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Introduction 

In medical diagnostics, the accuracy and efficiency of medical image interpretation are 

crucial for timely and effective treatment. In medicine, magnetic resonance imaging (MRI) 

is often used, and it represents a technique that offers a detailed insight into the internal 

structures of the body. There are three types of analysis that depend on the intervention of 

the expert, and can be divided into manual, semi-automatic and automatic methods. Manual 

analysis can be time-consuming and prone to human error, given the lack of experts and 

large amount of MRI data. This can result in a delay in diagnosis and timely treatment. 

Therefore, the development of efficient, automated techniques is of crucial importance 

because the use of these algorithms can contribute to the automation of the process of 

detecting suspicious areas, which can lead to the acceleration of the entire process.  

The thesis explores methods whose combination can lead to faster segmentation of 

suspicious regions on MRI images of brain tumors. The use of machine learning models and 

application development can improve the diagnostic process, reduce data processing time 

and increase the accuracy of the abnormality identification. The thesis combines two models, 

RCS-YOLO and MedSAM, which are integrated into a demo application. The demo 

application can serve as a starting point in building a comprehensive application for 

automated analysis and for solving the above-mentioned problems. 
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1. About research 

The purpose of the thesis is to find an appropriate model for the segmentation of medical 

images, to automate the process of analyzing medical images, especially those related to 

brain tumors. The acceleration of this process could result in timely diagnosis and timely 

initiation of treatment. The goal of the thesis is to find and implement models in a demo 

application that could be further improved. Also, the development of an application that 

would use selected models would provide comprehensive assistance to the experts in the 

field of medicine. 

This research belongs to the field of technical sciences, field of computer science, and branch 

of artificial intelligence. According to the type, this is applied research, and according to the 

methodological approach, the research belongs to quantitative research because the model 

determines whether the area belongs to the tumor region or not. According to the type of 

data, the research belongs to the empirical category, because the research is based on the 

analysis of real data. 

1.1. Motivation 

In real world, there is often a problem of overloading the health care system. This is 

contributed by the lack of doctors and the increasing amount of medical data that needs to 

be analyzed to establish a diagnosis. Therefore, patients often do not receive a timely 

diagnosis and start treatment. Also, not all doctors have the same level of knowledge. This 

problem is trying to be solved using artificial intelligence, i.e. machine learning methods. 

Many researchers work on the problem of automating the process of medical image analysis, 

with the aim of creating a quality tool that would serve to the experts in the medical field. 

Thus, the motivation for writing the thesis is to improve the diagnostic process by increasing 

the precision of labeling structures and reducing the time required for the analysis of large 

datasets. This would make the process more objective, and the process would be automated, 

which would lead to a reduction in workload and waiting lists. 
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1.2. Research questions 

This research is focused on automating the process of medical image analysis using machine 

learning models. More specifically, the goal is to find a segmentation model that will 

distinguish the suspicious region on the brain image, i.e. healthy and unhealthy brain tissue, 

with special emphasis on the following research questions: 

• Are there models for medical image segmentation? Do they need to be improved? 

• Can a suspicious region in brain images be approximated using machine learning 

models? 

• Can the selected models be implemented in an application that would accelerate the 

process of medical image analysis? 

• Are there ethical problems related to the automation of the medical image analysis 

process? 

• Can the whole process be generalized for other organs/tissues? 
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2. Literature review 

Literature review was conducted using the Preferred Reporting Items for Systematic 

Reviews and Meta-Analyses (PRISMA). [1] The Web of Science (WOS) database was used 

for the literature review which included reviewed articles from the last two years related to 

MRI-based brain tumor segmentation. The inclusion criteria were as follows: 

• Papers related to brain tumor segmentation in Magnetic resonance imaging (MRI) 

• Papers written in English 

• Reviewed papers 

• Papers published in the last two years (2023., 2024.) 

• Publicly available papers 

The following exclusion criteria were used to select papers that are not of interest to the 

thesis: 

• Non-reviewed papers 

• Papers not written in English 

• Papers that are published outside the 2023. and 2024. 

• Papers related to other areas such as classification or detection 

• Papers that do not use MRI 

• Papers in which another area or organ is segmented 

• Papers that describe other diseases other than tumors 

• Papers that are not publicly available 

By applying the mentioned inclusion and exclusion criteria, a total of 23 articles were 

selected, as can be seen in Figure 2.1. 



 

5 

 

Figure 2.1. PRISMA flow diagram - literature review 

2.1. Brain tumor segmentation 

Brain tumor segmentation is the differentiation of abnormal brain tissue from healthy brain 

tissue, and it can be divided into 2D and 3D approaches. [2] Due to limited resources, this 

thesis focuses on 2D segmentation, where each slice of the brain tumor image is analyzed 

independently. 

Verma A. et al. proposed “Comprehensive Review on MRI-Based Brain Tumor 

Segmentation: A Comparative Study from 2017 Onwards” [2], which reviews automated 

brain disease diagnosis and tumor segmentation methods from 2017 to 2024. According to 
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[3] in the earlier days brain tumor segmentation methods were divided depending on the 

need for manual intervention into manual, semi-automated, and fully automated methods. 

Verma A. et al. [2] categorize the methods into three classes, i.e., conventional methods, 

machine learning-based methods, and deep learning-based methods which can further be 

divided into subcategories as shown in Figure 2.1.1.  

 

Figure 2.1.1. Brain tumor segmentation methods 

2.1.1. Conventional methods 

Conventional methods can be divided into categories, i.e. threshold-based, atlas-based, 

region-based, etc. as shown in Figure 2.1.1., and some of them will be further explained 

bellow.  

The threshold-based methods [70] apply one or more thresholds to the grayscale intensity 

values of different MRI modalities, such as T1-weighted, T2-weighted, contrast-enhanced 

T1-weighted (T1C), and Fluid Attenuated Inversion Recovery (FLAIR). [2] Grayscale 

intensity values are used as features to divide the image into several segments based on the 

applied threshold which reduces processing time by avoiding additional feature extraction, 

but it does not perform accurately for brain tumor segmentation. This approach is useful for 

highlighting enhanced tumors in T1C MRI and identifying tumor boundaries in T2 images. 

[2] 

Atlas-based methods use a map of a healthy brain’s anatomy, including gray matter (GM), 

white matter (WM), and cerebrospinal fluid (CSF). These approaches help in gaining prior 
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knowledge of the modality by co-registering the atlas with the input image, followed by 

segmentation of various subcomponents or regions. [2] 

Region-based methods segment an image into multiple disjoint regions based on predefined 

similarity measures, that rely on specific pixel features, which are then combined to form 

image regions. In this method, a seed point is selected and, based on the pixel feature is then 

compared with all other pixels to partition them into two regions – one similar to the seed 

pixel and the other dissimilar. [2] 

However, each method has its challenges. For example, threshold-based methods can have 

a problem of misclassifying brain tumor tissues because different tissues can have similar 

intensity values. Region-based methods suffer from under-segmentation or over-

segmentation because those methods might struggle with the heterogeneity of brain tumors. 

Edge and contour-based methods may encounter a problem in the adherence of insufficiently 

well-defined tumor boundaries. Contour-based methods [71] rely on an initial contour, 

which can be set manually or automatically, that diverges or converges around the object of 

interest. [2] 

Conventional methods are appreciated for their simplicity and lack of dependence on prior 

knowledge, but they often don’t provide the accuracy required for reliable disease diagnosis. 

[2] Therefore, the focus is on more complex methods with better performance that follow in 

the rest of the thesis. 

2.1.2. Machine-learning methods 

Machine learning methods can be divided into classification-based and clustering-based 

methods, as well as generative adversarial networks (GANs) as shown in Figure 2.1.1. 

Classification and clustering are key branches of machine-learning methods that recognize 

patterns from which conclusions are drawn depending on the provided data. Generative 

Adversarial Networks (GANs) should also be mentioned here, which in an unsupervised 

way generate data using random noise. [2] Each of them is explained below.  

Numerous machine learning (ML) methods with a discriminating approach have been 

proposed for the automatic segmentation of medical images, such as Neural Networks, 

Support Vector Machine (SVM), Random Forest (RF), fuzzy clustering, etc. Those methods 

don’t require anatomical brain information for model development which is opposite to the 

generative methods that segment abnormal brain regions regarding the anatomical structure 
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of healthy and tumorous tissues. [2] Several studies applied RF classifier to segment brain 

tumors over different features, such as statistical, wavelet, texture-based, context-sensitive, 

local, and contextual patch-based features. [4-8] Support Vector Machine (SVM) is a 

popular supervised machine learning algorithm that finds a maximum margin hyperplane to 

classify data points in two or more dimensions. [2] SVG has been exploited by researchers 

for detecting and segmenting abnormal tumors using different features (statistical, texture) 

and different kernels (Sigmoid, linear, Radial Basis Function). [9-11] Artificial Neural 

Network (ANN) is also a commonly used machine learning algorithm for image 

classification, although the performance of the ANN depends on several parameters like 

model complexity (i.e., the number of hidden layers), activation functions, number of 

features, and feature extraction. [2] Researchers have used different variations of ANNs [12], 

including Deep Belief Network (DBN) [14, 15] and autoencoders [13] which represent high-

dimensional data in a lower-dimensional space. [2] However, a significant limitation of 

classification models is the quality and efficiency of extracted features. Recent research 

introduces more advanced techniques such as the use of deep neural networks. Yet, with 

deep learning, concerns arise about the benefits of adding layers due to degradation, where 

increasing depth initially improves accuracy but also leads to rapid decline. [2] 

The above-mentioned supervised classification algorithms are popular for brain tumor 

segmentation due to their high performance and the availability of large, annotated datasets. 

However, unsupervised algorithms are used for unannotated real datasets. [2] Researchers 

used different unsupervised algorithms for brain abnormalities detection and segmentation, 

like Fuzzy C-means (FCM) [16, 17], Self-Organizing Map (SOM) [18], Active Contour 

Model (ACM) [18], etc., as well as various nature-inspired optimization algorithms with 

unsupervised clustering methods to enhance the performance of tumor detection. [2] 

Moreover, K-means clustering is often used in combination with other algorithms such as 

OTSU [19] or CLAHE [20]. Although unsupervised learning approaches have advantages, 

the issue is that the found patterns may not correspond to the actual segmentation of the 

tumor, especially in noisy images or MRI images with artifacts. [2] 

Generative Adversarial Networks (GANs) are unsupervised algorithms consisting of a 

generator and a discriminator. The generator generates data based on random noise, and the 

discriminator classifies data as real or fake. Real data is considered training data, and 

generated data is considered as fake one. Furthermore, the discriminator’s feedback helps 

the generator and discriminator improve iteratively. [2] Several studies [21-27] have used 
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GANs for brain tumor detection, classification, and segmentation, although they can be 

challenging to train due to issues like mode collapse, and the generated images may require 

validation against clinical standards. [2] GANs can be used across different datasets and 

modalities, but their performance may vary. That suggest that machine-learning approaches 

may need tuning and validation for specific applications, which may limit their ability to 

generalize effectively. Also, there is a challenge of lack of interpretability regarding 

generating and selecting features, which can be a barrier to clinical adoption. [2] 

Considering the complexity of the model and the large amount of data, the applicability of 

these algorithms in real-time, as well as in applications in a clinical environment, is 

questionable.  According to [2], SVM is the most preferred machine-learning technique, and 

the performance of machine-learning approaches stagnates as the dataset increases. 

2.1.3. Deep learning methods 

Machine learning methods rely on medical expertise to extract meaningful features for 

model training, which often results in low accuracy, especially when distinguishing between 

unclear boundaries of healthy and lesion tissues. In contrast to handcrafted feature 

extraction, convolutional deep-learning methods automatically extract a wide range of 

features using convolution and pooling operations, followed by a fully connected layer 

(Figure 2.1.3.1), leading to improved accuracy, especially with growing datasets. [2]  

 

Figure 2.1.3.1. Convolutional neural network (CNN) for brain tumor segmentation [2, 51] 

 



 

10 

CNNs have been used in image classification tasks. However, U-Net is used for brain tumor 

segmentation, often outperforming CNNs due to their unique encoder-decoder U-shaped 

architecture that preserves spatial information through skip connections and excels in 

medical image analysis. [2] Both CNNs and U-Net will be further explained below.  

Wang et al. [28] used 12-layer CNN for brain tumor segmentation, which improved accuracy 

compared to traditional segmentation methods. Zhoa et al. [29] proposed a model combining 

fully connected neural networks (FCNNs) with conditional random fields (CFRs) to enhance 

accuracy and preserve spatial information. [2] Other studies proposed various CNN 

architectures, like 3D CNNs [30], cascaded networks [31], or deep convolutional networks 

[32]. [2] Iqbal et al. [33] presented innovative architectures, SkipNet, IntNet, and SENet, 

that demonstrated innovations like replacing innermost network blocks with skip 

connections or integrating SE block. [2] Naceur et al. [34] proposed three deep CNN models, 

2CNet, 3CNet, and EnsembleNet. In those models, the number of blocks differs, and 

EnsembleNet executes and fuses the results of both 2CNet and 3CNet models. [2] Kamnitsas 

et al. [35] used residual networks in a 3D CCN model to minimize the vanishing gradient 

descent problem, by increasing the number of layers in deep neural networks. [2] For 

automatization of brain tumor segmentation, Pereira et al. [36] used a hierarchical approach, 

and Mittal et al. [37] used stationary wavelet transform (SWT) for feature extraction, and 

growing CNN for lesion classification. [2] Togocar et al. [38] used CNN model that 

incorporated an attention module (emphasizing the relevant regions of MR images which 

saved processing time), a residual network, and the hypercolumn technique. [2] Huang et al. 

[39] proposed an architecture based on adaptive gamma correction (AGC) that focuses on 

regions with valuable information, and consequently enhance local features and improve 

performance. [2] Rafi et al. [40] introduced a 3D multi-level CNN model that used dilated 

convolutions with different kernel sizes for glioma segmentation. [2] Hu et al. [41] fused 

multi-cascaded CNN with fully connected conditional random fields (CRFs) to preserve 

local information, and Ranjbarzadeh et al. [42] addressed overfitting with cascaded CNN 

that processes small image patches, which reduces computational time and improves local 

feature enhancement. [2] Deng et al. [43] utilized heterogeneous CNN (trained with MRI 

patches) and CRFs (trained on image slices), while Khan et al. [44] used handcrafted features 

to train deep learning CNN model. Features from MRI were extracted using local binary 

patterns (LBP), histogram of oriented gradients (HOG), and mean intensity. [2] Myronenko 

and Hatamizadeh [45] introduced a symmetrical encoder-decoder CNN, and Aswani and 
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Menaka [46] CNN-based model used both vertical and horizontal patches during training. 

[2] Huang et al. [47] proposed an architecture to fuse up-sampled multi-scale features, that 

were extracted using convolutional and maxpooling operations. [2] Aggarwal et al. [48] 

solved deep-learning gradient problems using a residual network (ResNet), thus improving 

the precision and learning speed. [2] Other significant contributions included a 3D multi-

scale ghost CNN with an auxiliary MetaFormer decoding path [49], and an active learning 

approach with NiftyNet to train CNN [50]. [2] The development of CNN-based techniques 

enhanced accuracy, sensitivity, and specificity. Despite that, key challenges like 

generalizability, interpretability, computational efficiency, etc. still persist. [2] Some of 

those challenges will be addressed later in the thesis. 

Successful training on deep neural networks demands a large number of annotated data. 

Ronneberger et al. [52] proposed a network architecture and training strategy that utilizes 

available annotated data through data augmentation such as shifts, rotations, and 

deformations – common issues in medical images. The architecture, known as U-Net, 

consists of a contracting path and an expansive path, which can be seen in Figure 2.1.3.2. 

The contracting path captures context, and the expansive path allows precise localization. 

[52] In the contracting path, also known as the encoder, a sequence of convolution and 

maxpooling operations are performed to reduce input image dimensions. In an expensive 

path, i.e. decoder, images are up-sampled using deconvolution operations to identify tumor 

cell locations. Convolution and deconvolution blocks are connected through skip connection 

to preserve spatial information. [2] This architecture enables end-to-end training from a 

relatively small number of images. [52] Also, a key innovation in U-Net is the ability to 

handle large images using an overlap-tile strategy, where the network predicts border pixels 

by extrapolating context from mirrored input images which makes U-Net useful for 

biomedical tasks. [52] According to [2], deep-learning-based methods, particularly different 

variants of the U-Net model, achieve better results than other approaches for brain tumor 

segmentation. Many researchers provided various modifications of the U-Net model, and 

some of them will be explained below.  
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Figure 2.1.3.2. U-Net architecture [52] 

Ding et al. [24] introduced a two-stage brain tumor segmentation model, where the first stage 

used U-Net for coarse segmentation, preserving local spatial information, while the second 

stage used a convolution-based encoder-decoder model that refined the segmentation. [2] 

Zhu et al. [53] introduce Large deep 3D ConvNets with automated Model Parallelism 

(LAMP) while investigating the impact of model and input size on segmentation accuracy. 

They validated different U-Net models (3D U-Net, 3D Squeeze-and-Excitation U-Net) in 

segmentation tasks, and designed a parallel U-Net-based GPipe as the back-end parallelism. 

The authors concluded that employing large models and input context increases 

segmentation accuracy, and large inputs reduce inference time by leveraging automated 

model parallelism. [53] LAMP design can be seen in Figure 2.1.3.3., which illustrates the 

minimization of dependency on skip connections in U-Net by splitting it into two separate 

blocks. This design enables U-Net to achieve more parallel blocks, which results in higher 

throughput. [53] 
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Figure 2.1.3.3. LAMP: reduction of skip-connection dependency (a)) by separating it into two 

blocks (b)) [53] 

Lie et al. [54] proposed a new V-net-based deep learning model with encoder-decoder 

architecture, with batch normalization and replacement of original residual blocks with 

bottom residual blocks. This model was introduced to improve the accuracy of the existing 

V-net CNN model. [2] Naser and Deen [55] proposed a hybrid model with U-Net [52] for 

segmentation, VGG16 for grading, and a fully connected network at the end. [2] Zhang et 

al. [56] combined residual models and attention gates in the U-Net framework, enhancing 

silent features and suppressing irrelevant information, thus improving segmentation 

accuracy. [2] Lin et al. [57] addressed the problem of information loss in U-Net during up-

sampling and down-sampling by placing convolution operations and designing a model to 

strengthen voxel relationships, thus preserving spatial information. [2] Ma et al. [58] 

modified the Attention U-Net model to introduce MRDS and APR models by incorporating 

deep supervision and residual blocks. These modifications extracted rich features, captured 

boundary information, and addressed issues like overfitting and vanishing gradient descent 

problems. [2] Some of the authors replaced the encoder path with other architectures like 

ResNet50 [59] or MobileNetV2 [60]. Also, a lightweight 3D U-Net model was invented by 

Xiao et al. [61] when each encoder-decoder layer was modified to have 32 channels. [2] 

Zhou et al. [62] introduced a U-Net-based multi-encoder network for brain tumor 

segmentation to address the challenge of missing modalities by generating an artificial 

missing modality with enhanced features. [2] Several researchers used residual blocks in the 

encoder or decoder path, or both [63-67]. Ruba et al. [68] combined U-Net with ResNet and 

integrated skip connections with attention gates to improve brain tumor segmentation 
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accuracy which enhanced tumor localization and overall tumor segmentation. [2] Yu et al. 

[69] presented an U-Net-based model to handle volumetric data, which was subdivided into 

hierarchical patches and segmented into blocks. Blocks were processed by a transformer 

encoder, followed by pooling and skip connections featuring residual blocks. [2]  

Many researchers customized the U-Net model by adjusting its depth and width for 

segmentation optimization. Adding residual connections into the U-Net structure minimized 

the vanishing gradient problem, and adding attention gates into skip connections filters 

unnecessary information passed between the encoder and decoder. Despite these 

improvements, U-Net models still face challenges like overfitting to limited labeled data, or 

computational costs. Further improvements may include developing hybrid models that 

combine other architectures with U-Net. [2] 

Deep learning models have many advantages, but they require extensive computational 

resources and large annotated datasets. Also, they can operate as “black boxes” that do not 

give insights into decision-making processes, which can be a problem when it comes to 

interpretability in clinical applications. Overfitting also remains a challenge, so the use of 

sophisticated regularization techniques and careful model validation are mandatory. [2] 

2.2. The dataset 

The BRATS-2013 [72] dataset includes 3D MRI volumes from 20 high-grade (HG) gliomas 

and 10 low-grade (LG) glioma patients, with each subject data having four MRI images: 

T1C, FLAIR (Fluid-attenuated inversion recovery), T1-weighted, and T2-weighted images. 

These volumes consist of 176 slices of 2-dimensional images, each 216x176 pixels. The 

BRATS-2015 dataset [73] expands this to 220 HG and 54 LG glioma subjects, with 155 

slices per volume, each 240x240 pixels. In both datasets, the skull is removed to protect the 

subjects' identities. Subsequent versions of BRATS (2017-2021) retain the core 

characteristics of the BRATS 2015. [2] 

The Cancer Imaging Archive (TCIA) [74] is another publicly available brain tumor detection 

and segmentation dataset that covers a wide range of cancer types. BrainWeb [75] is a 

synthetic dataset that contains simulated brain MRI images with T1, T2, and proton density 

(PD) modalities. [2] According to [2], despite those two datasets, as well as other options 

[78, 79, 87-91], the BRATS dataset remains the most popular for brain tumor segmentation. 
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3. Technical overview 

The technical overview contains the main methods, datasets, and metrics used further in the 

thesis. The following sections review RCS-YOLO [76] used for brain tumor detection, 

giving technical aspects related to the network architecture. Furthermore, the section 

provides information about MedSAM [77] used for brain tumor segmentation, as well as 

Br35H [78] and LGG [79] datasets used for model training and evaluation, i.e. concluding 

the application development process.  

3.1. Brain tumor detection 

Brain tumor detection is the task of identifying suspicious regions, i.e. tumors within a brain 

image. In the context of AI, many detection techniques were proposed to analyze imaging 

data with high accuracy, thus assisting in the early detection of brain tumors. In the thesis, 

the detections were needed to serve as an input to the segmentation model to specify the 

segmentation target. In the following subsection, more details are given about the RCS-

YOLO algorithm, its performance, and its architecture.  

3.1.1. RCS-YOLO 

YOLO frameworks are one of the most efficient object detection algorithms, but their 

effectiveness in brain tumor detection has not yet been sufficiently investigated. Kang et al. 

[76] proposed a YOLO-based model for brain tumor detection, which was trained on the 

Br35H dataset, and outperformed the YOLOv6, YOLOv7, and YOLOv8 in speed and 

accuracy. The accuracy of RCS-YOLO exceeds that of YOLOv7 by 1%, and the inference 

speed by 60% at 114.8 frames per second (FPS).  

RCS-YOLO architecture consists of RCS-OSA and RepVGG modules as shown in Figure 

3.1.1.1. The number of stacked RCS modules is represented with n, and ncₗₛ represents the 

number of classes in detected objects. Detection layers obtained using 2D convolutional 

networks are labeled with IDetect. [76] 

RepVGG/RepConv ShuffleNet is an architecture designed as a structural reparametrized 

convolution based on channel shuffle.  Input tensor splits into two equal parts, where one 

part undergoing a process involving the identity branch, 1x1 convolution, and 3x3 
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convolution to construct the RCS, and RepConv comes from the transformation of the 

identity branch, 1x1 convolution, and 3x3 convolution during inference stage with the help 

of structural reparameterization. A channel mixing operator is used, which reduces 

computational complexity. Also, channel mixing enables efficient communication of 

information between features, which allows a more informative feature representation. So, 

this reduces the computational complexity and inference-time memory consumption, 

resulting in faster inference. [76] 

RCS-OSA module is developed by incorporating RCS, that was mentioned in paragraph 

above. At different locations of the network, different numbers of stacked RCS modules are 

used, thus ensuring reuse of features and improving the flow of information between 

different channels, i.e. between features of adjacent layers. [76] 

 

Figure 3.1.1.1. RCS-YOLO architecture [76] 

RCS-OSA + Upsampling and RCS-OSA + RepVGG/RepConv Undersampling perform 

alignment of feature maps of different sizes and thus enable the exchange of information 

between the two prediction feature layers, which enables fast inference of high accuracy in 

object detection. Moreover, RCS-OSA reduces the memory access cost (MAC) by 

maintaining the same number of input channels and minimum output channels. [76] 
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For network building, authors used max-pooling undersampling 32 times of YOLOv7 for 

backbone network construction and RepVGG/RepConv with a step of 2 for undersampling. 

To further reduce the inference time, the authors reduce the number of detection heads from 

3 to 2, which also reduces the number of convolutional layers and the computational 

complexity of RCS-YOLO. Also, this reduces the total computational requirements of the 

network and the computational time required for the postprocessing non-maximum 

suppression.  [76] 

3.2. Brain tumor segmentation 

Segmentation is often used in medical image analysis to identify the region of interest (ROI) 

such as organs, lesions, and tissues. Manual segmentation is a time-consuming process, and 

this problem can be solved by using fully or semi-automated segmentation.  Earlier 

mentioned deep-learning models often have task-specific nature and their performance can 

be significantly worse when applied to new tasks or different data types. [77] In the next 

subchapter, the Segment Anything in Medical Image model (MedSAM) is proposed, which 

with its architecture contributes to solving the generalizability problem.  

3.2.1. MedSAM 

MedSAM [77] model is developed for medical image segmentation, thus solving the 

problem of lack of generalizability of other models. The model was developed using an 

extensive medical image dataset containing 1,570,263 image-mask pairs, spanning 10 

different imaging modalities (Figure 3.2.1.1.) and more than 30 types of cancer. The 

dominant modalities in the dataset are magnetic resonance imaging (MRI), computed 

tomography (CT), and endoscopy, but there are also others such as ultrasound, X-Ray, 

pathology, fundus, dermoscopy, mammography, and optical coherence tomography (OCT). 

The diversity of these modalities requires a universal and efficient model for handling the 

unique characteristics of each modality. [77] 

The model was evaluated across 86 internal and 60 external validation tasks, showing better 

accuracy and robustness compared to models specialized for individual modalities. 

MedSAM shows efficiency in segmentation across various tasks, thus showing potential to 

be a part of diagnostic tools and treatment plans. [77] 
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Figure 3.2.1.1. Modality distribution in the dataset [77] 

The earlier mentioned diversity of modalities brings concerns about the choice of model 

architecture, considering that with the same model, it should be possible to segment different 

modalities and ROIs. Authors of the MedSAM proposed a practical approach and developed 

a 2D segmentation model, that can adapt to specific tasks based on user-provided prompts. 

Also, the model processes 3D images as a series of 2D slices, so it can handle both 2D and 

3D modalities. When it comes to user prompts, they include points and bounding boxes as 

can be seen in Figure 3.2.1.2. [77] 

The previously mentioned bounding boxes provide spatial context for the ROI, which allows 

the algorithm to more precisely determine the target area for segmentation. The effectiveness 

of bounding boxes is especially evident in the multiple object segmentation. On the other 

hand, point-based prompts can be ambiguous, especially with similar structures. [77] 
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Figure 3.2.1.2. MedSAM Network Architecture [77] 

The MedSAM Network Architecture consists of a vision transformer (ViT)-based image 

encoder that maps the input image into a high-dimensional image embedding space, a 

prompt encoder that transforms bounding boxes into feature representations using positional 

encoding, and a mask decoder that fuses the image embedding and prompt features using 

cross-attention. [77] The architecture is shown in Figure 3.2.1.2. 

The authors [77] also conducted a study that used experts for annotations. The experts 

manually annotated 3D tumors slice-by-slice, as well as drew long and short tumor axes with 

linear markers every 3-10 slices. MedSAM was then used to segment the tumors based on 

the linear annotations, and experts revised the segmentations. The results show that 

MedSAM has reduced annotation time by 82.37% and 82.95% compared to the two experts. 

[77] These results show the potential of MedSAM in the automation annotation process of 

segmenting suspicious regions and will be used in the continuation of the thesis. 

3.3. The datasets 

The chosen datasets used further in the thesis are the Br35H dataset [78] and the LGG 

Segmentation Dataset [79]. 

The Br35H dataset consists of 1500 brain MRI images that are tumorous and 1500 images 

that are non-tumorous. [78] The reason why the Br35H dataset was chosen is that the authors 

of the RCS-YOLO model [76] claim that the model trained on that dataset gives better results 

when evaluated on the publicly available brain tumor detection annotated datasets than other 

state-of-the-art YOLO models. 
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LGG Segmentation Dataset includes MR images of the brain along with manually created 

FLAIR abnormality segmentation masks. The images were obtained from The Cancer 

Imaging Archive (TCIA) and they represent 110 patients who are a part of The Cancer 

Genome Atlas (TGCA) lower-grade glioma collection. Each patient has at least a fluid-

attenuated inversion recovery (FLAIR) sequence and associated genomic cluster data. [79] 

The reason why the LGG Segmentation Dataset was used in the experiment is the fact that 

the MedSAM model [77] was trained on the extensive dataset mentioned above, which was 

obtained from various sources, including the TCIA archive, Kaggle, Grand-Challenge, 

Scientific Data, CodaLab, and various other segmentation challenges. Considering 

mentioned, there is a possibility that this dataset was not used in model training since it was 

not explicitly specified as the training data. However, there is a possibility that it was used 

because the images were obtained from the TCIA, which can be a potential limitation due to 

using it for test purposes. 

The Br35H dataset was used for the first part of the experiment, and the LGG Segmentation 

Dataset was used in both the first and second parts of the experiment. The details of the 

experiment are explained in Chapter 4 of the thesis. 
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4. The experiment 

The main idea of the thesis is a faster analysis of large datasets of medical images, 

specifically targeting suspicious areas that may indicate a brain tumor. To do that, detection 

and segmentation methods are used. The experiment is conducted in two parts: the first part 

aims to find a way of successful detection and segmentation that are further used in the 

second part – distinguishing between suspicious and non-suspicious images using the 

graphical user interface (GUI). The GUI part of the experiment will be explained separately 

in Chapter 5.  

As explained earlier, for successful segmentation using the MedSAM model [77], it is 

necessary to determine the region of interest (ROI). The ROI determination is based on 

drawing the bounding boxes sent into the prompt encoder of the MedSAM model, and their 

drawing is attempted to be automated by using the RCS-YOLO detection model. In the GUI, 

both automated and manual drawings of the bounding boxes will be covered, but in this 

chapter, the focus is on finding the best way to make an automatic one. 

4.1. RCS-YOLO model training using Br35H dataset 

The authors of the RCS-YOLO [76] trained the model on the Br35H dataset. Also, the 

authors claim that the model, when evaluated on publicly available brain tumor detection 

annotated datasets, showed better accuracy and speed than other state-of-the-art YOLO 

models. Considering the mentioned and the fact that pre-trained weights were not accessible, 

in the thesis, RCS-YOLO was trained on the Br35H dataset, and the obtained model was 

further used as an input to the MedSAM model. First, we will propose the process of training 

the RCS-YOLO model.  

The model was trained following the command line: 

!python train.py --workers 8 --device 0 --batch-size 32 --

data data/br35h.yaml --img 640 640 --cfg cfg/training/rcs-

yolo.yaml --weights '' --name rcs-yolo --hyp 

data/hyp_training.yaml 

Code 4.1.1. RCS-YOLO model training 
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The free version of Google Colab was used for the training environment due to the possibility 

of using the Tesla T4 GPU graphics card. Graphics card details are as follows: 

• Driver Version: 535.104.05 

• CUDA Version: 12.2 

• 16 GB VRAM 

The hyperparameters are defined in hyp_training.yaml, and there are some 

differences from the default values [80]. The differences are as follows: 

• lrf: 0.08 : final learning rate used to adjust the learning rate over time [80] 

• box: 0.05 : weight of the box loss component in the loss function, determines the 

level of importance assigned to accurately predicting bounding box coordinates [80] 

• translate: 0.2 : Horizontal and vertical image translation by a fraction of the 

image size, helping to learn to detect partially visible objects [80] 

• scale: 0.85 : Scales the images according to the gain factor, simulating the 

appearance of objects at various distances from the camera  [80] 

• flipud: 0.5 : Flips the image upside down concerning the specified probability, 

increases the data variability [80] 

The inference.py script is modeled after the test.py script, which was adapted for 

real-time inference purposes. The inference was run using the best.pt model on the LGG 

dataset to determine the bounding boxes that are further used as input to the prompt encoder 

of the MedSAM model. Examples are shown in Figure 4.1.1. where predicted bounding 

boxes obtained from RCS-YOLO are represented in the first column, the ground truth 

segmentation mask in the second column, and the predicted segmentation mask obtained 

from MedSAM in the third column. Three examples are shown as follows: 

a) Shows quite accurate bounding box prediction, as well as a segmentation mask close 

to the ground truth segmentation mask. 

b) Shows the bounding box and segmentation mask prediction of a non-existing tumor. 

c) Shows an incorrect bounding box prediction, and thus segmentation mask prediction. 

The ground truth segmentation mask is much smaller than the predicted one, and it 

is located in the bottom right part of the brain. 
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Figure 4.1.1. Examples of RCS-YOLO and MedSAM model predictions 

Given that MedSAM model predictions directly depend on RCS-YOLO predictions, the next 

step is to work on the potential improvements of the RCS-YOLO detections. The idea is to 

train the model on the ground truth bounding boxes of the LGG Segmentation Dataset. 

Considering that the LGG Segmentation Dataset does not contain ground truth bounding 

boxes of the tumors, pseudoannotations obtained using segmentation masks will be used. 

More about this approach will be explained in the following chapter. 

4.2. RCS-YOLO model training using pseudoannotations 

The second approach aims to improve the RCS-YOLO detections, making the predicted 

segmentation masks more precise. To do that, pseudoannotations of bounding boxes were 

determined using the segmentation masks of the LGG Segmentation dataset. The LGG 
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Segmentation Dataset was separated into train (60%), valid (20%), and test (20%) sets. The 

following function was used to extract the bounding box from the segmentation mask: 

def mask_to_bbox(mask): 

    contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, 

cv2.CHAIN_APPROX_SIMPLE) 

    if len(contours) == 0: 

        return None 

    x, y, w, h = cv2.boundingRect(contours[0]) 

    return x, y, w, h 

Code 4.2.1. Extraction of bounding box from segmentation mask 

Furthermore, the structured annotation dictionary was made and later used for model training 

and evaluation. The Code 4.2.2. checks the corresponding mask file for each image, extracts 

the bounding box of the object using the mask, and stores this information as a rectangle in 

the annotation:  

for image_file in image_files: 

    filename = os.path.basename(image_file) 

    size = os.path.getsize(image_file) 

 

    mask_file = os.path.join(mask_dir, 

filename.replace('.tif', '_mask.tif')) 

    if os.path.exists(mask_file): 

        mask = cv2.imread(mask_file, cv2.IMREAD_GRAYSCALE) 

        bbox = mask_to_bbox(mask) 

        if bbox: 

            x, y, w, h = bbox 

            regions = [{ 

                "shape_attributes": { 

                    "name": "rect", 

                    "x": x, 

                    "y": y, 

                    "width": w, 

                    "height": h, 

                }, 

                "region_attributes": {} 

            }] 

            # Create annotation entry 

            annotations[filename + str(size)] = { 

                "filename": filename, 

                "size": size, 
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                "regions": regions, 

                "file_attributes": {} 

            } 

Code 4.2.2. Extraction of bounding box from segmentation mask 

The extracted bounding box represents the smallest rectangle that can enclose the region of 

the mask, as shown in Figure 4.2.1. 

 

Figure 4.2.1. Pseudoannotaion using segmentaiton mask 

The model was then trained according to Code 4.1.1., with the change of using the 

lgg_dataset.yaml file. Details related to the graphics card and hyperparameters remain 

the same as in Chapter 4.1.  

The obtained best.pt model was used to run inference on test data of the LGG 

Segmentation Dataset. The provided bounding boxes were further used as input to the 

prompt encoder of the MedSAM model. The examples, as well as a comparison to the first 

model, will be given in Chapter 4.3. 

4.3. Model comparison 

To determine the region of interest, it is necessary to send a bounding box to the prompt 

encoder of the MedSAM model. To do that, two RCS-YOLO models were trained, and their 

comparison will be given in the following text. The first model was trained on the BR35H 

dataset (Model 1), and the second was trained based on pseudoannotation obtained from 

LGG Segmentation Dataset masks (Model 2). Both approaches are explained in the Chapters 

4.1. and 4.2. The inference was run on the LGG Segmentation Dataset test set as mentioned 

in Chapter 4.2. The test set consists of 275 examples. Firstly, examples will be shown and 

then the comparison of the two detection models will be proposed. 
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In the figures 4.3.1. and 4.3.2. are given examples of the pseudoannotated bounding box, 

predicted bounding boxes (Model 1: blue, Model 2: red), ground truth mask, and predicted 

masks using the combination of models and MedSAM.  

Model 2 appears to provide better bounding boxes than Model 1. Also, Model 1 often misses 

the target area or provides a larger or smaller bounding box compared to the 

pseudoannotation. This will be discussed further when comparing the models using the 

metrics listed below. 

 

Figure 4.3.1. Examples of predictions 
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Figure 4.3.2. Examples of predictions 

In this Chapter, the focus will not be on the quality of segmentation masks, but on finding 

sufficiently accurate detector that can be used in the process of automating the extraction of 

suspicious brain regions. For this purpose, the following metrics [81] are used: 
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Precision (1) is the ability of the model to identify only relevant objects, and it is represented 

as a percentage of correct positive predictions. [81] 

Recall (2) is the ability of the model to find all relevant cases, i.e. ground truth bounding 

boxes, and it is represented by the percentage of correct positive predictions among all given 

ground truths. [81] 

The mean AP (mAP) (3) is represented as the average AP over all classes and represents the 

metric used to measure the accuracy of object detectors over all classes. [81] The mAP50 

measures model accuracy considering only the “easy” detections, i.e. one with an 

intersection over union (IoU) threshold of 0.50. The mAP50-95 gives the model performance 

across different levels of detection difficulty. [82] 

In the Table 4.3.1. the performances of Model 1 and Model 2 are given. Model 2 outperforms 

Model 1 in all the metrics, meaning that Model 2 has higher precision, recall, and accuracy 

(measured as mAP) at both 0.5 and 0.5:.95 thresholds. 

Metrics 

Models 

P (Precision) R (Recall) mAP@.5 mAP@.5:.95 

Model 1 0.819 0.182 0.168 0.101 

Model 2 0.905 0.869 0.86 0.622 

Table 4.3.1. Model 1 and Model 2 performances 

Considering the results (Table 4.3.1.) and examples (Figures 4.3.1. and 4.3.2.) Model 2 

combined with MedSAM appears to provide better results that are closer to the ground truth. 

The shapes and locations of predicted masks are more accurate than the ones obtained from 

the combination of Model 1 and MedSAM. Because of the mentioned, the combination of 

Model 2 and MedSAM will be used in further work. 
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5. Practical implementation 

Practical implementation refers to the creation of a functional demo application for faster 

analysis of potentially suspicious MRI images. The provided GUI was developed using a 

PyQt5 framework. In the following subchapters, the PyQt5 framework and the 

functionalities of the application will be explained in more detail. It should be noted that the 

presented demo application only shows how the process of reviewing MRI images can be 

accelerated, but the presence of an expert is necessary for its practical application. 

5.1. PyQt5 

Qt represents a set of cross-platform C++ libraries that implement various high-level APIs, 

such as location and positioning services, multimedia, NFC and Bluetooth connectivity, a 

Chromium based web browser, and traditional UI development. PyQt5 is a set of Python 

bindings for Qt v5, and it consists of more than 35 extension modules which enables Python 

to be used as a development language for iOS and Android. [83] PyQt5 was used in the 

process of making a demo application, and some of the used features of PyQt5 are: 

• QtWidgets: provides UI elements to create user interface with the use of Widgets – 

primary elements for creating user interfaces in Qt. [84] QtWidgets has many 

functions, and there are many subclasses such as QLabel, QPushButton, QWidget, 

etc. 

• QtGui: offers classes for integration with the window system and event handling. It 

also supports OpenGL and OpenGL ES, 2D graphics, as well as basic imaging, fonts, 

and text. [85] 

• QtCore: a system for object communication known as signals and slots. It provides 

object properties that can be queried and designed. Additionally, it includes a 

dynamic casting mechanism that functions across different library boundaries. [86] 
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5.2. Demo application 

The main idea of the thesis was to try to automate the MRI examination process to determine 

abnormalities, i.e. brain tumors. For this purpose, the RCS-YOLO model was trained using 

pseudoannotations obtained from the LGG Segmentation Dataset. A pretrained MedSAM 

model was used for image segmentation. The reason for choosing a combination of these 

two models is explained in Chapter 4. Furthermore, the application was made using PyQt5 

as mentioned in Chapter 5.1. Two images from the test data that was mentioned in Chapter 

4.2. were used to create the demo application. Also, a conversion from .tif to .png format 

was made. 

It should be noted that the MedSAM_inference.py script has been modified, so now it 

processes entire batches of images with YOLO format annotations (x_center, 

y_center, width, height).  

The demo application is a tool designed to assist in the annotation and segmentation of 

suspicious MRI images. It contains image folder loading functionality, which makes 

multiple image processing easier. The “Image:” part of the application displays the image 

name of the image that contains a suspicious area. Furthermore, there is a three-column 

layout for displaying the original, detected, and segmented images. There are also navigation 

buttons implemented, so the “Previous Image” and “Next Image” buttons allow users to 

navigate through suspicious images in the loaded folder. Also, there are “Save annotation” 

and “Segment” buttons that will be explained later in the chapter. The user interface is shown 

in Figure 5.2.1. 
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Figure 5.2.1. User interface - demo application 

As earlier said, the idea of the demo application is to load a folder of images for which RCS-

YOLO then tries to determine the suspicious area if it exists. Those suspicious images are 

then displayed in the application, as can be seen in Figure 5.2.2. In the “Original Image” 

column the image is shown as received, without any modifications, and in the “Detected 

Image" column the image is shown including the suspicious region marked with a bounding 

box. 

 

Figure 5.2.2. Display of the original and detected suspicious images 
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Furthermore, on the obtained images is possible to segment the marked suspicious area. The 

“Segment” button that was mentioned earlier triggers the segmentation process for the 

currently displayed image using the MedSAM model. After the segmentation process, the 

Detailed view is shown (Figure 5.2.3.). The “Segmented Image” column then shows the 

image after segmentation, highlighting the specific area that was previously marked as 

suspicious (Figure 5.2.4.). 

 

Figure 5.2.3. Detailed view of segmented area 

 

 

Figure 5.2.4. Display of the original, detected and segmented suspicious images 
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Moreover, it is important to mention the “Save Annotation” possibility that allows users to 

save annotations they make. The saved image is shown in Figure 5.2.5. 

 

Figure 5.2.5. Display of the saved image 

Consider that the demo version of the application requires more work to reach its full 

potential and fully meet the challenges of speeding up the process of annotating suspicious 

MRI images at a satisfactory level. Also, it should be noted that in addition to the 

implemented functionalities, the possibility of manually annotating the region of interest 

should also be implemented, which would be part of future work. 

Overall, the demo version of the application provides the basis for successful acceleration of 

the annotation process of the large datasets of MRI images, which can also be a great help 

to the experts in the field. Also, it is important to note that the application can serve as an 

auxiliary tool, but a detailed examination of suspicious and non-suspicious images by an 

expert is mandatory. 
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6. Limitations 

The thesis provides an idea of a comprehensive approach to speeding up the process of 

annotating suspicious MRI images. However, it’s important to recognize the limitations of 

the thesis as well.  Some of the main limitations are related to the dataset, the detection and 

segmentation model, the absence of experts, etc. Further details will be provided below. 

To begin with, the problem of a dataset will be addressed. It cannot be stated that the LGG 

Segmentation Dataset was excluded from the training of the MedSAM model. Therefore, 

there is a possibility that the test set used here may have been part of the training process for 

the MedSAM model. Additionally, a significant limitation is the problem of finding a 

suitable annotated dataset, especially one obtained by an expert who also ensured data 

anonymization. Also, concern is the quality of the images in the dataset, as they may contain 

noise created by the imaging device. 

The next limitation is related to the quality of the models used. Firstly, the obtained 

detections, i.e. regions of interest are not of satisfactory quality. The examples are given in 

the Figure 6.1. Insufficient quality of the pseudoannotations obtained from the LGG dataset 

segmentation masks could have contributed to this problem. This refers to Model 2 which 

was trained using these pseudoannotations and was later used in the demo application. 

Secondly, no comparison is provided between the obtained segmentation masks and the 

ground truth. Also, in the Figure 6.1. can be seen that the segmentation directly depends on 

the detected region of interest, and it doesn’t follow the shape of the ground truth suspicious 

area. Note that often segmentation mask follows the shape of the detected area. Perhaps 

adding padding to the bounding box would give more context for MedSAM to distinguish 

the suspicious region from the rest of the brain.  

Further limitations refer to ethical problems and problems related to the speed of obtaining 

annotations. Regarding ethical issues, the previously mentioned data anonymization 

represents a problem. Also, it should be noted that the annotations that were obtained need 

to be validated by experts. Another major issue is the possibility of bias and the insufficient 

precision of the used models. 
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Figure 6.1. Examples of the obtained bounding boxes and segmentation masks 

 

Lastly, the annotation speed is not validated, which can be a major limitation considering 

that the main idea is to speed up the process of annotating suspicious MRI images.  

Some of the mentioned limitations will be addressed in Chapter 7, where potential solutions 

will be presented. 
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7. Future work 

The thesis provides insights into the possibility of speeding up the annotation process of 

suspicious MRI images with the help of state-of-the-art models. 

The primary direction of future work involves including experts in the development process 

of a comprehensive application, aimed at speeding up the process of extracting and analyzing 

suspicious MRI images.  

Further work could expand the possibilities of the current demo application and make it a 

comprehensive annotation tool that would serve expert in the diagnostic process. To do that, 

it is necessary to implement additional capabilities such as manual marking of the region of 

interest for the following segmentation. Also, the possibility of annotating larger datasets 

should be implemented. Accordingly, it is necessary to monitor the time required for the 

annotation, particularly as the size of the dataset increases. It is important to implement the 

functionality of saving non-suspicious images, thus allowing further investigation if needed. 

In Chapter 6 the limitations are discussed, and potential solutions are mentioned below. 

Firstly, identifying or creating a high-quality, expert-validated annotated dataset is essential 

for effective model training. Also, denoising techniques can be used to improve image 

quality. Moreover, training the RCS-YOLO model on negative sample images could 

positively impact its performance. Regarding the MedSAM model performance, it is 

necessary to consider the quality of the obtained segmentation masks. One idea would be to 

add padding to the region of interest, i.e. bounding box, to contextually separate the 

suspicious area from the rest of the image.  

The implementation of the mentioned, along with its application to other organs and tissues, 

could play a crucial role in efficient diagnosis. This can be crucial for the timely treatment 

of different types of diseases. 
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Conclusion 

The thesis explores methods that aim to improve the efficiency and accuracy of segmenting 

suspicious regions in MRI brain tumor images by utilizing state-of-the-art models. The 

chosen segmentation model is MedSAM, which takes the detections obtained from RCS-

YOLO model into a prompt encoder as a region of interest to perform further segmentation. 

The combination of those two models shows the potential to be used for the automatic 

analysis of the large MRI dataset to reduce data processing time while enhancing the 

precision of abnormality identification. 

The integration of earlier-mentioned models into a demo application highlights the potential 

for further development of comprehensive tools. However, some limitations require further 

consideration. In particular, the models require additional evaluation to ensure the ability of 

handling a wide range of medical images and conditions effectively.  

Future work aims to include experts in the development process of comprehensive 

applications. Also, the expansion of the current possibilities of the demo application is 

necessary, so the application can have the possibility of annotating larger datasets, as well 

as possibility of manually marking regions of interest for further investigation. Additionally, 

the capability to monitor the speed and performance of the process is essential for the 

improvement of the demo application. The focus will also be on improving the robustness 

of the algorithms and expanding their application to other types of medical images.  

In conclusion, this thesis gives a starting point for the development of more sophisticated 

diagnostic tools that can improve both the speed and accuracy of medical image analysis, 

which can result in timely treatment and better patient care. 
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