to locate the folders, and those are easily set-up
in any *nix environment.

2.1.2 Erin Sheldon’s FITSIO

FITSIO4 is a module for handling FITS file input/output actions. This
is a wrapper of NASA’s cfitsio library of C and Fortran routines used to
hide the internal complexities of FITS files and enable users high-level fits
file handling. FITSIO has a couple of lower-level function used for quick
reading of fits files as well as a very powerful fits class. FITSIO’s last major
commit was in 2013, but the repo is still active, signaling that it is a very
stable module. I have not bundled this module, nor do I plan to, because it
contains C and Fortran files that have to be compiled on the system itself.

Originally I used PyFITS module developed by Space Telescope Science
Institute (STScI). However, I have repeatedly run into errors and incompati-
bilities when reading SDSS’s non-frame fits formats. Meanwhile (~2010), an
open-source package AstroPy began development.AstroPy’s primary goal is
to unify all currently availible modules for astronomy under a single name.
By community decision, PyFITS became the primary module for handling
FITS files. Since then PyFITS has restarted its developing and is currently
bundled with the AstroPy package. Because of the AstroPy’s popularity
and the fact I already use it in my program, it would be prudent and user-
friendly to ensure that the user has a choice between FITSIO and AstroPy.
This can be handled by a try-catch block import statements that check for
the existance of either package but is currently not yet supported.

2.1.3 OpenCV

Open Source Computer Vision5 is a Python library, originally written in C
but ported to Python, Java, C++ and others. OpenCV is immensely power-
ful; it can even analyze video input in real time, and is used as a solution
in industrial and commercial software. OpenCV is the cornerstone of this
whole project. Without the endless list of extremely well optimized func-
tions within OpenCV, writing this project in python would be impossible.
Unfortunately it is the least user-friendly module/library from the list of
used modules. With poor documentation and my, at the time, low level of
entry knowledge it was hard to learn how to use it.

There are a number of functions I use to remove noise (erosion and
dilatation), enhance dim features (histogram equalization) and generally
clean up the image before I ever get to detecting for the presence of lines,
many more functions I use to confirm if the detection is plausible or not
(Canny edge, contours, minimal area rectangle fitting), but to delve into

4https://github.com/esheldon/fitsio
5http://opencv.org/

26

https://github.com/esheldon/fitsio
http://opencv.org/

details of each of them here would be impossible. The bottom line is that
the effect of all these functions can be explained in a couple of sentences
and that they all serve to prepare the image for the line detection algorithm
thus, I will provide only a short run-down of their functionality and devote
more time to the line detecting algorithm. Imagine that for a test image we
use a black image with a white ring in the middle.

2.1.3.1 Erosion and Dilatation

Erosion and dilatation are morphological operators. They both need a kernel
that they drag over the image. Kernel is a matrix with a defined anchoring
element, usually its center. A new value of the element located in the anchor
point is decided by its neighbouring elements for which the kernel values are
not zero.
Erosion will assign the anchored pixel the minimal value found in that pixels
kernel neighbourhood.
Dilatation will assign the anchored pixel the maximal value found in that
pixels kernel neigbourhood.
Various combinations of Erosion and Dilatation can result in other morpho-
logical operators such as opening, closing, blackhat, tophat and morpholog-
ical gradient.

2.1.3.2 Histogram equalization

Histogram equalization is a technique for adjusting contrast. Imagine our
test image is not completely white and black. Imagine our ring was bright
gray, i.e. intensity value 50, in the middle and darker gray, intensity value
30, at its edges. Histogram equalization would register that intensity value
“50” was the largest such value and assign it the maximal possible value, 255
for grayscale images. The rest of the gray shades would then be assigned
their new values with respect to the total cumulative distribution function
(CDF). Because new values are calculated based on the CDF, equalization
differs from normalization.

2.1.3.3 Canny edge detection

Canny edge detection is a method of finding edges in a picture first developed
by Canny (1986). First the image is blurred with a 5x5 Gaussian blur matrix.
Using a gradient kernel (Sobel, Roberts cross, Prewitt) an intensity gradient
for each pixel is found and that gradient gets proclaimed an “edge”. Edge is
then rounded in one of 4 directions (2 diagonal, vertical or horizontal) after
which so called non-maximum suppression is applied. All edges are checked
to see if they are indeed a local maximum in the direction of the gradient
by comparing them to the neighbouring pixels. Remaining edges are filtered
through two user defined thresholds to remove noise-induced edges. This is

27

known as hysteresis thresholding. Those pixels that are above the higher
threshold are automatically declared to be actual edges. Pixels bellow the
lower threshold are automatically discarded. Remaining “in-between” pixels
are judged by the connectivity criterion. If the in-between pixel can be
connected through any number of steps to a pixel above the higher threshold
it is declared an edge. In the case pixel can not be shown to be connected
to any of edges above the threshold, it is discarded. Applied to our image
its result would be 2 concentric circles, one following the outer edge of our
ring, one following the inner.

2.1.3.4 Contours detection

A contour is defined as a closed edge. This method, first developed by
Suzuki and Keiichi (1985), takes edges returned by Canny and finds only
those among them that form a closed shape. There are two important
parameters to OpenCv’s contour function; its mode and method. Mode
stands for contour retrieval mode of which there are four types shown in
table-2.1. Method stands for contour detection method approximations.
Methods and their meanings are listed in table-2.2.

Mode name Mode description
RETR_EXTERNAL retrieves only the extreme outer contours.

RETR_LIST retrieves all of the contours without any hierarchy.
RETR_CCOMP retrieves all of the contours and organizes them

into a two-level hierarchy, external and internal
boundaries.

RETR_TREE retrieves all of the contours and reconstructs a full
hierarchy tree.

Table 2.1: Contours mode options.

Method name Method description
CHAIN_APPROX_NONE stores all contour points.
CHAIN_APPROX_SIMPLE stores only the end points.

CHAIN_APPROX_TC89_L1
CHAIN_APPROX_TC89_KCOS

applies one of the flavours of the Teh
and Chin (1989) chain approximation
algorithm.

Table 2.2: Contours method options.

2.1.3.5 Minimal Area Rectangle

This a function that can look through the contours and fit on them rectan-
gles of minimal surface area that still encompass the entire contour. These

28

rectangles can have arbitrary rotation. A fast, O(n), method for finding
minimal area rectangles was first proposed by Toussaint (1983). The au-
thor describes the following procedure for finding minimal area rectangles:
first, vertices of the objects minimal and maximal x and y coordinates are
found and calipers are constructed from the points of intersection of those
vertices. These calipers are rotated around the object. Because the minimal
area rectangle enclosing a convex polygon will have a side collinear to one
of the edges of the polygon, we only have to check the angles the calipers
close with the polygon sides. The area of each rectangle formed by the two
constructed calipers is calculated and compared until a minimal result is
found.

2.1.3.6 Hough transform

Hough transform (Hough, 1959) refers to a feature extraction technique used
in computer vision that is based on a voting procedure that favors certain
class of shapes. In Cartesian coordinates a line can be represented by an
equation in a so called slope intercept form, shown in equation-2.1. By
parameterizing the line slope, m, and intercept parameter b, we can rewrite
the equation-2.1 as equation-2.2 and by rearranging that equation we get to
the final form seen in equation-2.3.

y = mx+ b (2.1)

y = −cos(θ)
sin(θ) x+ r

sin(θ) (2.2)

r = x cos(θ) + y sin(θ) (2.3)

The transformed coordinate space which has θ and r as its axes is called
Hough space. If for a given (x0, y0) in Cartesian coordinates we plot a family
of lines going through that point we get a sinusoid. A set of points belonging
to a line in Cartesian space get mapped to a set of sinusoids intersecting at
a point in Hough space. Thus we reduced the problem of detecting a line in
an image to a problem of detecting points in Hough space. Once we detect
the local maxima of Hough space, we can do an inverse transform, by using
equation-2.2, to get the corresponding line parameters in Cartesian space.

Basic Hough transformation algorithm is fairly easy to reproduce. Set
a threshold value that determines which pixels on an image are considered
“active”, i.e. whose intensity is greater than threshold. For each active
pixel, which sets our (x0, y0), we draw a family of lines. Each consecutive
line in a family has its θ increased by a preset value theta_res determining
the resolution we want. For each θ, we calculate r and increase the vote in
Hough space at (r, θ) for one. Once all active pixels have been exhausted
we need to search through the coordinates of Hough space for accumulators

29

Figure 2.1: Hough space of an image with 3 dots.

with the largest amount of votes. This is not hard to do, however a lot of
subtlety can lie in the way these local maxima are found.

Figure-2.1 shows why careful determination of max. accumulator coor-
dinates is so important. On the zoomed section of Hough space (top right)
we see that there is actually a large number of highly active accumulators in
the neighbourhood of our detection. Each of those will fit a line that passes
through the three dots with varying precision. A proper centroid location
method would probably yield the best (r, θ) values, but considering how
symmetrically spaced the active accumulators are around the actual value,
a good, computationally less complex, approach would be averaging a set of
top n active accumulators. Notice, as well, how pronounced and tight are
sinusoids left by full dots. Dots are in fact disks. Within them there is a
lot of neighbouring active pixels. All of them will produce a similar r and θ
and therefore leave a very distinguishable compact track. It is important to
notice that the line doesn not actually exist, but a line is detected anyhow.

30

Figure 2.2: Hough space of an image with a circle and a line.

Figure 2.3: Hough space of an image with a line and lot of circles.

31

Figures 2.2 and 2.3 show the opposite case of a disk. We see that, unlike
the filled dots, circles and generally objects that are not filled in produce
wide, less distinguishable, tracks in the Hough space. Additionaly, figure-
2.3 shows how robust and unaffected by noise Hough transform is. Line
accumulators remained as visible as in the case of a single circle, figure-2.2.
It would seem it is not as important to maintain the complete trail length
as long as parts left behind are “filled out”. This also means that any disk-
like objects (i.e. stars, galaxies, nebulae) will have to be “hollowed” out or
completely removed, otherwise I risk a false detection. If a couple of bigger,
brighter stars laid on the same apparent line, Hough might detect them
instead of the actual line, as was the case in figure-2.1.

2.2 LFDS Modules
LFDS is divided into five top modules: createjobs, errors, results, analyze
and detecttrails as shown on figure-2.4. Currently the following naming
convention is practiced:

• module names are completely lowercase strings, no special characters,

• classes are CamelCase capitalized, no special characters,

• methods are lowerCamelCase capitalized, underscore and dunder al-
lowed only as a part of Python syntax,

• functions are completely lowercase; words are separated with an un-
derscore.

Often the names of classes will be the same as the names of modules, different
naming conventions still applied though. In fact the only case where this isn
not true, are the utility files. End idea is to keep the namespace clean by
exposing, if possible, only a single class per module. Exposed class should be
able to reproduce all major functionalities of that module. This is done so
that once I convert LFDS to a full-fledged python package I can expose all
the functionality from all the modules under a single name. Currently LFDS
is still not a package and all the modules have to be imported by themselves.
This can lead to confusing situations where you can influence an imported
module1 by changing it, accidentally or not, through module2.module1 when
module2 is importing module1. Currently this is not a huge problem but
since I wrote the imagechecker GUI, I have been considering the possibility
to expose more of the module’s functionality through it. In that case I would
have to expose certain objects, i.e. Results and Errors instances, on a global
level. That way I could access them through the imagechecker GUI, interact
with them, return to the Python prompt and still have them, changed, and
ready for further processing from within the terminal. In that case this will
most likely present a problem.

32

Figure 2.4: Modules and submodules of LFDS

Generally I strive to make each module independent of each other and
dependent models are generally “stacked” such that the parent module con-
tains the dependancy. Therefore sdss contains esutil, and detecttrails con-
tains sdss module. However, in order to analyze the results it is often nec-
essary to create filenames and locations which is why analyze still imports
sdss. createjobs module imports results module because Jobs class can be
instantiated by Results object in order to create new jobs containing only
the frames found in the Results instance used. At the same time errors
module can use createjobs, since parameters can be estimated based on the
error, to generate a new set of jobs automatically. What the jobs are and
why they are used is explained in more detail in section-2.2.2.

2.2.1 analyse

This module deals mainly with analyzing the end results. It is a utility
module that is barely in its infancy. Ideally this module would expose to
the user a set of generalized functions capable of plotting any value vs any
other value of the results, it would be capable of producing a set of useful
graphs that the user could create from within the results module to inspect
the validity of his results and it was also envisioned as a module to wrap
various statistics tools useful for the results module. Currently it can pro-
duce certain fixed plots of our preliminary results, has certain capabilities
to make plots from yanny files (see section-1.2.3) but that is about it. Issues
that are mostly plaguing me in this module are all the extra dependen-
cies introduced by matplotlib plotting module, especially when it comes to

33

postscript, TEXand metafonts. I am not certain if I will keep this module at
the time I convert LFDS into a package or not, but right now it is useful as
a tools dumping grounds for scripts and tools I currently use for displaying
results.

2.2.2 createjobs

To explain the purpose of this module I have to briefly describe the pro-
duction environment my program is running in. Currently LFDS is run
in Belgrade on a cluster called Fermi. Fermi cluster has a master node,
12 computing nodes and 2 storage nodes. Master node, called fermi, ad-
ministers the computing nodes, handles file transfers, controls and executes
programs on the computing nodes and is the main communication channel
from users to the computing nodes. Computing nodes are called fermi-node
and are labeled 1-12. Each fermi-node has 24GB RAM, 1TB HDD, 2 Intel
Xeon X5675 3GHz six core CPUs for a total of 12 cores and 2 Nvidia GPU
M2090 Computing Modules based on Fermi CUDA architecture. Storage
nodes are named fermi-stor1 and 2. Together they have a total of 6 HDDs
4TB each for a total of 24TB, which is enough to store the files we need (see
section-1.3).

Because this is a cluster and not a “regular” computer, to execute a pro-
gram user has to submit jobs through the master node. A job is a sequence
of control statements that represent a single “unit of work” for an Operating
System (OS). Job describes what environment the OS will provide for the
execution of one or more programs. A series of jobs, or programs, executing
without the need of user intervention is called a batch. That means that in a
batch all input parameters for the execution of jobs must be provided before-
hand through scripts, command-line arguments or control files. (T)erascale
(O)pen-source (R)esource and (Que)ue Manager or TORQUE provides con-
trol over batch jobs and distributed computing services on fermi. TORQUE
uses control files to provide all the necessary environment, data and execu-
tion parameters to a job in the form of a distributed queuing system file
(dqs). In listing 2.6 I show a generic dqs file that is used by createjobs mod-
ule. In essence the actual and generic dqs files are the same except all the
capitalized strings are replaced with actual values.

34

Listing 2.6: Generic dqs file
1 #!/ usr/bin/ksh
2 #PBS -N JOBNAME
3 #PBS -S /usr/bin/ksh
4 #PBS -q QUEUE
5 #PBS -l nodes= NODEFLAG :ppn=PPN
6 #PBS -l walltime =WALLCLOCK ,cput= CPUTIME
7 #PBS -m e
8 #QSUB -eo -me
9 cd ~

10 user=‘whoami ‘
11 hss=‘hostname ‘
12
13 if [" $PBS_ENVIRONMENT " != ""] ; then
14 TMPJOB_ID = $PBS_JOBID .$$
15 JOB_ID =${ TMPJOB_ID %%[!0 -9]*}. $$
16 ARC=‘uname ‘
17 fi
18 nodefile = $PBS_NODEFILE
19 if [-r $nodefile] ; then
20 nodes=$(sort $nodefile | uniq)
21 else
22 nodes= localhost
23 fi
24
25 export FITSDMP =/ scratch /$hss/$user/ fits_dump
26 export BOSS =/ scratch1 / FERMINODE /dr9/boss
27 export PHOTO_REDUX =$BOSS/photo/redux
28 export BOSS_PHOTOOBJ =$BOSS/ photoObj
29 mkdir -p / scratch /$hss/$user
30 mkdir -p / scratch /$hss/$user/ test_trails
31 mkdir -p / scratch /$hss/$user/ fits_dump
32 mkdir -p /home/fermi/$user/ run_results /
33 mkdir -p /home/fermi/$user/ run_results / $JOB_ID
34
35 cd / scratch /$hss/$user/ test_trails
36 mkdir -p / scratch /$hss/$user/ test_trails / $JOB_ID
37 cd $JOB_ID
38
39 echo $nodes >nodes
40 echo $PBS_EXEC_HOST >aaa2
41 set >aaa3 # contains host parameters
42 cp /home/fermi/$user/ run_detect /*. py* / scratch /$hss/$user/

test_trails / $JOB_ID /
43 mkdir sdss
44 cp -r /home/fermi/$user/ run_detect /sdss /* sdss/
45 source ~/. bashrc
46
47 COMMAND
48
49 cp *. txt /home/fermi/$user/ run_results / $JOB_ID
50 rm a* nodes *py*
51 rm -rf sdss

35

LFDS is not designed to run in parallel but concurrently on disjoint
subsets of data. Taking into account the amount of information user has
to provide per dqs file, and the amount of jobs I would be starting, writing
each by hand was out of the question. In the beginning I used various shell
tools, such as sed and grep, wrapped in python scripts to change dqs files.
Soon I found that approach too restricting, time consuming and it produced
too many errors. Therefore, I wrote createjobs module that is able to write
these dqs files with the flexibility I required.

The main pillar for job creating is Jobs class. In the background it uses
writer module that is hidden from the user to write the parameters into a
template. Default template is called "generic", see listing-2.6, and can be
found in the same folder createjobs module resides in. Since the environment
paths and cp paths can not be changed through Jobs class it might necessary
to edit the template, or a new one can be sent in its place by specifying
template_path variable at Jobs instantiation time. When writing your own
template it is important to specify all parameters, shown in table-2.3, as
uppercase single words.

Parameter name Description
JOBNAME Name of the job as seen by qstat
QUEUE TORQUE queue type (parallel, serial, standard).

Note that wallclock and cputime limitations depend
on queue type.

NODEFLAG Node on which the job will be executed. By default
set to "1" which lets Maui optimize job execution.
Read Jobs docstring for details.

PPN Sets max. number of processors per node program
is allowed to execute on. Default is 3. Note that
because of the RAM requirements, large ppn might
initiate swapping.

WALLCLOCK Sets maximal allowed real-world execution time. De-
fault: 24h.

CPUTIME Sets maximal allowed time spent executing on CPU.
Default: 48h.

COMMAND Command that gets executed on fermi-node’s. See
createjobs docstring for details.

Table 2.3: Generic dqs file parameter names and description.

There are 3 ways Jobs class is designed to be used. The simplest scenario
is just specifying the number of jobs you want as shown in listing-2.7. Jobs
will then create a series of jobN.dqs files, where N ranges from 0 to number
of jobs specified, Njobs. In each dqs file the COMMAND keyword will be
replaced with a series of Nruns/Njobs command attributes of Jobs class.

36

Runs are taken from the runlist yanny file (see section-1.2.3) which should
be located in $BOSS/photo/redux folder. Only runs with the rerun 301 are
taken into consideration. Alongside with the dqs file, another file called
batch.sh gets created. That file can be used to launch all the jobs at once
by using source command in terminal.

Listing 2.7: Jobs use case 1
1 >>> import createjobs as cj
2 >>> jobs = cj.Jobs (500)
3 >>> jobs. create ()
4 There are no runs to create jobs from.
5 Creating jobs for all runs in runlist .par file.
6
7 Creating :
8 765 jobs with 1 runs per job
9 Queue: standard

10 Wallclock : 24:00:00
11 Cputime : 48:00:00
12 Ppn: 3
13 Path: /home/user/ Desktop /.../ jobs

User will be notified about all important parameters that were set, in-
cluding path where the files are stored. Notice that we specified 500 jobs
to be created but 765 jobs were actually created. This is intentional. If
Jobs was instructed to create 100 jobs, it would create 110 jobs with 7 runs
per job. Jobs class looks for the next larger whole number divisor to split
the jobs between. It is better to send in more jobs than to risk jobs failing
because WALLCLOCK or CPUTIME was exceeded.

Second way Jobs class can be used is by sending a list of runs as shown
in listing-2.8. This enables user to select which runs specifically, (s)he wants
to process.

Listing 2.8: Jobs use case 2
1 >>> runs = [125 , 99, 2888 , 1447]
2 >>> jobs = cj.Jobs (2, runs=runs)
3 >>> jobs. create ()
4 Creating :
5 2 jobs with 2 runs per job
6 Queue: standard
7 Wallclock : 24:00:00
8 Cputime : 48:00:00
9 Ppn: 3

10 Path: /home/user/ Desktop /.../ jobs

In both examples so far what is actually being executed on the fermi-
node is the following COMMAND:

1 python -c " import detecttrails as dt;
2 dt. DetectTrails (run =125). process ()"
3 python -c " import detecttrails as dt;
4 dt. DetectTrails (run =99). process ()"

37

It is possible to edit the command that is going to be executed. Specifying
additional keyword arguments (kwargs) to Jobs class helps you utilize De-
tectTrails class run options. Sent kwargs are applied globally across every
job. It is not possible to specify separate kwargs for each job. For example,
continuing the example in listing-2.8 we have the following listing-2.9:

Listing 2.9: Jobs use case 2, further specification
1 >>> jobs = cj.Jobs (2, runs=runs , camcol =1)
2 >>> jobs. create ()

which would create 2 jobs with 2 runs per job as the above example. But
the actual calls to DetectTrails class would now look like:

1 python -c " import detecttrails as dt;
2 dt. DetectTrails (run =125 , camcol =1). process ()"
3 python -c " import detecttrails as dt;
4 dt. DetectTrails (run =99, camcol =1). process ()"

This would process only the camcol 1 of given runs. The actual processing
selection is done by detecttrails module described in section-2.2.5. All cre-
atejobs module does is write the dqs files. Listing-2.10 shows it is possible to
utilize the DetectTrails class flexibility even further by specifying the filter
to be processed.

Listing 2.10: Jobs use case 2, fully specified.
1 >>> jobs = cj.Jobs (2, runs=runs , camcol =1, filter ="i")

Processing of a single frame can be done locally even on a relatively weak
PC thus I have not extended this feature to cover specifying frames or frame
ranges.

Because the DetectTrails class is so flexible, in the sense that apart
from the target of execution user can, by changing execution parameters,
influence the execution itself, it is possible to even further fine tune your
job behaviour. By changing the default COMMAND it is possible to supply
additional execution parameters. By default, keyword argument command
is set to:

1 python -c " import detecttrails as dt; dt. DetectTrails ($).
process ()"

Where "$" sign gets expanded by the writer module depending on the pa-
rameters sent to Jobs class at instantiation, as seen in listings 2.8, 2.9 and
2.10. Because the "$" sign stands for arguments of DetectTrails class at in-
stantiation, there should always be a "$" character present in the command
and it should always be within the round brackets following DetectTrails.
Listing-2.11 shows how much control the user has over writing dqs files and
program execution by combining the full specification of execution target
and a COMMAND override.

38

Listing 2.11: Jobs use case, overriding COMMAND
1 >>> jobs = cj.Jobs (2, runs=runs , camcol =1, filter ="i")
2 >>> jobs. command = ’python -c " import detecttrails as dt;’+\
3 ’x = dt. DetectTrails ($);’ +\
4 ’x. params_bright [\’ debug \’] = True;’+\
5 ’x. process ()"\n’
6 >>> jobs. create ()
7 #or a more user - friendly approach would be a multiline comment
8 >>> newcommand ="""
9 python -c " import detectrails as dt;

10 x=dt. DetectTrails ($);
11 x. params_bright [’debug ’] = True;
12 x. process "
13 """
14 >>> jobs = cj.Jobs (2, runs=runs , camcol =1, filter ="i", command =

newcommand)
15 >>> jobs. create ()

One of the dqs files that would get written by listing-2.11 would have their
COMMAND string replaced by the string shown in listing-2.12. The other
dqs file would have his COMMAND string replaced with the similar com-
mand string, except the selected run identifier would be 99.

Listing 2.12: Example of a command attribute overriding COMMAND
string in a dqs file.

1 python -c " import detecttrails as dt;
2 x = dt. DetectTrails (run =125 , camcol =1, filter =i);
3 x. params_bright [’debug ’] = True;
4 x. process ()"

In the listing-2.11 first example notice that quotation-marks are trice nested
as follows ’ (" (\’ \’) ") ’. Outter single-quotes, ’ ,encom-
pass the entire command (python -c....\n), these single quotes are necessary
because we have to send a string as our command attribute of Jobs class. In-
ner double-quotes, " ,enclose the string that will be executed by the python
-c command in the actual job#.dqs file. Innermost escaped single-quotes,
\’, mark a new string that will get interpreted as an argument inside the
string sent to python -c. General useful guidelines are to put

1. the outter-most quotation as single ” marks,

2. everything past "-c" flag in double quotation marks "",

3. further quotation marks should be escaped single quotations,

4. in the case of a single-line string an explicit newline character should
always be at the end.

Since this is really complicated to remember, I recommend using Python’s
multiline comment. In that case user only has to worry about having a

39

single/double quotation marks for everything past the -c flag and then to
use double/single quotation marks respectively for any string declared inside.
Finally, all of these are also valid options to send to Jobs class for usage case
1, see listing-2.7.

So far I have shown how to create dqs job files for all runs or for some
runs-camcol-filter combination. However it is still impossible to create jobs
that can handle frames as the basic data specification unit. Solution to this
problem is to instantiate a Results object and send it to Jobs class as shown
in listing-2.13. Results class and results module is explained in more details
in section-2.2.4.

Listing 2.13: Jobs use case 3
1 >>> import results as res
2 >>> r = res. Results (folderpath ="/home/user /.../ res")
3 >>> jobs = cj.Jobs (5, runs=r)
4 >>> jobs. create ()
5 Creating :
6 6 jobs with 1372 runs per job
7 Queue: standard
8 Wallclock : 24:00:00
9 Cputime : 48:00:00

10 Ppn: 3
11 Path: /home/user /.../ createjobs /jobs

This time it is not runs that are executing but frames. Because frame
execution times are much lower than run execution times (or any camcol-
filter specification, see section-3.1), a larger number of frames per job can
be executed.

2.2.3 errors

Errors are of particular concern in the execution of LFDS. Imagine that a
file on one of the disks on fermi-store got corrupted. If that file were to
cause an error somewhere in internals of the detection algorithm that error
would propagate through the DetectTrails module all the way up until the
job execution of that entire run would have to be terminated. To stop such
spurious errors from interrupting the execution of a possibly week long job,
all errors are suppressed. In order for the user to have full oversight of the
job execution and results it is very important to log all errors alongside
with their reasons so that they can be appropriately dealt with in the after-
processing and results analysis.

detecttrails module currently outputs two files on the fermi-node where it
is executed, results.txt and errors.txt. The jobs dqs file instructs the OS to
copy (see listing-2.6 line 49) the output files to a folder on the master node
named after the unique identifier JOB_ID. That folder gets created only if it
does not exist already, see listing-2.6 line 33. This module is designed to read
in and display these errors in a more human readable format, groups them

40

by run-camcol-filter identifiers to help narrow down where the problems
may arise, provides some basic statistics about error origin (DetectTrails
or Fermi) and is capable of creating new jobs just for the erroneous files.
In the future I would like to be able to sort the error reports based on the
type of error, provide some basic histogram plots of most general error types
(file error, arithmetic error, unknown...) through the analyse module and
possibly include these capabilities in the GUI described in section-2.2.4.1.
Since currently I am still dealing with a smaller developing sample this
module still is not of such a crucial value and has been the least developed
(time-vise).

Example of a single error report is shown in listing-2.14. Error report
format is as follows: run, camcol, field and filter data are placed in the first
line, followed by a 3 recursions deep traceback message, and in the last line
the error message itself is printed again.

Listing 2.14: Error format
1 94 ,3 ,251 ,i
2 Traceback (most recent call last):
3 File " detecttrails .py", line 47, in process_field
4 ** params_removestars)
5 File " removestars .py", line 207, in RemoveStars
6 field= _field))
7 File " removestars .py", line 84, in photoObjRead
8 header1 , header2 = fitsio .read(path_to_photoOBJ , header ="

True")
9 ValueError : No extensions have data

10 No extensions have data

2.2.4 results

results module is used to read and interpret the results.txt files. Main class
in results module is the Results class. Results is a container class for Result
objects. Results references the same Result object twice. Once when the
Result is read into a list, called lsitr, and the second time when Result is
sorted into a dictionary, called dictr. Because it is the same object referenced
in both listr and dictr, changing Result in either of them will update the
Result object in the other one. There are two ways to read results into
Results. First way is by reading them from folders created by the dqs file
by providing the Results class a folderpath keyword argument. Second way
is by providing the Results class keyword argument results. Variable sent
to the results kwarg should be a list of Result objects. This is useful if the
user wants to mock a Results objects for couple of frames only so that (s)he
could use the createjobs module as shown in listing-2.13. The way Result
objects are referenced and structure of the dictionary is shown on figure-2.5.

This complication was necessary because a lot of time we want fast access
to certain run\camcol\filter\frame and sometimes we want to perform an

41

Figure 2.5: Design of Results class.

operation on all Result objects in Results. Accessing method for a list
would comprise of searching through the entire list for the wanted Result
which is O(n) operations. Unless the list was sorted, at which point a
linear relationship between the index and Result objects could be made for
a O(1) access time. Until we try to append or remove an Result object
from Results, at which point the entire sorting procedure would have to be
repeated. Additionally, it is still unclear how the linear function would be
determined. For example, a list for all the runs, filters, camcols and frames
could be allocated each time a Results object is. However, because trails
are a rare phenomenon on images, I am expecting that the actual number
of Result objects found would be a very small subset of all images. To open
such a large array at each new Results object instantiation would certainly
be very memory inefficient. On the other hand just using the Pythons
dictionary container is a bad practical setup. The way end-users would have
to loop through it6 to retrieve all the results would prove too time costly to
be a viable solution.

Current solution offers users choice between using listr and dictr, at least
until such a time I can properly override the access methods and provide
my own that would make that decision without the users knowledge. listr

6for each run in runs, for each filter in run, for each camcol in run, for each frame in
run, is a quadruple nested for loop!

42

can provide them with a simple single loop mechanisms for processing all
results, as well as slices, counting operators, mapping functions etc. dictr
can provide them with a O(1) lookup time, because dictionaries in Python
are hashed objects,and directed selection operators such as “just that runs
i filter”.

Unfortunately current solution is not the best either. Users would have
to know by hearth that the dictr keys order is [run][filter][camcol][field] and
in an ideal case they just should not be bothered by having to understand
the internal workings of a class. It is also impossible to select just the
desired camcol of a run, or runs, because run and filter keys have to be
specified beforehand. Additionally there is an memory overhead of O(n)
because of the additional dictionary requirements. Memory overhead is a
bit larger than that because I do not have a single dictionary, but a series of
multiply-nested ones and it would appear that there are certain additional
information stored per Python dictionary thus slightly ruining the O(n)
space complexity.

I have recently tried a several attempts at using numpy’s void type7

which can help me facilitate use cases I desire, but it is a hard type to get
around with. There is a lot of operators that would have to be added in
order for this object to function as intended and they are not all always
straight-forward. Predominantly I have issues with the inability to provide
a field value not field name as a basis on which to return fields that match
the sent field value. It is possible I might have to write extensive code in
C++ and wrapping it to get the desired functionality as a python object.

Each Result object is a composition of AstroTime, Frame and Line ob-
jects from astrotime, frame and line modules located in the results module
(not listed in figure-2.4, they are not contained in additional subfolders but
are single files). I chose to use a composition instead of inheritance because

Figure 2.6: Composition dia-
gram of Results class.

in reality AstroTime, Frame or Line are in
fact subsets of information that define a sin-
gle Result. By that logic Result is a super-
class of them. However in order to code
this in a sensible manner, I would have to
make Results inherit the three classes and
then override therein defined method if nec-
essary. This makes no sense since it implies
Results is a subclass of each of the three
classes. Main purpose of composition is to
create “wholes” out of “parts” and there-
fore solves this logical conundrum elegantly.
The composition model is shown on figure-
2.6.

7A must read http://docs.scipy.org/doc/numpy/reference/arrays.dtypes.html

43

http://docs.scipy.org/doc/numpy/reference/arrays.dtypes.html

AstroTime handles conversions from the SDSS tai to mjd and iso times.
Note that SDSS tai times are a “tad bit weird” and conversion to mjd is
given with mjd = tai/(24*3600). Line class holds line parameters from De-
tectTrails results. It can calculate m and b line parameters and will likely
contain functions that calculate line position on a resized image. This fea-
ture would prove useful in imagechecker GUI. Frame holds all frame related
parameters.

It is also of interest, because the result are kept in a CSV file, to define
the layout of the data so it can be written and read across the modules
uniformly. It is questionable if the data should be represented by a CSV
file or should I have used a proper module, i.e such as JSON, which handles
data descriptive files more generally. This is a remnant of the old program
that will likely be subject to change in the future depending on the usage
of the LFDS. Data is written in the space separated CSV format shown in
listing-2.15.

Listing 2.15: Results format
1 run field camcol filter tai crpix1 crpix2 crval1 crval2 cd1_1

cd1_2 cd2_1 cd2_2 x1 x2 y1 y2

First 4 values are the frame file identifiers. Tai represents an Mean Julian
Date (MJD) of the moment when the first line of the image was read on
the CCD (see section-1.2.1). CRPIX values are the (x, y) coordinates of a
reference pixel and are accompanied by the CRVAL values that represent
equatorial (ra, dec) coordinates of that same reference pixel. CD1_1 and
CD1_2 describe the change of ra per column and row pixel, respectively,
while CD2_1 and CD2_2 describe how much does dec change per column
and row pixel, respectively. Result object can be instantiated though a
string formatted as in listing-2.15, or through a dictionary containing the
necessary keywords.

2.2.4.1 imagechecker

imagechecker allows users to keep false positive detections minimal. User
is currently expected to go through the output of detecttrails “by hand”,
separating actual trails from false detections visually.

Listing 2.16: Running imagechecker.
1 >>> from results import imagechecker
2 >>> imagechecker .run ()

To run imagechecker GUI, shown on figure-2.7, user has to execute im-
agechecker module’s run command from within Python IDLE as shown in
listing-2.16. At the start of the GUI user is faced with two “Select a folder”
dialogues. One selects the image folders, while the second one selects the
folder containing the output of detecttrails.

44

Figure 2.7: imagechecker GUI design.

Images in the image folder do not yet have a firmly established structure.
So far I have been working with hand-made test case scenarios. Single main
issue with these images is that GUI can only be run locally, Fermi cluster
does not have a OS GUI. That means user has to download them to a local
PC. As explained in the section-1.3 there are approximately 1.1 million
images per filter. If we assume that my program will filter out 99% of the
images, that would still leave 15 000 images. A 2048x1489px large png
image is about 2.5MB large, if we were to convert all those 15 000 images,
assuming a 99% filtering rate, we would have to download approximately
37GB of images to a local computer.

This implies that the images will have to be resized. This is where
the problem becomes twofold. Figure-2.8 shows aftermath of a simulated
resizing test on details in the image. Original 2048x1489px image with a
set of 5 lines with different widths (in order: 100, 50, 25, 12, 6, 3 pixels)
was resized to 4 smaller resolutions. We see that along with the expected
reduction in the widths of the lines we also incur a loss of line intensity in
groups 3 and 4. This seemingly happens when resizing produces a thinner-
than-pixel widths in which case, rounding preserves the line but at a cost of
its intensity.

Losing details when downsizing is inevitable, however this loss can be
minimized if a resampling technique is chosen smartly. Resampling is a
process in which the image is convoluted with an operator to produce a
new image. If the operator is chosen carefully, that is to say such that
the produced image is more suitable for resizing, the end resized image will
have less artefacts than the resized image without resampling. Choosing

45

Figure 2.8: How resizing affects line width and intensity.

a resampling technique, however, is proving very difficult, with variety of
choices between interpolation methods (point, box, cubic, bilinear, Hermite,
LaGrange, Catmull-Rom...), blurring methods (variations of Gaussian blur)
and so called windowing (apodization) filters (Lanczos, Blackman, Bohman,
Hann ...). Each approach comes with its advantages and disadvantages when
it comes to downsizing. Downsizing will become a part of LFDS once I
have sufficient knowledge to confidently write such script(s) and make these
decisions. This detail loss is not something that will “erase” the majority of
detected lines, but I still maintain that it is not a problem that should be
ignored if we want to achieve maximal detection rates.

As mentioned, this is the latest module to be added and therefore is not
yet finished. It can preform what is, at this stage, necessary and expected
of it but still needs a lot of polishing. I can create the images from the
detecttrails output, match them with their Result object and display the
parameters, I can browse fast through the images to check for trails visually
and I can export my edits in a file that matches the Result format described
in listing-2.15. However, I have still to display all the Result parameters
in a readable manner, add left and right mouse button events that can
interactively edit the line parameters, create mosaic script that can download
the surrounding frames and display them as one image (written but not yet
incorporated in GUI itself) and of course solve the burning issue of detail
loss when resizing.

2.2.5 detecttrails

One of the goals of LFDS is to be as generic as possible. But to enable
batch image processing for SDSS I rely on SDSS’s par and photoObj files
(see section-1.2.3). Therefore, there are certain aspects of this module that
are only applicable to SDSS folder and file structures. In order to still be
able to, later on, add the extra functionality for processing of databases that
do not follow the same model, detecttrails module is split into removestars,
processfield and sdss (see section-2.1.1) modules. Their inter-dependance is
shown on figure-2.9.

detecttrails module itself consists of convenience class DetectTrails and a
process_field function. DetectTrails holds various execution parameters and

46

Figure 2.9: detecttrails module layout.

processes frames selected by initial parameters. DetectTrails usage should
feel familiar because we have already shown its capabilities in listings in
section-2.2.2. First usage case shown in listing-2.17 shows by example how
to specify the processing data.

Listing 2.17: DetectTrails instantiation, case 1
1 foo = DetectTrails (run =2888)
2 foo = DetectTrails (run =2888 camcol =1)
3 foo = DetectTrails (run =2888 , filter =’i’)
4 foo = DetectTrails (run =2888 , camcol =1, filter =’i’)
5 foo = DetectTrails (run =2888 , camcol =1, filter =’i’,field =139)
6 foo = DetectTrails (camcol =1, field =139)

DetectTrails class relies on SDSS par files and folder structure to deduce
what data user selected for processing. In hindsight detecttrails module
should have been coded with a base class that contains the bare minimum
(parameters, files...) to be able to execute the detection algorithm, and from
that class the current DetectTrails class should be inherited containing ad-
ditional file handling logic specific to SDSS, preferably under a new name
i.e. SDSSDetectTrails. This would enable for faster scripting of different file
logic for different databases and would eliminate the need for process_field
function which could then be coded as a method of this new class. pro-
cess_field handles the linear feature detection logic as well as results and
error writing logic. LFDS detection logic follows a simple pattern:

1. remove all stars on the images. As described in the section-2.1.3.6
Hough line detection algorithm is very resistant to “hollow” objects
but very susceptible “filled” objects. Unfortunately stars and galaxies
are such “filled-in” objects. In fact some star are so bright they tend
to completely dominate the image as shown in figure-2.10. In order
to reduce their impact on our detections it is necessary to completely
remove them, or at least partially block them (to “hollow” them out).

2. Search for bright trails. Often bright trails do not need a lot of pre-
processing that is required to make dim trails stand out. In fact often

47

very bright trails tend to get damaged by unecessary processing. Time
cost of this search is small enough, according to section-3.1 3.1 times
smaller than searching for dim trails, that it pays out to check for them
every time before ever continuing further.

3. Search for dim trails. If no bright linear features were found then faint
features on the image are boosted in hopes one of them is a trail.

Except the data selection shown in listing-2.17 user can also specify
processing parameters as shown in listing-2.18. There are three parameter
groups that user can specify, one for removal of stars, one for bright trail
detection and one for dim trail detection. Each group is prefixed with a
params_ after which follows the name of the group. Each params is just
a python dictionary containing specific keys that are then passed, through
process_field, into processfield module where those values are used in the
detection itself.

Listing 2.18: DetectTrails instantiation, case 2
1 foo. params_bright ["debug"] = True
2 foo. params_removestars [" filter_caps "]["i"] = 20

To be able to use DetectTrails efficiently users have to have intimate
knowledge of all processing parameters, what they represent and what chang-
ing them implies. More detailed explanations are presented in the section-
2.2.5.1 and in table-2.4 where I have shown all adjustable execution param-
eters. Most of the parameter values, except pixscale perhaps, were deter-
mined by a heuristical approach where an optimal solution would be guessed
on an increasing sample size until the current parameters were determined.
They provide the most satisfactory solution, one that contains most of actual
trails while minimizing false positive detections (see section-3.2), therefore
changing them might have unexpected consequences.

To start the processing of the selected data, with the selected parameters,
user must call the process method of DetectTrails instance.

48

Parameter Member of params Description
dilateKernel bright and dim Default: 4x4 kernel of ones for bright,

9x9 kernel for dim. See 2.1.3.1
erodeKernel dim Default: 3x3 kernel of ones, see 2.1.3.1
contoursMode bright and dim Default: RETR_LIST, see 2.1.3.4
contoursMethod bright and dim Default: CHAIN_APROX_NONE,

see 2.1.3.4
minAreaRectMinLen bright and dim Default: 5 for bright, 3 for dim. Once

contours have been returned minimal
area rectangles are fitted. Length of
sides is determined. If either side is
shorter than this value, in pixels, rect-
angle is dismissed as faulty.

lwTresh bright and dim Default: 5. Lengths of sides are sorted
such that l is always the longer side. If
the ratio l/w of sides lengths exceeds
the lwTresh rectangle is dismissed as
faulty.

houghMethod bright and dim Default: 1. Remnant of old OpenCV
backend, mandatory but meaningless.

nlinesInSet bright and dim Default: 3. Once contours have been re-
turned minimal area rectangles are fit-
ted. Length of sides is determined. If
either side is shorter than this value, in
pixels, rectangle is dismissed as faulty.

thetaTresh bright and dim Default: 0.15. nlinesInSet number of
lines are averaged by their thetas, in ra-
dians, for both Hough lines fitted. If ei-
ther set of lines exceeds thetaTresh de-
tection is dismissed as false.

linesetTresh bright and dim Default: 0.15. If sets of lines pass theta-
Tresh but their respective set averages
are set apart by more than linesetTresh
detection is dismissed.

dro bright and dim Default: 20. If respective r averages of
line sets are set appart for more than dr
than detection is seen as false.

minFlux dim Default: 0.02. For bright processing, all
negative values are set to 0 before pro-
cessing. For dim processing, all values
of pixel brightness above minFlux are
set to zero.

addFlux dim Default: 0.5. All other pixels above
min_flux are increased by addFlux
value. This increases contrast and im-
proves histogram equalization results.

debug bright and dim Default: False. Verbose tests output
and step by step images are displayed.

49

pixscale removestars Default: 0.396. SDSS pixel scale is
0.396 arcseconds/pixel. Used to con-
vert the petrosian radius to pixel di-
mensions.

defaultxy removestars Default: 20. Half of the length, in pix-
els, of the side of a square that is drawn
over stars. Used if there is no petrosian
radius or if the half-length of square
side is larger than maxxy.

maxxy removestars Default: 60. Maximal allowed half-
length of square side. Maximal covered
area on the image is 120x120px.

filter_caps[ugriz] removestars Default: 22 for all filters, prone to
change. Stars on the image that are
dimmer than filter caps will not be re-
moved.

magcount removestars Default: 3. Maximal allowed number of
filters in which magnitude difference is
larger than maxmagdiff.

maxmagdiff removestars Default: 3. Maximal allowed difference
in magnitude between two filters

Table 2.4: All adjustable processing parameters and their description.

2.2.5.1 processfield

processfield module is the work-horse of LFDS. This module is written to
be as generically applicable as possible, therefore it operates on the smallest
subset of data possible. In SDSS terminology that subset is called a frame,
but in any astronomical observation, even in those that do not use the drift
scan method, it is still the single field imaged through the telescope with
a CCD. The example we will be using is just the i filter of the composite
image shown in figure-2.10.

50

Figure 2.10: frame-irg-002888-1-0017, a composit image made out of i, r and
g filters.

processfield module is consisted of a series of functions but only two of
them are important to users: process_field_bright and process_field_dim.
They are generally expected to always be called in the same sequential
manner as described in section-2.2.5 but in some cases user might want
more flexibility therefore neither of them is hidden. Both bright and dim
functions take in an image in the form of a numpy array, to avoid the is-
sues attributed to different file formats, and a params dictionary. First
thing both functions do is to convert the image into a 8 bit single channel
grayscale image. There are important differences in how they do it though.
Function process_field_bright converts all negative elements to zero before
convertScaleAbs function is applied as shown in listing-2.19. Function pro-
cess_field_dim converts all values smaller than minFlux value to zero after
which addFlux value is added to all remaining nonzero pixels as shown in
listing-2.20.

Listing 2.19: process_field_bright, step 1
1 img[img <0]=0
2 gray_image = cv2. convertScaleAbs (img)

Listing 2.20: process_field_dim, step 1
1 img[img < minFlux]=0
2 img[img >0]+= addFlux
3 gray_image = cv2. convertScaleAbs (img)

51

convertScaleAbs function from OpenCv performs the following calculation:

dst(I) = saturate_cast < uchar > (α ∗ src(I) + β)

This function scales the original image pixels intensity by the optional factor
of α, then scales the original image pixel intensities by the optional additive
factor β, after which it performs a cast of any type into a unsigned 8 bit
corresponding type. In my case factor α is 1 and β is 0, therefore the only
conversion that happens is from a 32 bit float type into an unsigned 8 bit
integer type. This also means that all the values outside the 8 bit range,
that is 255, are clipped. In essence, all values over 255 become 255. This
conversion from 1 channel 32 bit float image to 1 channel 8 bit integer image,
known as grayscale image, is necessary because OpenCv’s functions often
have limitations on the type of images they can work on. This also means
that pixels are binned from a 32 bit float representation, which can convey
a lot more information, to 8bit int representation which can not.

Following the conversion to a grayscale image, both functions preform
histogram equalization. Due to the saturate_cast call a lot of the low bright-
ness pixels (those with brightness value less than 0.5) will get rounded down
to zero. Histogram equalization for process_field_bright will never act on
dim objects unlike in process_field_dim. Because we added addFlux, not
a small value in this context, a lot of low brightness level pixels will now
be rounded to higer values and will be candidates for the histogram equal-
ization. Since we have “tipped” the histogram in process_field_dim to the
darker side, histogram equalization will brighten the entire image by a con-
siderable amount. Unfortunately this also means that noise is potentiated
as well. As a result of aforementioned processing, grayscale and histogram
equalization, images shown in figure-2.11 are recovered.

Operations such as Hough line, Canny edge, contours detections etc. are
per-pixel operations at best. A lot of active pixels in the image, as is the
case with figure-2.11, means a lot of processing time. To combat this time
requirements and to increase the chances of detecting the actual line, in
process_field_dim, noise is removed. This same step is not done for pro-
cess_field_bright. For detecting bright trails image is additionally dilated
(see section-2.1.3.1) in order to even further accentuate the bright objects.
Contrary to process_field_bright for dim trails the entire image is eroded
before it is dilated (see section-2.1.3.1). This is usually known as a closing
operator, however unlike with the closing operator the erosion and dilata-
tion kernels are not symmetrical. It is important to remember that we still
have not done much to “thicken” our dim objects and that they could still
be destroyed by erosion. This is why the erosion kernel must remain small.
At the same time, logic mandates, that a perfect case of noise would be a
solitary pixel, a pixel that is not surrounded by a single neighbouring pixel.
This provides us with the lower limit for our kernel, a 3x3 matrix anchored

52

In the BRIGHT (left) image only the clipped areas remain at pure white values of 255.
Lowest brightness areas are “pushed” completely to black, so called shadow-clipping.
This destroys all low brightness details while mid-tones and high-tones are preserved and
“stretched” by histogram equalization beyond information they can convey, thus produc-
ing these cascading areas of same gray tone around the pure white areas. In the DIM
image (right) highlights get clipped, destroying the information on the bright end of the
histogram but preserving and enhancing the information of the low tonal histogram re-
gion. End result is a tonally compressed overexposed image which shows the dim features
more prominently than a shadow clipped image.

Figure 2.11: Processing result of BRIGHT on the left and DIM on the right.

in the center. A fairly large dilatation kernel (9x9) is used after that to
dilate the image and exaggerate all objects that remained. This value has
an heuristically determined top limit to how much an image could be dilated
before a significant amount of false positives start appearing. In the case of
process_field_bright dilatation kernel is a modest 4x4 matrix. This second
step in processing consists of histogram equalization, erosion and dilatation
for process_field_dim and just dilatation for process_field_bright. Those
are simple commands in OpenCV module shown in listings 2.21 and 2.22.

Listing 2.21: process_field_bright, step 2
1 equ = cv2. equalizeHist (gray_image)
2 equ = cv2. dilate (opening , dilateKernel)

Listing 2.22: process_field_dim, step 2
1 equ = cv2. equalizeHist (gray_image)
2 opening = cv2.erode(equ , erodeKernel)
3 equ = cv2. dilate (opening , dilateKernel)

After this processing BRIGHT image will look a lot like the original, ex-
cept all objects are now expanded by 2 pixels in each direction. DIM image,
however, consists of closed and overly exaggerated objects. If, after erosion,
a solitary pixel would somehow manage to survive, it would currently be ex-
panded to a 9x9 square due to dilatation. At this point all of these objects
would appear similar to rectangles, squares, or, if they were circular before,
“blobish squares”. This is demonstrated on the figure-2.12.

53

Figure 2.12: Zoomed in view of the remains of an elongated object after
erosion (left) and comparison with that same area after dilatation (right).

This would of course mean that any image that was not completely
cleaned of all the stars and objects would likely produce a detection. Com-
parison of the DIM image from figure-2.11 with the DIM image from figure-
2.13 shows how much objects are expanded by the large dilatation kernel.
Even if stars would have been removed before-hand near perfectly, any re-
mains would be dilated enough to produce a false detection.

Mechanisms that can adequately make the distinction between such re-
mains of objects and actual detections are needed. Because the object re-
mains are rectangles, squares or generally “blobish squares”, if we tried to
escribe rectangles to these remains they would all look like an upright rect-
angle whose sides would be of similar lengths; that is to say a square. Take
the elongated object remains on figure-2.12 as an example. On the eroded
image (left), if we were to try to escribe rectangles over the remains we
would require a lot of small and elongated rectangles. Some of these rect-
angles would perhaps be only 1 or 2 pixels in height, but 15-17 in width, as
is the case with the horizontal remains at the top-center of the left image in
figure-2.12.

Once we have dilated these remains, a lot of them have merged back into
a single object. The most elongated rectangle that we can fit now is located
at the bottom-left on the right image in figure-2.12. However, the width of
that rectangle now is approx. 80 pixels while its height is approx. 175px.

54

Figure 2.13: Aftermath of erosion and dilatation on DIM (right) and dilata-
tion operator on BRIGHT (left)

Unlike the first case, where width to height ratio was 17, the ratio of height
to width this time is just a factor of 2. This holds true if we attempt to
produce a minimal area rectangles for any object, especially stars, present
on images in figure-2.13. Even in worst case scenarios for large elongated
objects, such as galaxies, I have not been able to produce an length to width
ratio larger than 4. Since I have decided to take the ratios of longer over
smaller values from this point onwards I will refer to them as length for
larger value, and width for lower value.

The same logic can be applied to the case of a relatively elongated object.
Let us for the sake of simplicity say we have an object exactly 100 pixels long
and 10 pixels wide. After erosion kernel operated on that object, its width
would be reduced to just 8 pixels while its length would stay approximately
the same. Dilatation would expand this trail back to 16-18 pixels wide,
depending on the geometry of the trail, while its length would be expanded
to 108-110 pixels, length after dilatation can vary 1-2 pixels depending on the
geometry at hand. Even in the worst case scenario this is still a length/width
ratio of 6 which is significantly larger than length to width ratio of 2.

As I have described in the section-1.1, expected lengths of fully imaged
meteors are around 400 pixels long. If we follow the same logic described
above and find the length to width ratio for a series of widths, it is easy to
see that, for this case, the trails would have to be 100 pixels wide, or more,
to come near the ratios that we can attribute to object remains or noise. In
reality, most often meteor trails are not wider than 20 pixels. Following the
two examples given on the remains of an elongated object (figure-2.12) and
an imaginary 100px long elongated object we see that this provides us with
an important selection criteria that can distinguish between actual linear
features and processing side-effects. Selecting only those objects which can
be escribed by a minimal area rectangle with length to width ratio larger
than a lwTreshold (set as a high value) can distinguish between noise and
actual trails.

55

This, 3rd step in detecting the existence of linear features, is carried
out by the function _fit_minAreaRect, shown in listing-2.23. It finds all
edges using Canny edge detection method, then all contours are found to
which only the minimal area rectangles that pass the lwTresh criteria are
fitted. Figures 2.14, 2.15 and 2.16 display these three steps in the case of
process_field_dim only but the same applies to process_field_bright.

Listing 2.23: process_field_dim/bright, step 3
1 def _fit_minAreaRect (img , contoursMode , contoursMethod ,

minAreaRectMinLen ,lwTresh , debug):
2 detection = False
3 box_img = np.zeros(img.shape , dtype=np.uint8)
4 canny = cv2.Canny(img , 0, 255)
5 contours , hierarchy = cv2. findContours (canny , contoursMode ,

contoursMethod)
6
7 boxes = list ()
8 for cnt in contours :
9 rect = cv2. minAreaRect (cnt)

10 if l> minAreaRectMinLen and w> minAreaRectMinLen :
11 if (rect [1][0] > rect [1][1]) :
12 l = rect [1][0]
13 w = rect [1][1]
14 else:
15 w = rect [1][0]
16 l = rect [1][1]
17 if (l/w> lwTresh):
18 detection = True
19 box = cv2.cv. BoxPoints (rect)
20 box = np. asarray (box , dtype=np.int32)
21 cv2. fillPoly (box_img , [box], (255 , 255 ,255))
22 return detection , box_img

56

Figure 2.14: Canny edges found on our example image.

Observing figure-2.16 one has to wonder why did OpenCv fit the large
rectangle in upper-center area. That rectangle obviously belongs to the large
blob, visible in DIM image on figure-2.13, created by merging of multiple
stars located in that area. It is obviously a single closed contour as visi-
ble on figure-2.15 and the fitted minimal area rectangle should encompass
that entire contour. In fact it should never even be plotted because such a
rectangle would obviously fail the lwTresh criteria.

Otherwise finding minimal area rectangles has proven as a successful
strategy in ignoring large objects that exhibit certain linear features such
as the radial lines of Fraunhofer’s diffraction visible around the large star
(Padgham, 1967). Apart from the bottom right radial line being detected,
the other 3 radial lines were successfully ignored. Big success is that the
star itself was ignored as well. This would not have been the case if we
were to just search for Hough lines on the DIM image in figure-2.13 as was
demonstrated in section-2.1.3.6. However, it is still clear that we can not
just blindly believe the lines fitted over minimal area rectangles only, as
demonstrated by the figure-2.16.

57

Contours have been modified in the sense that I manually filled all closed con-
tours. This was done because contours are not returned in the form of an image
but in a data structure that is also capable of describing their mutual relation-
ships and therefore are not trivial to draw on an image. Only these filled contours
will be considered for minimal area rectangle fitting.

Figure 2.15: Contours found among Canny edges.

Figure 2.16: Minimal area rectangles that passed the lwTresh condition.

58

This brings us to the final step, step 4, in the linear feature detection
algorithm. In this step we try to correlate the actual image with the re-
sults of minimal area rectangles. One set of lines is fitted over the original
image and a secondary set of lines is fitted over the minimal area rectan-
gles. Each set contains nlinsInSet number of lines which are checked for
internal consistency within the set, after which both sets are checked for
mutual consistency. This is done in the function _check_theta shown in
listing-2.24.

Internal consistency is checked by comparing the difference of maximal
and minimal θ value of the lines from the same set with the thetaTresh
value given by user. Difference of maximal and minimal θ value is observed,
instead of their averages, because Hough line detection algorithm tends to
place them symmetrically around a possible linear feature. If we had set
thetaTresh value to 15◦ and observed a set of 2 lines, one at -30◦ and the
other at 30◦, they would’ve passed the test even though in reality they are
sepparated by 60◦. Comparing the difference of maximal and minimal values
of θ’s in the set makes more sense since in a way that is what determines
the “spread” of the set. It is expected that if the linear feature is long and
pronounced this “spread” will be a small value.

To check for inter-set consistency both Hough space coordinates (r, θ) are
observed. Unlike for θ, averaging r values makes sense because, as I said,
Hough line detection algorithm tends to place the lines symmetrically around
the linear feature. Since r determines how far “left” or “right” from the linear
feature will the line be located, averaging r would produce a more accurate
position of the linear feature. Because I will be checking how r coordinates
compare between two different sets of lines, one fitted to the processed image
and the other to reconstructed minimal area rectangles image, it is better
if there were no large deviations caused by a single outlier. If the difference
between the two averages is larger than dro parameter, detection is deemed
false. Same procedure is applied to compare θ coordinates of the two sets.
Averages of the θ’s in both sets of lines are subtracted and if that difference
is larger than linesetTresh parameter detection is false. It makes sense to
average theta values of each set individually and then compare the θ values
between the sets because we are not interested in how “spread” out each
individual set of lines is, but in which direction are the sets of lines facing.

Listing 2.24: process_field_dim/bright, step 4
1 def _check_theta (hough1 , hough2 , navg , dro , thetaTresh ,

linesetTresh , debug):
2 ro1 = np.zeros ((navg ,1))
3 ro2 = np.zeros ((navg ,1))
4 theta1 = np.zeros ((navg ,1))
5 theta2 = np.zeros ((navg ,1))
6 for i in range (0, navg):
7 try:

59

8 ro1[i] = hough1 [0][i][0]
9 ro2[i] = hough2 [0][i][0]

10 theta1 [i] = hough1 [0][i][1]
11 theta2 [i] = hough2 [0][i][1]
12 except :
13 pass
14
15 if abs(np. average (ro1)-np. average (ro2))>dro:
16 return True
17
18 dtheta1 =abs(theta1 .max ()-theta1 .min ())
19 if dtheta1 > thetaTresh :
20 return True
21
22 dtheta2 =abs(theta2 .max ()-theta2 .min ())
23 if dtheta2 > thetaTresh :
24 return True
25
26 dtheta = abs(np. average (theta1 - theta2))
27 if np. average (dtheta)> linesetTresh :
28 return True

These checks are incredibly useful. In the case of our example image,
Hough lines fitted to the actual image, DIM image figure-2.13, will corre-
spond more to the Fraunhofer’s diffraction lines emanating from the star
itself while in the case of the minimal area rectangles, figure-2.16, they
would be fitted to the two longest minimal area rectangles drawn which do
not correspond to the radial lines of the star. The two linesets are shown in
figure-2.17.

Considering that the two linesets are separated by approximately 70
pixels in the r coordinate this image is declared as a false detection based on
the dro criteria. The two lines exhibit very similar θ coordinate confirming
the suspicions that even such cases, of different r but almost the same θ
coordinates, can occur.

Even though I am expecting that the trails will be very long objects (see
section-1.1), it is not a promise that they will always be captured in full.
Trails could enter the field under such an angle that they exit the field from
either left or right side of the image, or vice-versa entering from the sides
they could exit through the top/bottom side of the image. This would limit
their length to

√
x2 + y2 where x is the entry point coordinate and y the

exit point coordinate. Such trails could possibly be too short to pass the
lwTresh criterion from the start, therefore it is important to set the lwTresh
as low as possible. But as noticed, setting the lwTresh too low would start
fitting minimal area rectangles to more and more noise and other object
remains.

Following this logic, it is a valid observation that comparing line param-
eters is a double edge sword. What if a short line, perhaps a line cutting
through a corner of the image, is present in an image with a large star or

60

Figure 2.17: Two sets of hough lines fitted to the image. Minimal area
rectangle line set is in red while the lineset in blue belongs to lines fitted to
DIM image.

galaxy? In that case it is possible that the lines found in the actual image
might be fitted to that object instead of the actual line, even though minimal
area rectangles have only been fitted to the line itself. Or an opposite case in
which a short line is present in an image, without large linear-like objects?
In that case it is possible that _fit_minAreaRect would not produce valid
rectangles, but the lines fitted in the actual image would still get fitted on
the actual line in the image. That line would then be rejected because no
valid rectangles could be found at all, or even if they were found they would
not correspond to the actual line and the line would be rejected either by θ
or r criteria.

Experimentation shows that these checks are essential in isolating images
with actual lines from those that have false detection generators such as large
galaxies or bright stars. Solution to these issues must be found elsewhere.
Best solution would be to perfectly clean the image of all objects we know
of that should be there. This would enable us to completely reduce the
lwTreshold to nearly the factor of 2.5-3. Consequently this would mean that
the minimal area rectangles could be fitted to even the shortest of trails for
which the length is comparable to the width, but would still fail in cases
where only known objects exist on the image because no rectangles could be
found. If we could remove all objects we are not interested in we would not
have to worry about lines fitting on elongated objects in the actual image

61

either. This would still hold true even if I did not remove all known objects
from the image perfectly but instead only sufficiently “hollowed” out known
objects. We know this because I have shown in section-2.1.3.6 that Hough
line detection algorithm is incredibly resiliant to all objects that do not
exhibit linear features such as circles and hollowed out discs. So far all the
processing has been done on images that have not had any pre-processing
of that sort done on them.

2.2.5.2 removestars

The purpose of removestars module is to remove as precisely as possible all
known objects on the images. It uses photoObj files described in section-
1.2.3. As mentioned before, these files contain the full photometric data
for every object on the frame. From them I extract pixel coordinates, pho-
tometric data and objects shape data in a photoObj_read function and
subsequently use this data to blot out these objects on the image itself in
a remove_stars function, before image is ever sent to process_field_bright
and process_field_dim.

ptotoObj_read function interprets the photoObj file header and extracts
the information shown in table-2.5 in the form of 4 lists. Lists row, col,
petro90 and psfMag have corresponding indexes, meaning that each object’s
data is stored in each of the lists under the same index. A more natural way
would have been to store these 4 lists in a structure, a class or a dictionary,
in such a way that they could not be altered and that objects would be
accessed by their unique identifiers. This would remove all ambiguity from
the code. Unfortunately in a single image there can be a large number
of detected objects, upwards of a thousand. Because I have to keep the
performance times small and because looping over a dictionary in python
wastes access time on the hash table lookup, I have decided against it.

Function remove_stars "blots" out stars and other objects on the image
by drawing black squares over them. Currently the remove_stars function
does not use the full extent of data read out by the _read_photoObj func-
tion. I have experimented a lot with various data such as exponential fits,
object type probabilities, PSF fit parameters, in cases when obcjtype is equal
to 3 (galaxy) I tried using de Vaucouleurs fit and elipticity data to perform
as close as fit as possible and various other combinations. Even though I
have reached a certain level of reliability, at this time I have not yet been
able to always reconstruct the original image as well as I would have liked
so I have left a lot of this read-out data in the code to avoid re-coding it
until such a time I write a satisfactory remove_stars function.

The issue lies in the way SDSS photo pipeline works. Photo pipeline
8http://www.sdss3.org/dr10/algorithms/magnitudes.php#mag_psf
9http://www.sdss3.org/dr10/algorithms/magnitudes.php#mag_petro

10http://www.sdss.org/dr12/algorithms/classify/#photo_class

62

http://www.sdss3.org/dr10/algorithms/magnitudes.php#mag_psf
http://www.sdss3.org/dr10/algorithms/magnitudes.php#mag_petro
http://www.sdss.org/dr12/algorithms/classify/#photo_class

List name Data description
row “y” pixel coordinates. Each entry is a dictionary

{u:, g:, r:, i:, z:}
col “x” pixel coordinates. Each entry is a dictionary

{u:, g:, r:, i:, z:}
psfMag8 Magnitude as determined by a Gaussian fit of

PSF function. Each entry is a dictionary {u:, g:,
r:, i:, z:}.

petro909 Radius, in arcsec, that contains 90% of Petrosian
flux. Each entry is a dictionary {u:, g:, r:, i:, z:}.

objctype10 Type classification. Integer.
types10 Type classification per filter band. Each entry is

a dictionary {u:, g:, r:, i:, z:}.
nObserve Number of times this position was observed. In-

teger.
nDetect Number of times object was detected in the ob-

served position. Integer.

Table 2.5: Data model of usefull photoObj data tables.

detects all pixels whose counts are above the background sky noise. All
such pixels that are in contact one with another are organized into objects
found in fpAtlas files. Deblender, if possible, separates these clumps into
objects. Separated parts are, when possible, constrained by parent-child
relationship. This makes it possible to detect, for example, stars within
sufficiently large galaxies.

However this is bad news for me. This implies that all trails will also
be registered as objects in the pipeline itself just because their pixel counts
are above the background sky noise. Furthermore because trails are not
uniformly bright along their length, it implies that trails will most likely be
deblended as a combination of a series of objects, some perhaps marked as
galaxies, some as large stars. Immediately, this, rules out sorting based on
object type. When reconstructing a frame using nothing but photoObj file
data this problem becomes obvious. Such reconstructed frame is displayed
on the figure-2.19. For comparison, figure-2.18 displays the original frame.
Original frame underwent only histogram equalization; therefore a lot of
low-brightness objects are not visible. Reconstructed frame used all data
available in the photoObj file without any filtering.

63

Figure 2.18: Original frame-i-002888-1-0139 data.

Figure 2.19: Reconstructed frame using photoObj-002888-1-0139 data.

64

As noticeable on the reconstructed frame in figure-2.19 the trail is visible
as well. This means I can not just use all the data I read from photoObj
files but have to sort through them for objects I can confidently confirm
are actually objects I want removed and not a product of photo pipeline.
Otherwise I would be deleting my own trails.

Before a square is actually drawn over the object, size of the square is,
if possible, determined with petro90 radius. Petrosian radius is given in
arcseconds and has to be converted into pixel value based on the pixscale
factor provided by the user. If the calculated radius is less than zero a
default square size is used. If the calculated side length is longer than maxxy
parameter, a default square size is used. Default square size is determined
by the user-set dxy parameter. Reconstruction of the frame-i-002888-1-0139
including variable square sizes is shown on figure-2.20. As we can see, this
reconstruction bares more resemblance to the original image than figure-2.19
although we are still masking our trail.

Figure 2.20: Reconstructed frame-i-002888-1-0139 with variable square sizes.

In order to stop masking the trails, first I select only those objects that
are brighter than a certain apparent magnitude. These magnitude “caps”
are controlled by the filter_caps parameter. According to Stoughton et al.
(2002) SDSS has 95% completeness limits for stars at magnitudes 22.0, 22.2,
22.2, 21.3, and 20.5 in five filters [ugriz] respectively. These magnitude limits
do not actually affect if SDSS can or can not record magnitudes deeper than
that, authors just remark that at those magnitudes SDSS has successfully
recorded 95% of all existing objects. It is worth to remark that errors grow

65

past these magnitudes and parameters measured for these objects grow more
unstable. In any case, sizes of stars dimmer than these limiting magnitudes
are small enough that they will not interfere with Hough line detection
algorithm thus, I have decided to take magnitude 22 as the bottom limiting
magnitudes for all filters. In the case of the z filter, however, I might decide
to reduce the limiting magnitude once I get the necessary images and start
testing LFDS on that filter as well. Currently I have only been able to
determine these magnitudes work well on r and i filter, whose data I have.
Once this condition is applied on the figure-2.20 we get the following mask
shown on figure-2.21.

Figure 2.21: Star mask with variable square sizes and filter caps.

Still we see that this did not filter out the trail objects in photoObj file.
This is to be expected because trail in the example image is not exactly very
dim. We did get rid of a lot of small squares on the mask that could not
be attributed to any object visible on figure-2.18. This is a positive step,
blotting out such large parts of the image risks interfering destructively with
the trail.

If there is an object in the image, for example a star, we should expect
that we are able to see it in other filters as well. Each stationary object has
one image in each filter, taken at 71.7 second intervals (see section-1.2.1).
Any transient phoenomena, not moving exactly in parallel to the apparent
motion of the sky, would enter and exit only in that single filter. If there
is a fast moving transient phoenomena, such as a meteor or a satellite, it
would never even be recorded on any other filters. If the star is a red giant it

66

should be the brightest in the r and i filters but it should still be measurable
in other filters as well, albeit dimmer. Therefore we can expect that objects
moving with the same angular speed as the sky will be recorded in all filters,
while objects not moving with the same angular speed as the sky would have
relatively high magnitudes recorded only in a single filter and extremely dim
magnitudes, corresponding to a null-detection, in others.

It is not clear how much that difference amounts to or how much dimmer
can we expect a star of certain class to appear in other filters. I have not
found a function, method or a rule of thumb governing this, so this will
most certainly have to be determined by trial and error approach. Still
if we subtracted each filter magnitude from others and compare if those
differences are larger than a user set threshold, with some experimenting,
we should be able to determine which objects were actually measured in
all filters and which were not. We could even take it a step further and
say that if differences in measured magnitudes of all filters are larger than
set threshold, in more than a user set number of filters8, then the object is
not a stationary one. Parameter maxmagdiff controls what is the maximal
allowed difference of magnitudes, while parameter magcount controls in how
many filters is the maxmagdiff allowed.

For example, if we set maxmagdiff to 5 and magcount to 3 the following
objects would not pass the test: (2,8,8,8,8). Obviously, this object is very
bright in just one of the filters and not in others, therefore is ruled out.
Object with magnitudes (2,2,8,8,8) would fail as well. This object is bright
in two filters, but not in others. Difference of magnitude of the first filter and
all other filters gives us (0,6,6,6). The differences in magnitudes are bigger
than maxmagdif in 3 different filters. Per condition, differences in magnitude
are bigger than maxmagdiff in at least magcount filters, therefore this is not
considered as an actual object.

The following objects would pass this test for the same maxmagdiff and
magcount parameters. Object with magnitudes (5,6,7,8,9). First magni-
tude produces the following differences (1,2,3,4). Because all differences are
smaller than maxmagdiff this is considered an actual object. This object is
brightest in the first filter, i.e. filter i, and then gets progressively dimmer
through the r, g, u and z filters. This is how I would imagine a yellow star
behaves. Object with magnitudes (3,3,7,8,9) would pass as well. Magnitude
differences for this object are (0,4,5,6) therefore only one magnitude differ-
ence is larger than maxmagdiff. This condition has to be broken in at least
magcount filters for it to fail. If we take the first value to be the i filter and
the second r filter then this would be how I imagine a very red star behaves.

As noticeable, this condition can be thought of as sorting the magnitudes
from lowest to highest value and then counting the number of occurrences
when the difference of first magnitude with all other magnitudes is larger

8The actual used condition states: in more than or equal to a user set number of filters.

67

than maxmagdif. If this occurred more than or equal to magcount times
object is not considered “real”. Image displayed on figure-2.22 shows the
frame reconstruction under this condition.

Figure 2.22: Star mask with variable square sizes, filter caps and magnitude
difference condition.

Former condition managed to get rid of at least half of the objects from
our trail. The last condition we can apply is the simplest one. It states
that the number of times this area was observed must match the number of
times this object has been detected. There is a single important downfall to
this criterion; to the best of my knowledge SDSS has not imaged all areas
twice. If an area has not been imaged at least twice, this criterion is always
true by default. On figure-2.23 I have shown the reconstructed mask for the
frame-i-002888-1-0139 including the latest criterion. As noticeable the trail
is not visible on the mask this time.

If we subtract the final mask from the starting image (figure-2.18) as
shown on figure-2.24, we can see that it does a fairly good job at removing
stars from the image and does not excessively interfere with the trail.

68

Figure 2.23: Final mask used for removal of known objects from the image.

Figure 2.24: Final mask subtracted from the original image.

69

Unfortunately this is not always the case. For example using the frame-
i-002888-1-0017 (BRIGHT image on figure-2.11) we will not get as good as
results as we did with frame-i-002888-1-0139. photoObj-002888-1-0017 file
contains only 96 entries and they are mostly concentrated around the bright
star on the image. Figure-2.25 displays a mask created by the same methods
described so far. On figure-2.26 result of mask subtraction from the frame-i-
002888-1-0017 is shown. As we can see the star removal works excellent. It
has removed all small to medium sized stars and has “hollowed” out the large
star, just as requested in the conclusion of section-2.2.5.1. Unfortunately it
is strictly contained to the vicinity of the large star producing less than
impressive results.

Figure 2.25: Final mask for frame-i-002888-1-0017

These issues are solvable. Both photoObj and frames files are chock-full
of data that could potentially shine a light on this situation. Of special
interest are the object flags9 entries in the photoObj files that provide ad-
ditional information about the object such as: if there were issues during
deblending, if the object has a stable Petrosian/de Vaucouleurs/exponential
fit, if they are saturated, binned or near the edge etc. All this information
can be used to determine what kind of object is it and subsequently to use
the best parameters possible to remove them (Petrosian radius for bright
objects, de Vaucouleurs profiles for galaxies, PSF fits for dimmer stars etc.).
The Main issue here is the fact that a lot of these parameters require a

9Best described on Robert Lupton’s webpage http://www.astro.princeton.edu/
~rhl/flags.html

70

http://www.astro.princeton.edu/~rhl/flags.html
http://www.astro.princeton.edu/~rhl/flags.html

Figure 2.26: Image recovered by subtracting appropriate mask from the
original frame-i-002888-1-0017.

level of applied/theoretical knowledge and this slows down the progress in
developing new algorithms.

This is not the only issue with removestars module. Considering that I
have in several occasions stressed the importance of writing a generic pack-
age that could be run on different databases, having such a key module as
removestars that is purely SDSS oriented is a bad decision. removestars
module should be expanded to be able to interpret different catalogue in-
formation, such as UCAC2, USNO A and B, NOMAD, GSC etc... If LFDS
is to ever be run on any other database alongside SDSS, a fast and reliable
way to find all objects within a selected field is still needed.

2.3 LFDS recap and processing examples

To recap, in short, the entire processing procedure I will use three different
images. One without a trail and two with trails. For the example with-
out trails we will use frame-i-00787-1-0045 which presents a similar prob-
lem as the example frame used in section-2.2.5.1 (see figure-2.10). Steps of
both process_field_bright and process_field_dim functions are displayed
on figure-2.27. For examples of detection of linear features I use frame-i-
002888-1-139 for bright detection on the left side of figure-2.28 and frame-u-
005973-3-0128 as a borderline dim detection on the right side of figure-2.28.
Only the steps of the function that detected the trail is shown this time.

71

In the case LFDS was run on the Fermi cluster user would have to create
a job as described in the section-2.2.2. In the case LFDS was run locally
user would have to run the start.sh script located in the home folder of
LFDS package. To run the frame through the detection process in both
cases the same command would be used, the only difference would be that
the processing on Fermi would be run through the TORQUE and MAUI
scheduler while locally user can run these commands through the python-
idle opened by the startup shell script. Command used in processing all
example images is shown in listing-2.25.

Listing 2.25: Command used to run LFDS
1 d = dt. DetectTrails (run =7787 , camcol =1, filter =’i’, field =45)
2 d. params_bright ["debug"]= True
3 d. params_dim ["debug"] = True
4 d. process ()

detecttrails module first searches for the frame in the path described by
PHOTO_OBJ environmental variable. This variable is controlled by setting the
BOSS variable in thestartup script, or in the generic template in createjobs
module. In that path LFDS expects to find a frame file compressed by the
bz2 format. Frame will be extracted to the path set by FITS_DUMP envi-
ronmental variable. FITSIO will open the fits file and load image header
and data header. A partial result string is formed from the data header
while the image header data gets set to removestars module for processing.
removestars module does, as the name implies, star removal from the im-
ages by drawing black squares over filtered set of all objects in the image
detected by photo pipeline. These objects are extracted from photoObj file.
Additionally to stars, removestars module removes galaxies and other knows
objects as well.

The result of this processing is passed in the detect_bright function.
detect_bright first sets all pixels less than zero to 0. It then equalizes his-
togram of such image. Results of the equalization are then “buffed” by
dilating the image. Minimal area rectangles are fitted on the dilated image.
If not one rectangle that match the lwTresh and minAreaRectMinLen crite-
ria is found, function terminates as a False detection. If any rectangles that
pass the criteria are found, detect_bright continues. detect_bright function
then finds lines on the equalized dilated image and on the image constructed
from the fitted minimal area rectangles.

Lines fitted have their r’s and θ’s compared both between the two sets
of lines fitted on equalized dilated image and minAreRect image and inside
the set itself. This comparison is done over the nlinesInSet strongest lines
detected. Thresholds that determine if the comparison is valid or not are
controlled by following parameters: dro, thetaTresh and linesetTresh. If the
lines pass this check frame is marked as a True detection and the function
terminates. If the lines do not pass this check, detection continues.

72

The detecttrails module then calls the detect_dim function of process-
field module. This function takes the original image returned by removestars
module and sets all pixels with values less than minFlux, a user-set param-
eter, value to zero. Pixels that remain after have their values increased by
the addFlux parameter. Histogram equalization is then done.

This equalized image is then eroded to destroy all small single solitary
pixels and objects that have now become visible due to the artificial bright-
ness increase. To restore and boost the remaining objects on the image
dilatation with a large dilatation kernel is used. Following that is the same
process done in detect_bright. Minimal area rectangles are fitted. If none
are found, function terminates. If rectangles are found, lines are fitted over
them. Lines are fitted over the equalized, eroded and then dilated image
as well. If these lines pass the tests function returns a True detection and
parameters. If the lines do not pass the tests, function terminates as a False
detection.

73

Figure 2.27: frame-i-00787-1-0045 processing steps displayed visually for the
detect_bright (left) and detect_dim functions (right)

74

Figure 2.28: Processing steps that produced output for frame-i-002888-1-
139(left) and frame-u-005973-3-0128 (right).

75

Chapter 3

LFDS benchmarking

So far LFDS was run primarily on the images in i filter. All the parameters
and steps described in chapter-2 were determined on that subset of data
as well. Therefore, it is important to acknowledge that it is likely that
the current version of LFDS is not necessarily best-suited for detection of
linear features on all filters. Changing the parameters can have influence on
the detection rates as well as performance times of LFDS. In this chapter
I will present the performance of current version of LFDS software with
the parameters set at the values described in table-2.4 and compare it with
previous attempt of batch processing.

The first results we recovered were presented at LSST@Europe confer-
ence (Cikota et al., 2013). Dataset then analysed consisted of 1 876 092
frames primarily in i and r filter. There were a total of 420 000 potential
detections recovered which were hand-checked for false positive detection.
From the potential detections, after sorting, we recovered 15 063 actual
trails, 7 768 of those belonged to the i filter. Approximate execution time
per frame was 30 seconds. Because the first program used the Random sam-
ple consensus (RANSAC) algorithm (Fischler and Bolles, 1981) for detection
of linear features it was very susceptible to noise. Number of false positives
was overwhelming and required a team effort over a span of couple of weeks
to recheck all the images by hand. The nature of the detection algorithm was
such that we can confidently claim we detected a high percentage (>95%)
of existing lines on the processed images. Data recovered by this processing
is used as a benchmark for analysis of detection confidence levels of LFDS.

3.1 Execution time

I have measured execution times of remove_stars, detect_bright and de-
tect_dim functions. Tests were executed on 8th of September 2015 on Fermi.
Only data for run 94, camcol 1, i filter were considered. Out of 535 frames
existant in run 94, none failed or produced errors of other nature during test-

76

ing. Histogram on figure-3.1 shows the total execution times for all three
functions. Only 7 frames had remove_stars execution time over 0.5 seconds
while the same is true for only 5 frames of detect_dim function. Histogram
on figure-3.2 shows execution times of functions with upper x-axis limit on
0.5 seconds.

Figure 3.1: Execution times of functions remove_stars, detect_bright and
detect_dim.

Figure 3.2: Execution times of functions in more details.

What is noticeable from figure-3.2 is that detect_bright and detect_dim
functions display two peaks. detect_bright has one peak at execution times
of 0.06 to 0.07 seconds and the second peak at 0.08 to 0.09 seconds. First
peak can be attributed to an early return of the function, presumably be-

77

cause no minimal area rectangles could be found. detect_dim displays the
same behaviour with first peak at the 0.12 to 0.13 seconds time range which
happens for frames for which no minimal area rectangles could be found.
The second detect_dim peak is more spread out and ranges from 0.18 to
0.34 seconds. This is due to the fact that not all images are of the same
quality. Because the _fit_minAreaRect and Hough line detection functions
run several operations per pixel, noisier images will consume more time. re-
move_stars function is mostly executed in the 0.02 to 0.06 seconds, however
there are several occurrences of this function that take up to 1.3 seconds to
execute. This is, most likely, because photoObj files for those frames contain
a large amount of recorded object through which I loop over in Python. As
explained in section-2.2.5.2 looping in python is very costly. In table-3.1 I
present average and mean times of execution times per function.

Function name Average exec. time [s] Mean exec. time [s]
remove_stars 0.0573 0.0573
detect_bright 0.0687 0.0687
detect_dim 0.2126 0.2126

Table 3.1: Contours mode options.

A separate test was done to measure total execution time of the pro-
gram. Alongside the execution times of remove_stars, detect_bright and
detect_dim functions this test help measure the cost of unpacking time from
bz2 to fits format, results and errors saving times, function calls and time
spent on algorithm logic. Total execution time average was 0.8647 seconds
and coincided with its mean indicating that there are no extreme execution
time outliers. Execution times per number of frames is shown on figure-3.3.

Immediately noticeable from the figure-3.3 is that the total execution
times are concentrated mostly around 0.9 seconds. This 0.6 seconds larger
than the sum of the execution times remove_stars, detect_bright and de-
tect_dim functions. Most of this time difference can be attributed to the
long unpacking time from bz2 archive to the local fermi-node. What is visi-
ble as well are that the histogram has 3 peaks, one ranging from 0.65 to 0.69
seconds, one ranging from 0.73-0.8 seconds and the final one ranging from
0.82 to 0.97 seconds. Presumably, the lowest execution time peak can be at-
tributed to situation where both searches for minimal area rectangles failed.
Second peak can be attributed to function detect_bright succeeding. Third
peak belongs to the situation where both detect_bright and detect_dim
functions acted on the image.

Current version of LFDS outperforms both the Cikota et al. (2013) and
Bektešević (2013) in the time execution benchmarking by a factor of 30. Cur-
rent execution times are dominated by the bz2 decompression step, therefore
still leaving the opportunity to increase the performance by factor of 2 if

78

Figure 3.3: Total execution time per frame.

more HDD space is allocated. If a faster permanent memory was used, i.e.
SSD disk, file access times would be reduced even further. Tests performed
on 240GB Kingston SSD (SHFS37A240G) show, on a 1000 samples, 10MB
each, the average read rate to be 458.1 MB/s, with average access time being
0.15 ms. Compared to the used HDD, file access times would be reduced by
a factor of 4. However, the best approach would be pipeline design. A clever
file management script that spools the data before and during execution it-
self could increase the performance drastically. However such a script would
be extremely hard to code. Before the job is executed it is run through a
scheduler and TORQUE which means jobs are not always executed in the
same order they are received. This mandates a continuous communication
with the scheduler as well as with the program execution to predict which
data will be needed next. Issues related to preventing race conditions and
deletion of files are also present. Considering the level of my knowledge I
have deemed that spooling approach is too complicated and error prone to
be reliable.

Processing time of an entire filter, currently, is a little over 4 days. As-
suming a stable processing times for all filters we can extrapolate that for
the entire set of nearly 5.6 million images we would need approximately 20
days of processing which is tolerable. In a pipelined processing approach the
same amount of data could easily be processed in half the current necessary
time. Current LFDS performance enables large data analysis to be done by
just one person. Running filter per filter, and then analysing each output
with imagechecker (section-2.2.4.1) during the execution of the next filter
would enable the retrieval of final results in optimal time.

79

3.2 Detection rates

Entire i filter has been processed with LFDS and results retrieved were com-
pared with the benchmark results. Out of 1 122 264 images LFDS returned
17 058 images as possible detections. Compared to benchmark results, num-
ber of preliminary results returned by LFDS is a significant improvement
as well. There are 25 times fewer frames that need to be checked by hand
in LFDS than there were in benchmark results. Total rejection rate, ratio
of the number of processed frames and the number of returned frames, is
98.5%. Assuming that total rejection rate remains approximately constant
through all filters we can expect that for the full dataset of 5 611 320 im-
ages, returned number of possible detections amounts to approximately 85
thousand images. From experience I know that this is manageable even
for a single person within a span of 2 to 3 days. Considering the opti-
mal approach where user would analyse smaller batches of preliminary re-
sults during the processing of other filters, this after-processing that has to
be done manually would present a negligible time delay between prelimi-
nary and final results. Processing smaller batches of preliminary results in
this way would not present a time consuming or overly stressful job either.

Figure 3.4: Zoomed
section of transparent
trail.

However smaller number of frames in the prelim-
inary results does not necessarily mean a good
detection rate. Cross-referencing frame names in
LFDS preliminary results and benchmark results
reveals that, out of the total 17 thousand images
returned, only 5 391 actually contain trails. De-
tection rate, ratio of the number of frames actu-
ally containing trails with the number of frames
containing trails detected by LFDS, is 69.4%. For
certain parameter settings I can get a higher de-
tection rate, but at a cost of a drastical increase
in number of false positive detections. Maximally
achieved detection rate was 75% at a cost of 35
thousand potential trails detected on the i filter.
Including other filters and post-processing time re-
quirement estimates I have decided that this is not
a beneficial trade-off.

Main issues that prevent the detection of more
trails lie in the fact that a lot of trails are semi-
transparent. Once recorded on the image a human
eye can see them just fine as object whose intensity
is several times over that of the background. Unfor-
tunately, the pixels constituting that object, even
if more luminous, are not more “dense” in compar-
ison to the surrounding noise. If zoomed in sufficiently, to the single-pixel

80

level, such trails can be indistinguishable from the surrounding noise. One
such trail is shown in figure-3.4. Since current algorithm relies heavily on
finding objects by using the relationships between the positions of pixels of
an object, to avoid a lot of false detections it is prudent to perform noise
removal beforehand1. Noise removal is done by eroding the image before
dilating it. Unfortunately because erosion does not consider the intensities
of surrounding pixels, merely checks if there is a pixel of lesser intensity in
its surrounding (section-2.1.3.1), it often deletes such trails completely, or at
least partially. Since reducing the erosion kernel any further would not make
any impact on the image, and we have to reduce the noise for detection and
performance benefits, this step cannot be cut.

The only other way to boost the detection rate is to loosen the detection
parameters and allow for a lot more false positives. Then additionally pro-
vide a more processing intensive and time consuming post-processing step
that would be centered at the assumption that all images have a line and
that we know where it is on the image. The general idea would be to take
the preliminary results, cut out the section of the image where the trail is
supposed to be and run a special detection algorithm processing only that
part of the image. Benefits of this approach are twofold. Firstly, because we
have only cut a selected part of the image we have automatically reduced
the number of pixels we have to perform operations on and thus allowed
ourselves to be less drastic when it comes to noise removal. Secondly, we
can allow ourselves to be less constrained by execution time demands due
to the decreased data set we need to process. In that situation LFDS would
provide a fast decision making algorithm if such additional step would be
done on the image or not.

1this step also helps improve the performance of the program by removing active pixels
from the image

81

Chapter 4

Conclusion

I have shown that meteor trails, when imaged, are expected to be dominant
features in the SDSS images (section-1.1). This makes meteors well suited
cadidates for fast, scalable, automatic detection. Still, issues related to
analyzing tens of terabytes of data (section-1.3) proved to be quite restricting
in practice.

The largest practical obstacle to overcome is the file access latency and
bandwidth. For a modern HDD with average read rate of a 79MB/s ex-
tracting the file occupies 0.8 seconds per file. The average execution time
of functions is 0.06 seconds for removestars, 0.07 seconds for detect_bright
and 0.2 seconds for detect_dim. Cumulative average time of function exe-
cutions is 0.33 seconds which indicates that only 36% of the average total
execution time is spent on actual frame processing. File access mandates
additional restrictions on the global execution rates as well. Currently used
production environment, Fermi cluster, can run a total of 144 concurent
processes. However, using more than 36 will put such a strain on fermi-stor
nodes, responsible for data access, that they enter swap mode and reduce
the total execution time even further. Total predicted execution time for the
full SDSS data set with 36 concurent processes is approximately 20 days.

File access issues plague the detection rates as well by limiting the
amount of processing time that can be dedicated to a frame. Overstepping
the 1 second average execution time per frame increases the total execution
time for the full SDSS data set nonlinearly. Currently, using a selected set of
parameters, approximately 70% of existing trails are detected in the i filter.
Due to the robustness of used algorithm, I expect these rates to hold for
other filters as well.

File access issues are solvable by focusing on a more pipelined execution
approach, by increasing the total HDD space availible, or by using SSD disks.
In a pipeline approach the expected speedup range varies from factor 1 to
factor 2. If we had enough HDDs to be able to extract the entire SDSS data
set, we would effectively avoid the need to extract each frame individually

82

thus, gaining a speedup factor of ~2. In the same scenario but with modern
SSD disks, due to their low latency and larger bandwith, speedups up to a
factor of 4 can be expected.

In conclusion, our LFDS is a success. Even if the detection rates could be
higher, the performance is satisfactory. Under the assumption that perfor-
mance and detection rates measured for i filter hold for other filters as well,
we could detect approximately 75 000 trails left by meteors or satelites which
would be the largest such collection of trails detected so far in astronomical
setting. Further reduction of the resulting data set, by using meteor-satellite
separating criteria described in section-1.1, would accurately provide us with
a set of trails left behind only by meteors. Providing a full statistical anal-
ysis of the reduced set would shine the first light on the fainter end of the
luminosity distribution of meteors.

83

Bibliography

Ahn, C. P., Alexandroff, R., Allende Prieto, C., Anderson, S. F., Anderton,
T., Andrews, B. H., Aubourg, É., Bailey, S., Balbinot, E., and et al.
(2012). The Ninth Data Release of the Sloan Digital Sky Survey: First
Spectroscopic Data from the SDSS-III Baryon Oscillation Spectroscopic
Survey. The Astrophysical Journal Supplement, 203:21.

Alam, S., Albareti, F. D., Allende Prieto, C., Anders, F., Anderson, S. F.,
Anderton, T., Andrews, B. H., Armengaud, E., Aubourg, É., et al. (2015).
The Eleventh and Twelfth Data Releases of the Sloan Digital Sky Survey:
Final Data from SDSS-III. The Astrophysical Journal Supplement, 219:12.

Bektešević, D. (2013). Star removal on SDSS images. Bachelor thesis availi-
ble at http://vinkovic.org/Projects/MindExercises/radnje/2013_
Dino.pdf.

Canny, J. (1986). A computational approach to edge detection. Pattern
Analysis and Machine Intelligence, Institute of Electrical and Electronics
Engineers Transactions on, PAMI-8(6):679–698.

Cikota, A., Bektešević, D., Cikota, S., Jevremović, D., and Vinković, D.
(2013). Meteor science with survey telescopes - the case of sdss meteors.
In Proceedings of the 1st LSSTEurope: The Path to Science conference
(Cambridge, United Kingdom, Septembed 2013). Institute of Astronomy,
University of Cambridge.

Dawson, K. S., Schlegel, D. J., Ahn, C. P., Anderson, S. F., Aubourg, É.,
Bailey, S., Barkhouser, R. H., Bautista, J. E., Beifiori, A., Berlind, A. A.,
et al. (2013). The Baryon Oscillation Spectroscopic Survey of SDSS-III.
The Astronomical Journal, 145:10.

Fischler, M. A. and Bolles, R. C. (1981). Random sample consensus: A
paradigm for model fitting with applications to image analysis and auto-
mated cartography. Communications of the ACM, 24(6):381–395.

Gray, J., Slutz, D., Szalay, S. A., Thakar, A. R., VandenBerg, J., Kunszt,
Z. P., and Stoughton, C. (2002). Data mining the sdss skyserver database.
Microsoft Corporation Technical Report MSR-TR-2002-01.

84

http://vinkovic.org/Projects/MindExercises/radnje/2013_Dino.pdf
http://vinkovic.org/Projects/MindExercises/radnje/2013_Dino.pdf

Gunn, J. E., Carr, M., Rockosi, C., Sekiguchi, M., Berry, K., Elms, B., de
Haas, E., Ivezić, Ž., Knapp, G., Lupton, R., et al. (1998). The Sloan
Digital Sky Survey Photometric Camera. The Astronomical Journal,
116:3040–3081.

Gunn, J. E., Siegmund, W. A., Mannery, E. J., Owen, R. E., Hull, C. L.,
Leger, R. F., Carey, L. N., Knapp, G. R., York, D. G., Boroski, W. N.,
et al. (2006). The 2.5 m Telescope of the Sloan Digital Sky Survey. The
Astronomical Journal, 131:2332–2359.

Hough, P. V. C. (1959). Machine Analysis Of Bubble Chamber Pictures. In
Proceedings, 2nd International Conference on High-Energy Accelerators
and Instrumentation, HEACC 1959, volume C590914, pages 554–558.

IMO (1995a). Angular velocities of meteors. http://www.imo.net/visual/
minor/shower/velocity. Accessed: 2015-09-08.

IMO (1995b). Angular velocities of meteors. http://www.imo.net/visual/
minor/shower/length. Accessed: 2015-09-08.

IMO (1997). Angular velocities of meteors. http://www.imo.net/
glossary#letterm. Accessed: 2015-09-16.

Ivezić, Ž., Tabachnik, S., Rafikov, R., Lupton, R. H., Quinn, T., Hammer-
gren, M., Eyer, L., Chu, J., Armstrong, J. C., and SDSS Collaboration
(2001). Solar System Objects Observed in the Sloan Digital Sky Survey
Commissioning Data. The Astronomical Journal, 122:2749–2784.

Iye, M., Tanaka, M., Yanagisawa, M., Ebizuka, N., Ohnishi, K., Hirose,
C., Asami, N., Komiyama, Y., and Furusawa, H. (2007). SuprimeCam
Observation of Sporadic Meteors during Perseids 2004. "Publications of
the Astronomical Society of Japan", 59:841–855.

Jenniskens, P. (2006). Meteor Showers and their Parent Comets. Cambridge
University Press.

McLeod, Norman, M. (1993). Suggestions for Visual Meteor Observations.
American Meteor Society, Ltd. Revised in 1995.

Morris, R. V., Shelfer, T. D., Scheinost, A. C., Hinman, N. W., Furniss, G.,
Mertzman, S. A., Bishop, J. L., Ming, D. W., Allen, C. C., and Britt, D. T.
(2000). Mineralogy, composition, and alteration of Mars Pathfinder rocks
and soils: Evidence from multispectral, elemental, and magnetic data on
terrestrial analogue, SNC meteorite, and Pathfinder samples. Journal of
Geophysical Research, 105:1757–1818.

Padgham, C. A. (1967). The points on stars. Physics Education, 2(5):252.

85

http://www.imo.net/visual/minor/shower/velocity
http://www.imo.net/visual/minor/shower/velocity
http://www.imo.net/visual/minor/shower/length
http://www.imo.net/visual/minor/shower/length
http://www.imo.net/glossary#letterm
http://www.imo.net/glossary#letterm

Rubin, A. E. and Grossman, J. N. (2010). Meteorite and meteoroid: New
comprehensive definitions. Meteoritics and Planetary Science, 45:114–122.

Solontoi, M., Ivezić, Ž., West, A. A., Claire, M., Jurić, M., Becker, A., Jones,
L., Hall, P., B., Kent, S., Lupton, R. H., et al. (2010). Detecting active
comets in the {SDSS}. Icarus, 205(2):605 – 618.

Stoughton, C., Lupton, R. H., Bernardi, M., Blanton, M. R., Burles, S.,
Castander, F. J., Connolly, A. J., Eisenstein, D. J., Frieman, J. A., et al.
(2002). Sloan Digital Sky Survey: Early Data Release. The Astronomical
Journal, 123:485–548.

Suzuki, S. and Keiichi, A. (1985). Topological structural analysis of digitized
binary images by border following. "Computer Vision, Graphics, and
Image Processing", 30(1):32 – 46.

Teh, C. H. and Chin, R. T. (1989). On the detection of dominant points
on digital curves. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 11(8):859–872.

Toussaint, G. (1983). Solving geometric problems with the rotating calipers.
In Proceedings of the Mediterranean Electrotechnical Conference (Athens,
Greece, May, 1983). Institute of Electrical and Electronics Engineers.

Trigo-Rodriguez, J. M., Rietmeijer, F., Llorca, J., and Janches, D. (2008).
Advances in Meteoroid and Meteor Science. Springer.

Vokrouhlický, D. and Farinella, P. (2000). Efficient delivery of meteorites to
the Earth from a wide range of asteroid parent bodies. Nature, 407:606–
608.

York, D. G., Adelman, J., Anderson, Jr., J. E., Anderson, S. F., Annis,
J., Bahcall, N. A., Bakken, J. A., Barkhouser, R., Bastian, S., and SDSS
Collaboration (2000). The Sloan Digital Sky Survey: Technical Summary.
The Astronomical Journal, 120:1579–1587.

86

	Introduction
	Meteors
	Introduction to SDSS
	Camera
	Run, camcol, filter, field
	Data access, files and folder structure

	Space and time constraint estimates
	Why Python?

	Linear Feature Detection Software
	Dependencies
	Erin Sheldon's SDSSPY
	Erin Sheldon's FITSIO
	OpenCV
	Erosion and Dilatation
	Histogram equalization
	Canny edge detection
	Contours detection
	Minimal Area Rectangle
	Hough transform

	LFDS Modules
	analyse
	createjobs
	errors
	results
	imagechecker

	detecttrails
	processfield
	removestars

	LFDS recap and processing examples

	LFDS benchmarking
	Execution time
	Detection rates

	Conclusion
	Bibliography

