
Anomaly detection in AWS load balancer logs

Jankuleski, Marko

Master's thesis / Diplomski rad

2023

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of
Split, Faculty of Science / Sveučilište u Splitu, Prirodoslovno-matematički fakultet

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:166:998425

Rights / Prava: In copyright / Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2024-05-15

Repository / Repozitorij:

Repository of Faculty of Science

https://urn.nsk.hr/urn:nbn:hr:166:998425
http://rightsstatements.org/vocab/InC/1.0/
http://rightsstatements.org/vocab/InC/1.0/
https://repozitorij.pmfst.unist.hr
https://zir.nsk.hr/islandora/object/pmfst:1851
https://repozitorij.svkst.unist.hr/islandora/object/pmfst:1851
https://dabar.srce.hr/islandora/object/pmfst:1851

University of Split

Faculty of Science

GRADUATE THESIS

ANOMALY DETECTION IN AWS LOAD

BALANCER LOGS

Marko Jankuleski

Split, 2023.

Basic documentation card

Graduate thesis

University of Split

Faculty of Science

Department of Computer Science

Ruđera Boškovića 33, 21000 Split, Croatia

ANOMALY DETECTION IN AWS LOAD BALANCER LOGS

Marko Jankuleski

ABSTRACT

Amazon Web Services (AWS) is a widely used cloud platform. Load Balancing service that

it uses is the Elastic Load Balancing service. Among its load-balancing options, the

Application Load Balancer (ALB) is crucial for businesses as it routes incoming requests to

one or multiple targets. In this thesis we aimed to explore the current scope of research on

anomaly detection in ALB logs and have concluded that there is limited research evaluating

ALB’s anomaly detection in log files, and that no benchmark dataset for AWS ALB research

is widely available. Additionally, we wanted to look at some computational approaches with

logs and anomaly detection and have thus assembled a set of log files from an AWS

Application Load Balancer from a private company and have touched upon various anomaly

detection methods applied to these logs considering that we have not had enough time to

label the full data we have collected. In our work, we have been guided by a systematic

review of literature in the fields of time series anomaly detection and log file anomaly

detection.

Keywords: anomaly detection, Amazon Web Services, log files, statistical method, ARIMA,

Autoencoder

Graduate thesis deposited in library of Faculty of science, University of Split

Thesis consists of: 72 pages, 28 figures, 9 tables and 21 references

Original language: English

Mentor: Ivo Ugrina, Ph.D. Assistant Professor, Faculty of Science, University of

Split

Reviewers: Ivo Ugrina, Ph.D. Assistant Professor, Faculty of Science, University of

Split

Goran Zaharija, Ph.D. Assistant Professor, Faculty of Science, University

of Split

Milica Klaričić Bakula, Ph.D. Full Professor, Faculty of Science,

University of Split

Thesis accepted: October 2023

Temeljna dokumentacijska kartica

Diplomski rad

Sveučilište u Splitu

Prirodoslovno-matematički fakultet

Odjel za informatiku

Ruđera Boškovića 33, 21000 Split, Hrvatska

DETEKCIJA ANOMALIJA U LOGOVIMA AWS

BALANSERA OPTEREĆENJA

Marko Jankuleski

SAŽETAK

Amazon Web Services (AWS) široko je korištena platforma u oblaku. Za balansiranje

opterećenja koristi Elastic Load Balancing. Među opcijama za balansiranje opterećenja,

Application Load Balancer ključan je za poslovanje tvrtki jer upravlja dolaznim zahtjevima

na način da ih prosljeđuje jednom ili vise ciljeva. Nismo pronašli znanstvene radove koji se

bave detekcijom anomalija koristeći Amazon CloudWatch sustav za detekciju anomalija i

detekcijom anomalija u logovima AWS balansera opterećenja te nismo pronašli skup

podatka za AWS koji bi se koristio kao referentni skup podataka. Kako bi to riješili, u okviru

istraživanja smo prikupili logove AWS Application Load Balancera i procijenili smo

različite metode detekcije anomalija, vođeni sustavnim pregledom istraženosti područja

detekcije anomalija u vremenskim nizovima i detekcije anomalija u logovima balansera

opterećenja.

Ključne riječi: detekcija anomalija, Amazon web servisi, log datoteke, statistička metoda,

ARIMA, autoenkoder

Rad je pohranjen u knjižnici Prirodoslovno-matematičkog fakulteta, Sveučilišta u Splitu

Rad sadrži: 72 stranice, 28 grafičkih prikaza, 9 tablica i 21 literaturnih navoda. Izvornik

je na engleskom jeziku.

Mentor: Dr. sc. Ivo Ugrina, docent, Prirodoslovno-matematički fakultet, Sveučilište

u Splitu

Ocjenjivači: Dr. sc. Ivo Ugrina, docent, Prirodoslovno-matematički fakultet, Sveučilište

u Splitu

Dr. sc. Goran Zaharija, docent, Prirodoslovno-matematički fakultet,

Sveučilište u Splitu

Dr. sc. Milica Klaričić Bakula, redoviti profesor, Prirodoslovno-

matematički fakultet, Sveučilište u Splitu

Rad prihvaćen: listopad 2023

Table of Contents

Introduction ...1

1. Systematic literature review ...2

1.1. PLANNING .. 2

1.2. CONDUCTING .. 3

1.3. META-ANALYSIS .. 6

1.4. SUMMARY OF THE SELECTED PUBLICATIONS .. 8

2. Anomaly detection ... 10

2.1. OUTLIERS AND ANOMALIES ... 10

2.2. OUTLIERS AND ANOMALIES FOR TIME SERIES DATA .. 12

2.3. ANOMALY DETECTION METHODS FOR TIME SERIES DATA ... 16

2.3.1. Prediction-based methods ... 17

2.3.2. Distance-based methods .. 21

3. An introduction to applied methods and the dataset .. 23

3.1. METHODS .. 23

3.1.1. The statistical method ... 23

3.1.2. The probabilistic method... 25

3.1.3. The autoencoder method ... 30

3.2. DATASET.. 31

4. The experimental part ... 36

4.1. ANOMALIES FOR LOG FILES OF AWS LOAD BALANCER .. 36

4.1.1. Anomalies for the statistical method ... 36

4.1.2. Anomalies for the probabilistic method ... 36

4.1.3. Anomalies for the autoencoder method ... 36

4.2. DATA PREPARATION.. 37

4.3. THE TRAINING PHASE .. 39

4.3.1. The statistical method ... 40

4.3.2. The probabilistic method... 40

4.3.3. The autoencoder method ... 41

4.4. RESULTS .. 43

4.4.1. The statistical method ... 43

4.4.2. The probabilistic method... 48

4.4.3. The autoencoder method ... 51

4.4.4. Answers to research questions... 57

Conclusions ... 58

Literature ... 60

List of figures... 62

List of tables .. 64

DECLARATION

of the independent preparation of the graduate thesis

I declare under full material and moral responsibility that I have independently

created this work and that it does not contain copied or duplicated parts of text from

the works of others unless appropriately marked as quotations with the specified

source from which they were taken.

In Split, 04.10.2023 Marko Jankuleski

(student)

1

Introduction

Amazon Web Services (AWS) is the world’s most all-encompassing and broadly adopted

cloud. It offers its solutions for load balancing, called Elastic Load Balancing. From the

perspective of businesses and clients, probably the most significant one is the Application

Load Balancer. Application Load Balancer serves as a single point of contact for clients as

it distributes incoming requests to one or multiple targets. Since application availability time

is crucial for business, the load balancer would benefit from a check, or from a connected

service to execute checks, of all requests it receives before sending them to targets as

anomalous requests can be the cause of the downtime.

We looked at the existing literature on anomaly detection from AWS load balancer logs and

through a systematic review of the literature we did not find publications that address

anomaly detection in log files of the AWS load balancer. Furthermore, we did not find a

benchmark dataset for this challenge either.

With the mentioned disadvantages considered, we have collected log files from an AWS

Application Load Balancer of a privately owned company and devised three methods for

anomaly detection. Methods and evaluation metrics were chosen based on the systematic

review of literature in the areas of anomaly detection and outlier detection for time series

and anomaly detection and outlier detection for log files.

We would like to note that this work is not a comprehensive overview of the field and that

as a starting point for future research it might omit relevant information unknown to us at

the time of writing this thesis.

Additionally, this research is not a full-fledged machine/statistical learning analysis of the

possibilities and challenges of presented approaches but an introduction to the topic.

Having a real-world time series dataset as the first dataset to work on is quite challenging

and can be discouraging in some ways but that approach mimics reality for many professions

and serves as a well-prepared introduction to industry for soon to be graduates. Thus, the

findings presented here might be far away from the ideal case scenario but at least are a start.

2

1. Systematic literature review

To position our research in the corresponding state-of-the-art, we planned and conducted a

systematic review and meta-analysis of the literature, following guidelines of "Preferred

Reporting Items for Systematic Reviews and Meta-Analyses" (PRISMA) [1].

In the following sections we will outline the process of conducting and reporting a systematic

review of publications, starting with the formulation of 7 research questions.

1.1. Planning

The systematic literature review and empirical study that will be conducted afterward intend

to address the subsequent research questions:

1. RQ1: What methods are usually used to detect anomalies in AWS load balancer logs?

2. RQ2: What measures are usually used to evaluate the accuracy of anomaly detection

models in AWS load balancer logs?

3. RQ3: What datasets are usually used when comparing different models?

4. RQ4: Which method is the most effective for anomaly detection in AWS load

balancer logs?

5. RQ5: What are the advantages and disadvantages of the methods used to detect

anomalies in AWS load balancer logs?

6. RQ6: What methods are used as baseline methods for anomaly detection in AWS

load balancer logs?

7. RQ7: How to apply statistical, probabilistic, and deep learning methods on AWS

ALB logs to detect anomalies in different metrics presented in the logs?

Research questions were formulated by writing down questions of interest for anomaly

detection of AWS load balancer logs and using the publication's supplement [2].

After searching the electronic databases, we applied the selection criteria outlined in Table

1.1. to check the eligibility of retrieved publications. Selection criteria are exclusion criteria

and operate in a way that, if a piece of work meets a criterion, it is excluded from the

subsequent activities in the systematic literature review.

3

Exclusion criteria

Publications that perform only univariate time series analysis

Publications that do not suit research questions

Editorials, presentations, prefaces, awards notes, conference summaries, keynote talks,

and tutorials

Not publicly available publications

Publications authored in a non-English language.

Table 1.1 Exclusion criteria for the systematic literature review.

After the application of exclusion criteria, by using specific criteria guidelines from [2], we

adopted specific criteria for the evaluation of the methodological quality of retrieved

publications. Specific criteria are outlined in Table 1.2.

Specific criteria

Is the paper categorized as an empirical study or a review article?

Are the computational frameworks and datasets used in the study publicly available?

Is there a valid justification for the parameter settings used in the predictive models from

the publication?

Does the publication mention advantages, disadvantages, limitations, and

implementations issues of the statistical or machine learning methods for anomaly

detection?

Table 1.2 Specific criteria for checking methodological quality of retrieved publications.

1.2. Conducting

By applying exclusion criteria and sorting retrieved publications from the newest to the

oldest, we have chosen 2 publications outlined in Table 1.3 as the latest systematic review

publications.

4

Publication information Extracted Information

Title
A Comprehensive Review of Anomaly Detection in

Web Logs

Authors
M. Majd, P. Najafi, S. A. Alhosseini, F. Cheng and

C. Meinel

Name of Journal

2022 IEEE/ACM International Conference on Big

Data Computing, Applications and Technologies

(BDCAT)

Publication Date
06-09 December 2022 (date of conference), 13 March

2023 (added to IEEE Xplore)

Title
A Survey of Deep Anomaly Detection for System

Logs

Authors X. Zhao, Z. Jiang and J. Ma

Name of Journal
2022 International Joint Conference on Neural

Networks (IJCNN)

Publication Date
18-32 July 2022 (date of conference), 30 September

2022 (added to IEEE Xplore)

Table 1.3 Latest systematic review publications.

We used a systematic review protocol to select publications from these. By applying

methods from the protocol, 49 publications were identified and reduced to 6 publications

after the application of exclusion criteria. All 6 publications satisfied the specific criteria and

all of them will be included in our systematic review and meta-analysis. Information for

every publication is presented in Table 1.4.

5

Publication information Extracted information

Title

Anomaly detection on OpenStack logs

based on an improved robust principal

component analysis model and its

projection onto column space

Authors
Kalaki, Parisa & Shameli-Sendi, Alireza &

Abbasi, Behzad

Name of Journal Software: Practice and Experience

Publication Date November 2022

Title

Design and Evaluation of Unsupervised

Machine Learning Models for Anomaly

Detection in Streaming Cybersecurity Logs

Authors
Sánchez-Zas, C.; Larriva-Novo, X.;

Villagrá, V.A.; Rodrigo, M.S.; Moreno, J.I.

Name of Journal Mathematics 2022

Publication Date 31 October 2022

Title
Utility Analysis about Log Data Anomaly

Detection Based on Federated Learning

Authors Shin, T.-H.; Kim, S.-H.

Name of Journal Appl. Sci. 2023

Publication Date 1 April 2023

Title

Semi-supervised and unsupervised

anomaly detection by mining numerical

workflow relations from system logs

6

Authors

Zhang, Bo & Zhang, Hongyu & Le, Van-

Hoang & Moscato, Pablo & Zhang,

Aozhong

Name of Journal Automated Software Engineering

Publication Date December 2022

Title

BERT-Log: Anomaly Detection for

System Logs Based on Pre-trained

Language Model

Authors Song Chen & Hai Liao

Name of Journal Applied Artificial Intelligence

Publication Date 17 November 2022

Title
Learning-Based Anomaly Detection Using

Log Files with Sequential Relationships

Authors M. Fält, S. Forsström, Q. He and T. Zhang

Name of Journal
2022 6th International Conference on

System Reliability and Safety (ICSRS)

Publication Date

23-25 November 2022 (Date of

conference), 21 March 2023 (added to

IEEE Xplore)

Table 1.4 Selected publications

1.3. Meta-analysis

By analyzing six chosen publications, we were able to conduct the following meta-analysis:

 Anomaly detection methods - Given the frequency at which methods were referenced

in the publications, 4 out of 6 publications (66.6%) employed supervised learning

methods, 1 out of 6 publications (16.6%) employed unsupervised learning methods,

1 out of 6 (16.6%) publications employed semi-supervised learning methods, 5 out

7

of 6 (83.3%) publications employed Deep Learning methods, 2 out of 6 publications

(33.3%) employed probabilistic methods, 1 out of 6 (16.6%) methods comprised

clustering methods, and 1 out of 6 publications (16.6%) employed hybrid model.

 Evaluation measures - Given the regularity with which the evaluation measures were

used in the published literature, 4 out of 6 (66.6%) publications used recall, 4 out of

6 (66.6%) publications used precision, 4 out of 6 (66.6%) publications used F1-score,

3 out of 6 (50%) publications used accuracy, 1 out of 6 (16.6%) publications used

weighted F1-score, and 1 out of 6 (16.6%) publications used WSSE (Within-Cluster

Sum of Squares Error).

 Parameters setting – 2 out of 6 (33.3%) publications explicitly mentioned the used

search technique for parameters setting, 1 of them employed k-Fold Cross

Validation, and the other employed Grid Search, 2 out of 6 (33.3%) publications only

mentioned the split of the dataset on training data and validation data, and the

remaining 2 out of 6 (33.3%) publications did not mention anything related to the

search for parameter setting.

 Baseline methods – 3 out of 6 (50%) publications compared the results of proposed

methods with the baseline or baseline methods, 3 out of 6 (50%) publications did not

compare the results with baseline methods; of the publications that employed

baseline method, one of them (16.6%) uses DeepLog as a baseline method, one of

them (16.6%) used all the methods mentioned in the paper trained with centralized

learning as a baseline method, and one of them (16.6%) used Standard Vector

Machines, LogRobust, A2Log, and HitAnomaly methods as baseline methods.

 Datasets used – 5 out of 6 (83.3%) publications used labeled datasets, 1 out of 6

(16.6%) publications used unlabeled datasets, 3 out of 6 (50%) publications used

publicly available datasets, other half used datasets that are not publicly available, 1

out of 6 (16.6%) publications used the combination of a real dataset and a synthetic

dataset, all datasets that are publicly available and that were used were Hadoop

Distributed File System and Blue Gene/L log datasets, one of the mentioned datasets

is comprised of logs of Hadoop Distributed File System that was run of Amazon EC2

Platform.

8

1.4. Summary of the selected publications

In this section, we provide an overview of the six identified publications:

1. New methods for anomaly detection in OpenStack log files were investigated in [3],

along with the systematic review of related work. Since there was no suitable dataset

of OpenStack logs, the authors made a dataset of 25,000 logs accompanied by the

injection of three anomalies. The authors evaluated PCA, DeepLog, and variation of

PCA PRPCA-CS on the generated dataset. Authors improved the anomaly detection

in OpenStack logs in terms of F1-score, recall, and precision relative to identified

recent studies that applied PCA and DeepLog algorithm. Furthermore, the running

time in relation to the amount of log data has been decreased by 30 seconds in

comparison to the DeepLog approach.

2. The objective of [4] was to introduce a practical environment that enables the real-

time management of substantial data volumes and that was built upon a scalable

open-source system. The aim was to introduce a system capable of processing logs

from heterogenous cybersecurity devices in real-time. This system utilizes similarly

trained models to detect anomalies in communications. In addition to that, the authors

developed an unsupervised learning system that can detect anomalies in a set of data

from different devices in real-time. The developed anomaly detection system is based

on the development of the thresholding system in conjunction with the clustering

algorithm selected. Three clustering algorithms were explored, namely K-Means,

Bisecting K-Means, and GMM. WSSE and Silhouette scores were used to optimize

the hyperparameters of the model. The results of the experiment highlight the K-

Means as optimal, obtaining better metrics and prediction results close to 99%.

3. A comparative study of deep learning models trained for anomaly detection with

centralized learning and of deep learning models trained for anomaly detection with

federated learning was conducted in [5]. The following deep learning models were

trained: CNN1D-based log anomaly detection model with convolutional layers and

LSTM-based log anomaly detection model with LSTM cells. The models were

trained by the application of federated learning to analyze the applicability of

federated learning for log anomaly detection. The authors demonstrated that the

hybrid model combining the two models performs better than the application of a

single deep learning algorithm, CNN1D, LSTM, in log anomaly detection.

9

4. In [6], authors proposed ADR (an acronym that stands for Anomaly Detection by

workflow Relations), a novel approach to mining numerical relations from logs and

using the relations for anomaly detection. Authors highlighted that ADR requires a

very small size of training data and that it can produce comparable results with the

state-of-the-art approaches. Furthermore, authors highlighted that for training of

ADR only logs that are produced when the system is running normally are required.

ADR was evaluated on log data from the HDFS dataset and BGL dataset in an online

and offline manner. ADR achieved high precision and recall scores (all greater than

0.9) for offline anomaly detection and outperformed the state-of-the-art methods.

5. Authors in [7] proposed BERT-Log, which regards the log sequence as a natural

language sequence. The authors employed a pre-trained language model to acquire

semantic representations of both normal and anomalous logs. Subsequently, they

fine-tuned the BERT model using a fully connected neural network to fine-tune its

ability to detect anomalies. A new log feature extractor on the BGL dataset was

proposed by authors to obtain log sequence by sliding window. The new proposed

method achieved an F1-score of 98.9% with 1% of the training ratio on the BGL

dataset. As compared to other related works, it had smaller parameters and stronger

generalization ability.

6. The work in [8] aimed to examine log sequence anomaly detection and to present a

method that can compete with state-of-the-art methods. The authors showed how

self-attention transformer networks compare to LSTM networks in the task of log

sequence anomaly detection. The key finding was that the self-attention transformer

model attained a higher recall score compared to the LSTM model, but both models

achieved an identical precision score, indicating that they were equally good at

finding the anomalous events. The main conclusion was that the self-attention

transformer model can achieve a better or similar results to LSTM-based models.

10

2. Anomaly detection

In the subsequent sections, we will describe the procedure for anomaly detection.

2.1. Outliers and anomalies

One of the best definitions of outliers was provided by Hawkins in [9]: “An outlier is an

observation which deviates so much from the other observations as to arouse suspicions that

it was generated by a different mechanism.”

Here are some definitions of outliers from the literature:

 Outliers can be seen as data points that diverge from the anticipated pattern or

behavior [10].

 A data point that exhibits notable dissimilarity from the rest of the dataset is

identified as an outlier, as per [11].

 An outlier is defined as a data point that is very different from the rest of the data

based on some measure [12].

Considering the previously provided definitions, we will adopt a definition of outliers as

observations that demonstrate a significant dissimilarity from most of the data, as quantified

by a particular measure.

Data is typically generated in most applications by one or multiple data generation processes.

When the generative process displays unusual behavior, outliers are created as a result [11].

In the areas of application of outlier detection techniques, such as credit card fraud, network

intrusion detection, financial applications, and marketing, the data often follows a normal

model, with the outliers being identified as departures from the mentioned model [11].

It is often a subjective judgment, as to what constitutes a “sufficient” deviation for a point to

be considered an outlier. In real applications, the data may be embedded in a significant

amount of noise, and such noise may not be of any interest to the analyst as it is usually the

significantly interesting deviations that are of interest. The distinction between normal data

and outliers, as well as noise and anomalies, is regulated by the analyst's specific interests

and objectives [11].

The mentioned can be explained using the Figure 2.1:

11

 The primary patterns or clusters within the data remain the same in both situations.

 The notable differences exist beyond the primary clusters.

 In Figure 2.1 (a), a data point designated as “A” appears to display substantial

dissimilarity from the remaining data points, resulting in its categorization as an

outlier.

 When referring to Figure 2.1 (b) the data point labeled as “A” also resides in a

sparsely populated region of the data as on (a), nevertheless, it is much harder to

confidently state that it is an outlier. The data point labeled as “A” is more likely a

noise in the data as it fits a pattern represented by other points that seem to be

randomly distributed [11].

Figure 2.1 Comparison between noise and anomalies [11]

Figure 2.2 illustrates two meanings of outliers.

The outliers labeled as "Unwanted data" are associated with noise, errors, or undesired data.

These data points are not of interest to the analyst, and their removal or correction is

necessary to enhance data quality [10]. The process of deletion or correction results in a

cleaner dataset that can be effectively utilized by data mining algorithms [10].

Figure 2.2 Meaning of outliers based on the analyst's judgment [10]

The distinction between normal data and weak or strong outliers is illustrated in Error!

Reference source not found.. Every data point lies on a continuous spectrum from normal

data to noise [11].

12

The separation of distinct regions within this spectrum lacks a precise definition and is

determined in an ad hoc manner, based on application-specific criteria [11]. In unsupervised

scenarios, noise serves as the semantic threshold differentiating normal data from genuine

anomalies [11].

Commonly, noise is conceptualized as a less severe form of outliers, occasionally failing to

meet the strict criteria needed to classify a data point as adequately interesting [11].

Figure 2.3 The spectrum from normal data to outliers [11]

Here are some definitions of anomalies from the literature:

 An anomaly is a pattern that does not conform to past patterns of behavior [13].

 Anomalies are patterns in data that do not conform to a well-defined notion of normal

behavior [11].

We will accept the following high-level definitions of outliers and anomalies, based on

definitions provided in [11]:

 To define the concept of “outlier,” one can consider it as either an anomaly or noise

when referring to a data point.

 The term “anomaly” refers to a unique subset of outliers that holds particular

significance for an analyst.

Although we accepted the definitions mentioned above, we must acknowledge that

determining anomalies in a suitable manner is highly application-dependent, necessitating

that the analyst possesses a good understanding of the application domain [11].

2.2. Outliers and anomalies for time series data

A data series is an ordered sequence of data points [15].

13

Now, we will define univariate and multivariate time series based on definitions provided in

[10]. Here are the definitions:

 A univariate time series X, denoted as {xt} for t ∈ T, represents a sequential

collection of real-valued observations, with each observation recorded at a distinct

time point t from a set T, which belongs to the positive integers Z+.

 A multivariate time series X, represented as {xt} for t ∈ T, comprises an arranged

collection of k-dimensional vectors. Each vector is recorded at a particular time point

t ∈ T, where T is a subset of positive integers Z+, and these vectors contain k real-

valued observations, denoted as xt = (x1t, ..., xkt).

Here we will deal with both univariate and multivariate time series as log files of the AWS

load balancer can have both.

The inclusion of temporal dependencies significantly alters the anomaly detection process,

even when considering its definition [11].

Here are the reasons why [11]:

 A time series consists of a sequence of values often obtained through continuous

measurement over a duration of time.

 The values in successive time intervals exhibit either minimal fluctuations or change

in a gradual manner.

 In such scenarios, abrupt alterations in the fundamental data records may be seen as

extraordinary events.

When temporal dependencies are present, the assumption of temporal continuity becomes

pivotal in the identification of outliers [11]. Temporal continuity represents the fact that

patterns within the data typically do not undergo abrupt changes unless abnormal processes

are in operation [11]. In the realm of time-series data, one anticipates a strong and immediate

presence of temporal continuity [11].

Two different scenarios can arise for temporal data [11]:

 Sudden change in time series – In such cases, the outlier is characterized as atypical

as it demonstrates a discontinuity regarding either its latest or extended history.

Illustrations include abrupt shifts in time-series values in relation to the recent past

and distinctive subsequence patterns within the time series with regard to its extended

historical context.

14

 Novelty and variations within multivariate data - In such cases, the data consists of

independent multivariate points and temporal continuity is considerably less

prominent in comparison to time series data.

The example makes it clear that temporal data offers several approaches for defining

anomalies.

It's worth emphasizing that while the analysis of temporal data for changes and detection of

outliers share a close relationship, they are not identical problems [11].

In temporal data, change can happen in two ways [11]:

 The data stream experiences gradual changes in values and trends over time, a

phenomenon known as concept drift [11]. In such instances, detecting concept drift

requires thorough analysis over an extended period and often goes unnoticed in many

scenarios.

 The data stream's values and patterns undergo sudden shifts, prompting immediate

suspicion that the fundamental data generation process has fundamentally changed.

Between the two scenarios, only the second one is applicable for identifying outliers [11].

Based on the [10] and [11], we have two types of time series outliers or anomalies:

 Point or contextual outliers or anomalies – They refer to values that display abnormal

behavior at specific time instances[10]. This abnormality can be in relation to other

values within the entire time series (global outlier or anomaly) or its neighboring data

points (local outlier or anomaly).

 Subsequence or collective outliers or anomalies - Consecutive values in a time series

that collectively exhibit unusual behavior when contrasted with other values within

the same time series (global outlier or anomaly) or with their neighboring data points

(local outlier or anomaly), even if each individual value might not qualify as a point

outlier.

Subsequence or collective outliers or anomalies can be further divided into the following

[11]:

 Complete series anomaly - The time series database is used to compare the entire

time series pattern that is categorized as anomaly.

 Anomaly-based on subsequences - When dealing with time series data that spans an

extended duration, it might display regular patterns in shorter intervals. In such cases,

15

we detect unusual shapes by looking at small sections of the time series and

identifying deviations from these usual patterns.

Point outliers can be univariate or multivariate. In Figure 2.4 (on the left), there are two

instances of univariate point outliers or anomalies represented by O1 and O2 [11]. In Figure

2.5 (on the right), which consists of a multivariate time series involving three variables, there

are both single-variable (O3) and multi-variable (O1 and O2) individual point outliers [10].

Figure 2.4 Point outliers or anomalies [10]

Figure 2.5 illustrates an example of univariate (O1 and O2 in Figure 2.5 (left), and O3 in

Figure 2.5 (right)) and multivariate (O1 and O2 in Figure 2.5 (right)) subsequence outliers

or anomalies [10].

Figure 2.5 Subsequence outliers or anomalies [10]

The difference between local and global outliers is the following, based on [10]:

 When the detection method utilizes the entire time series as contextual information,

the detected outliers or anomalies are categorized as global.

 When the detection method focuses solely on a time window, the outliers it identifies

are regarded as local, as they exhibit distinct characteristics within that particular

neighborhood.

16

Some local outliers may appear ordinary when considering all the time series data, but they

can be seen as unusual when we look only at their nearby context, as shown by O1 in Figure

2.4 [10].

2.3. Anomaly detection methods for time series data

The outcome of the algorithm for detecting anomalies can be divided into one of two groups,

based on [11]:

 Outlier score – A score that quantifies the extent of "outlierness" for every data point

can be used to sort the data points according to each data point’s likelihood of being

an outlier. This type of output preserves all the information generated by an algorithm

but does not define which data points are outliers.

 Binary label - Some algorithms produce binary labels by applying thresholds to

outlier scores, with the threshold determined by the statistical distribution of the

scores. This type of output doesn't retain all the information generated by an

algorithm but does specify which data points are considered outliers.

Labels can be used to guide the process of detecting anomalies. Within the realm of time

series, these labels might be linked to specific time moments, time intervals, or the entire

time series [11]. In such instances, anomaly detection problem becomes an instance of rare-

class detection problem [11]. In most cases, supervised approaches tend to deliver superior

performance compared to unsupervised methods due to their capacity to identify

abnormalities tailored to the specific application. Therefore, the common advice is to

leverage supervision whenever it is accessible [11].

Temporal continuity plays a crucial role in methods for detecting anomalies in time series

data. This is due to the assumption that time series values are tightly interconnected from

one time step to the subsequent one, and that temporal patterns don't change suddenly [11].

We will only focus on detecting point outliers therefore an explanation of methods used for

full time series anomaly detection and subsequence-based anomaly detection will not be

presented.

17

2.3.1. Prediction-based methods

Temporal outlier detection is most frequently applied to identify deviations at specific time

points by utilizing regression-based forecasting models. This approach can fulfill either the

objective of foundational process sudden shifts detection or of noise elimination from the

core data streams [11]. Outliers based on deviations in time series have a significant

connection to the process of time series forecasting, as they are recognized by their

deviations from expected (forecasted or predicted) values [11].

Since our dataset is not labeled, as will be described in the section where the technical

overview of chosen algorithms and dataset will be presented, here is the explanation of how

prediction can be used for unsupervised outlier detection based on [11]:

 Outliers are instances where data dependencies deviate from the expected model.

 A prediction model assists in representing the stated dependencies.

 Breaking these relationships signifies a departure from the normal model of data and,

as a result, corresponds to outliers.

In some cases, the input time series consists of multiple variables that may be correlated,

rather than being a single-variable time series. When we apply univariate techniques to each

of these time-dependent variables independently, we disregard the correlation relationships

between them, resulting in a loss of information. In order to tackle this challenge and

leverage the extensively developed univariate detection methods, some researchers employ

a pre-processing strategy on the multivariate time series [10]. This strategy involves

uncovering a new set of uncorrelated variables that are suitable for applying univariate

techniques. This is achieved by simplifying the multivariate series into a lower-dimensional

representation using dimensionality reduction techniques before applying univariate

detection methods. Since the new series are composed of combinations of the original input

variables (some dimensionality reduction techniques determine the new set of uncorrelated

variables by computing linear combinations of the initial variables), the detected outliers

exhibit multivariate characteristics [10].

For multivariable time series, the following methods can be used for anomaly detection

based on [10]:

 Anomaly detection methods for univariate time series that are employed individually

for each variable.

18

 Multivariate time series anomaly detection methods.

The connections within an individual time series or among multiple series can be utilized for

prediction purposes [11].

Two forms of correlations are employed:

 Correlations across time - Time-based correlations are commonly established

through autoregressive modeling and forecasting. Outliers are identified as

substantial deviations from the anticipated (predicted or forecasted) values [11].

 Correlations across series - For instance, when a bird call is detected by one sensor,

it is likely to be captured by a neighboring sensor as well (time series that often

exhibit strong correlations). In such situations, one series can often be employed to

forecast another. Anomalies can be identified when there are differences between

these anticipated predictions. The concept here is that distinct time series may

frequently convey similar information and sometimes exhibit lagged correlations

[11].

First, we will explain univariate time series outlier detection methods. Their division is

illustrated in Figure 2.6.

Figure 2.6 Univariate time series point outlier detection methods [10]

As per the definition of point outliers, when working with a univariate time series, a point at

time t can be identified as an outlier if the absolute difference between its observed value

and the expected value exceeds a predefined threshold τ: |xt − xˆt | > τ [10].

Methods for detecting outliers that rely on the concept mentioned earlier are known as

model-based methods and are widely used in research literature, based on [10].

The following are their characteristics [10]:

 Each technique computes the expected value xˆt and threshold τ using unique

approaches.

 Each method fits a model to the data.

19

Here's the differentiation between estimation-based and prediction-based methods, based on

[10]:

 When xˆt is computed by considering both preceding and subsequent observations to

xt (encompassing past, present, and future data), it falls within the category of

estimation model-based methods.

 If xˆt is determined solely using prior observations to xt (past data), it falls under

prediction model-based methods.

The following estimation models are often used [10]:

 Simple estimation models - Using basic models that rely on fundamental statistics

like the median or the Median Absolute Deviation (MAD), we calculate the expected

value xˆt [10].

 The approaches that aim to identify data points that would be considered improbable

under the assumption that a specific model or distribution generated the data. Such

techniques encompass B-splines, kernel methods, various adaptations of the

Exponentially Weighted Moving Average (EWMA) approach, Gaussian Mixture

Models (GMM), a method that presumes a normal distribution in the absence of

outliers, and a method that models alterations in slopes both before and after time t

(while assuming minimal slope changes at a particular time point) [10].

 Various approaches examining all residuals derived from different models for outlier

identification. Among the techniques employed are STL decomposition, ARIMA

models incorporating exogenous factors, linear regression, or Artificial Neural

Networks [10]. While many of these models are also capable of prediction, in this

context, the focus is on identifying outliers within the residual dataset using historical

and future data. After the model is trained, hypothesis testing, such as the ESD test,

is applied to the residuals to pinpoint outliers [10].

 Methods that examine all the differences between observed and predicted values

obtained from various models to find outliers - Some of the methods used include

ARIMA models with external inputs, STL decomposition, Artificial Neural

Networks (ANNs), and linear regression [10].

The following prediction models are often used [10]:

20

 Models that remain constant and do not adapt to changing data over time – Deep

learning models (DeepAnT algorithm that uses fixed Convolutional Neural

Networks, deep neural networks with LSTM cells) [10].

 Autoregressive models – ARIMA [10]

 Adaptable models – One approach involves forecasting the value xˆt by employing

the median of historical data, while another method relies on an ARIMA model that

dynamically adapts its parameters using a sliding window as it progresses forward

[10].

Now, we will explain multivariate time series outlier detection methods. Their division is

also illustrated in Figure 2.6.

When applying the point outlier definition to a multivariate time series, a point at time t can

be classified as an outlier if the distance between its actual k-dimensional data point, xt, and

its expected value, xˆt, surpasses a predefined threshold τ: ||xt − xˆt || > τ [10].

Model-based methods are the prevailing methods frequently encountered in the literature

when dealing with multivariate time series. The definitions of estimation-based and

prediction-based models are the same, except xt and xˆt are k-dimensional data points.

The following estimation models are often used [10]:

 Autoencoders without modeled temporal correlation - Neural networks that prioritize

learning the most essential aspects of a training dataset are used as a reference for

what's considered normal. As outliers typically involve atypical characteristics,

autoencoders struggle to reconstruct them, resulting in significant errors [10].

 Autoencoders with modeled temporal correlation – The methods employed consist

of Variational Autoencoders (VAE) in combination with a Gated Recurrent Unit

(GRU) [10].

The following prediction models are often used [10]:

 Contextual Hidden Markov Model (CHMM)

 The DeepAnt algorithm

Based on [11], the following methods are used for the prediction-based approach (not to

confuse with the division of model-based methods on evaluation and prediction-based

methods, prediction based methods in this context mean that the model is fitted and used to

predict for outlier detection):

21

 Autoregressive models - Very useful for single-variable time series data. Commonly

employed methods include autoregressive moving average (ARMA) and

autoregressive integrated moving average (ARIMA) models [11].

 Time series regression models - The basic idea is to predict the target time series, y,

by assuming it has a linear connection with other time series, x [17].

 PCA-based techniques with other models - PCA-based methods are typically more

resilient in the presence of noise and outliers. A set of k uncorrelated time series is

generated by projecting the d-dimensional values at each timestamp projecting onto

the leading k eigenvectors. Variance of the remaining (d−k) time series is minimal

and the resulting time series can be considered as invariable time series, without the

necessity of forecasting using autoregressive model. Consequently, a single auto-

correlation model can be used for analysis using the larger eigenvectors [11].

 Combination of PCA-based models with other models - Combining PCA-based

models with other models is often more robust when dealing with noise and outliers.

This is achieved by projecting the d-dimensional values at each timestamp onto the

top k eigenvectors of the matrix, resulting in a set of k uncorrelated time series. The

analysis can be carried using a single auto-correlation model on the larger

eigenvectors [11].

When examining techniques employed in complete time series anomaly detection and

subsequence-based time series anomaly detection, it's important to note that the division

between these two types of problems is somewhat arbitrary [11]. This similarity arises

because a significant number of techniques developed for anomaly detection for

subsequences can also find use in detecting anomalies in the entire time series. This is

because subsequence anomaly detection typically begins with the extraction of windows

from the time series, treating these extracted subsequences as complete series for anomaly

detection [11].

2.3.2. Distance-based methods

Numerous traditional outlier detection techniques rely on the concepts of density and

proximity. Essentially, these methods identify outliers as data points located in sparsely

populated regions of the dataset, far from their neighboring points (this is achieved using

distance measures) [16].

22

These methods are based on the computation of dissimilarity between pairs of multivariate

data points or their representations, without the need for model fitting. When a predefined

threshold τ is established, a point xt is considered an outlier if the dissimilarity measure s(xt,

xˆt) between the actual k-dimensional point xt and its expected value xˆt exceeds the

predefined threshold τ [11].

The basic form of the distance-based approach (without pruning) can be outlined as follows

based on [11]:

 Create overlapping subsequences from time series with a length of p. In a time series

consisting of n data points, it is possible to generate a total of (n − p + 1)

subsequences.

 Compute outlier scores by evaluating the k-nearest neighbor distances from k-nearest

neighbors of these subsequences, without including overlapping windows in the

calculation.

The following similarity or distance functions are employed based on [11]:

 Euclidean distance

 Dynamic Time Warping

 Other similarity functions

The following are limitations of distance-based methods based on [16]:

 They face a challenge known as the curse of dimensionality, which makes many

traditional distance measures ineffective when the dataset has a high number of

dimensions. The core issue is that in high-dimensional spaces most distance

measures become compressed resulting in almost identical distances between all

pairs of data points.

23

3. An introduction to applied methods and the

dataset

In the following sections we will present a short introduction to the applied methods and the

dataset we used.

3.1. Methods

We have decided to work with 3 methods:

 A method we will call “Statistical method”,

 A method we will call “Probabilistic method”,

 A deep learning based method.

The statistical method is the simplest method in terms of implementation complexity and the

number of parameters. The probabilistic method is a bit more complex than the statistical

method while the deep learning-based method is the most complex one, based on the

underlying algorithms and the number of parameters.

In all three cases, we used a threshold-based mechanism to mark possible anomalies and

outliers.

3.1.1. The statistical method

The idea for the statistical method was to have a method that would “walk” through our time

series and collect some type of volatility and if a value goes outside the, loosely defined,

“95% confidence interval” the point would be declared as an outlier.

For this task we have chosen the leverage statistic.

High leverage points are data points where the value appears unusual given other values of

the same variable [19].

The expression for the leverage statistic for the unidimensional case is

24

As xi moves further away from arithmetic mean, the leverage statistic hi increases. The value

of the statistic is always bounded by 1/n and 1.

The reasons why we have chosen the leverage statistic:

 An example of contextual anomaly is a rapid increase in the values of a time series

since it greatly diverges from the most recent time stamps’ values. The important

insight here is that the latest time records establish the time series' expected value,

and departures from expected value are considered anomalies [11].

 hi increases as xi moves further away from its arithmetic mean.

 We can modify the threshold value based on the application-specific criteria.

If at least one predictor value for the observation has an extreme value based on the threshold

defined by leverage statistic, we classify the observation as anomalous.

We will compute the leverage statistic:

 For unidimensional vectors, if a value of the observation is a high leverage value,

then we classify the observation as anomalous (it is possible to have an observation

where its values fall well within the range of each predictor's values, except for one

predictor).

 For multidimensional vectors as it is possible to have an observation that falls well

within the range of each predictor's values individually but is anomalous when

considering the values of the entire set of predictors (no predictor has extreme value,

but the observation is unusual when all predictor's values are considered).

The pseudocode for the statistical method for the unidimensional case is shown in Table 3.1.

Statistical method unidimensional case

leverage_statistic_values = list()

for every column in log files columns:

 for i in range from window_size to number of observations:

25

 leverage statistic = compute leverage statistic for the first window_size values of the

column

 add leverage statistic to leverage_statistic_values

 sort leverage_statistic_values from lowest to biggest value

 top_10_leverage_statistic_values = leverage_statistic_values last 10 values

 anomalies_indices = indices of values from top_10_leverage_statistic_values

Table 3.1 Pseudocode for the statistical method for unidimensional case

The pseudocode for the statistical method for multidimensional case is shown in Table 3.2.

Statistical method multidimensional case

leverage_statistic_values = list()

for i in range from window_size to number of observations:

 leverage statistic = compute leverage statistic for the first window_size values of all

columns

 add leverage statistic to leverage_statistic_values

sort leverage_statistic_values from lowest to biggest value

top_10_leverage_statistic_values = leverage_statistic_values last 10 values

anomalies_indices = indices of values from top_10_leverage_statistic_values

Table 3.2 Pseudocode for the statistical method for multidimensional case

3.1.2. The probabilistic method

For the probabilistic method, we have chosen the non-seasonal ARIMA model. ARIMA is

short for Autoregressive Integrated Moving Average.

We have chosen the non-seasonal ARIMA model because:

 A seasonal pattern arises when a time series is influenced by seasonal factors, such

as the time of the year or the day of the week [17]. Seasonality in such cases always

follows a fixed and identifiable period [17]. Based on the visual inspection of the

time series, no seasonal pattern was observed.

26

 In a non-seasonal ARIMA model, time stamps are not needed as we are not modeling

seasonality as it is non-existent. Since our time series does not have a fixed period,

it is harder to represent a non-periodic time series with a seasonal ARIMA model

(even if the time series has a fixed period).

 An ARIMA model is typically not easily interpretable in terms of visible data

patterns like trends and seasonality. It has the capability to capture a broad range of

time series patterns [17]. We have not identified trends or seasonal patterns by visual

inspection of our time series.

ARIMA is made up of three parts [17]:

 Autoregressive part (lagged observations are used as inputs)

 Integrated part (differencing to make series stationary)

 Moving Average part (lagged errors are used as inputs)

Autoregressive part explanation:

 In an autoregression model, the prediction for the variable of interest is determined

by the linear combination of its past values [17].

Differencing part explanation (integrated same as differencing):

 A stationary time series is one that maintains consistent statistical properties

regardless of the time of observation [17]. Time series with trends or seasonality are

non-stationary because these patterns can cause variations in the series at different

time points [17]. On the other hand, a white noise series is considered stationary

because its statistical properties remain the same regardless of when it is observed

[17]. To make a non-stationary time series into a stationary one, we often use

differencing, which computes the differences between consecutive observations [17].

 Transformations such as logarithms can help to stabilize the variance of a time series

[17]. Differencing can help stabilize the mean of a time series by removing changes

in the level of a time series and therefore eliminating (or reducing) trend and

seasonality [17].

 Taking the logarithm of time series values can stabilize the time series' variance [17].

Differencing can stabilize the mean of a time series by removing level changes,

which helps mitigate or eliminate trends and seasonality [17].

Moving Average part explanation:

27

 Instead of relying on previous values of the forecast variable in a regression, a

moving average model incorporates past errors in a regression-like manner [17].

The ARIMA model is commonly denoted as ARIMA (p, d, q) model, where:

 p is the order of the autoregressive part [17].

 d s the order of the differencing [17].

 q is the order of the moving average part [17].

Special cases of ARIMA models are presented in Figure 3.1.

Figure 3.1 Special cases of ARIMA models [17]

We used the ARIMA model to detect anomalies in the following way:

 Using the model structure, we computed the expectation of the variable.

 Using the model structure, we computed the standard error.

 For every data point, if the data point is outside the interval [expectation – 2 *

standard error, expectation + 2 * standard error], the data point is declared an

anomaly.

We did not consider the distribution of predictor values or the distribution of differenced

predictor values (based on the value of d), i.e., we did not select an appropriate probabilistic

model for the data (we only know the structure of the model based on the output of ARIMA).

The interval [expectation – 2 * standard error, expectation + 2 * standard error] is only an

approximate interval because we assumed that the variables are normally distributed (the

above interval is obtained for random variables that have a normal distribution and which

are standardized), without looking at their histograms or using hypothesis tests.

The method was applied in R as R has an automatic procedure for finding the best possible

parameters (p, d, and q) and coefficients for the ARIMA model.

Figure 3.2 illustrates the general forecasting process using an ARIMA model. The automated

algorithm that we will use is shown in Figure 3.3. Some of the algorithms’ steps will be

explained in later chapters. The Hyndman-Khandakar algorithm only deals with steps 3 to 5

described in Figure 3.2 [17].

28

Figure 3.2 General forecasting process using an ARIMA model [17].

The Hyndman-Khandakar algorithm is shown in Figure 3.3.

29

Figure 3.3 Hyndman-Khandakar algorithm for automatic ARIMA modeling [17].

Table 3.3 illustrates pseudocode for the probabilistic method.

The probabilistic method

ARIMA model = output of Hyndman-Khandakar algorithm for automatic ARIMA

modelling

expectation = expectation of a variable based on ARIMA model

standard error = standard error of variable based on ARIMA model

anomalies indices = list()

for every value of time series:

 if absolute value (value) > expectation + 2 * standard error:

 add the index of the value to the list of anomalies indices

Table 3.3 Pseudocode for probabilistic method

30

3.1.3. The autoencoder method

For the deep learning-based method, we have chosen an autoencoder neural network

architecture with LSTM cells. Here are the reasons why:

 Based on [10], they are the most mentioned estimation models.

 Autoencoders are a special type of unsupervised neural network that learns during

training to effectively compress input data and to reconstruct the data from the

compressed representation so that the reconstructed data is as similar as possible to

the original data. Autoencoders reduce the dimensionality of the data by learning to

ignore the noise contained in the data. As mentioned in [11], in practical scenarios

data often contains a considerable amount of noise that might not be relevant to the

analyst's objectives. Therefore, the neural network can eliminate the noise and can

leave only the deviations that are of interest to the analyst.

 Autoencoder learns to effectively compress the data and to reconstruct the data from

the compressed representation. If the autoencoder predominantly (anomalies belong

to rare class) learns to compress the data that are generated by data generating process

that performs normally (data has a normal model), then the autoencoder will not

reconstruct the anomalies effectively, i.e., reconstruction error will be significantly

bigger than for normal data points.

The architecture of the autoencoder we used is presented in Figure 3.4.

31

Figure 3.4 Autoencoder architecture used.

We did not know how complex the problem is in advance so we used cells with a higher

number of parameters (cell type will be updated during training).

Table 3.4 illustrates pseudocode for the autoencoder method.

The autoencoder method

train the neural network and chose the best model based on validation

find residuals

use residuals with a pre-defined threshold to mark possible anomalies

Table 3.4 Pseudocode for the autoencoder method

3.2. Dataset

The dataset we have obtained from an ALB from a private company consists of the following

7 files:

 alb-logs-20230503.csv

 alb-logs-20230504.csv

 alb-logs-20230505.csv

 alb-logs-20230506.csv

32

 alb-logs-20230507.csv

 alb-logs-20230508.csv

 alb-logs-20230509.csv

The mentioned Application Load Balancer balances traffic for only one application.

A load balancer functions as the primary point of contact for clients [20]. Its role is to

distribute incoming application traffic across numerous targets, like EC2 instances, situated

in different Availability Zones [20].

The basic components of the AWS Application Load Balancer are shown in Figure 3.5.

Figure 3.5 Basic components of AWS Application Load Balancer [20]

Here is the description of all basic components of the AWS Application Load Balancer based

on [20]:

 A listener is responsible for inspecting connection requests from clients, utilizing the

protocol and port settings that are specified [20]. The load balancer's routing of

requests to its registered targets is determined by the rules that are established for a

listener [20]. Each rule comprises a priority, one or more actions, and one or more

conditions [20]. Actions associated with a rule are executed when the rule’s

conditions are met [20].

 Each target group routes requests to one or more registered targets, such as EC2

instances, using the protocol and port number that you specify. You can register a

target with multiple target groups. You can configure health checks on a per-target

group basis. Health checks are performed on all targets registered to a target group

that is specified in a listener rule for your load balancer.

33

 Each target group directs requests to one or more registered targets [20]. It is possible

to register a target with multiple target groups [20]. Health checks can be configured

separately for each target group [20]. These health checks are conducted on all targets

that belong to a specific target group defined in a listener rule for the load balancer

[20].

Contents of every file were saved in a unique pandas data frame and afterward, all data

frames were concatenated as a single data frame.

Thus, we have obtained a dataset, that without pre-processing, has:

 2577066 observations

 28 features

Import timestamps in the dataset are:

 The first timestamp is 2023-05-03 23:55:00.936341

 The last timestamp is 2023-05-09 23:55:00.496609

The dataset is not labeled, since labeling is a daunting process requiring more resources than

we had, and therefore we do not have a domain expert’s confirmation on which observations

are anomalies, and which are not.

Columns of the dataset, along with their descriptions, are shown in Table 3.5.

34

Field Description

type Connection or request type.

time
Timestamp when the response to the client

was generated by the load balancer.

elb Load balancer resource ID.

client:port Requesting client’s IP address and port.

target:port
Target’s IP address and port. Target is a

machine the processed the request.

request_processing_time

The time taken from request received to

request sent by the load balancer (in

seconds, with millisecond precision).

target_processing_time

The time from request sent by the load

balancer to target until target started

sending response headers (in seconds, with

millisecond precision).

response_processing_time

The time from load balancer receiving

response header to sending response to the

client, including queuing and connection

time (in seconds, with millisecond

precision).

elb_status_code Load balancer response’s status code.

target_status_code Target’s response status code.

received_bytes Client’s request size in bytes.

sent_bytes The response's byte size sent to the client.

request Client’s request.

35

user_agent Client’s user agent.

ssl_cipher The encryption cipher used for SSL.

ssl_protocol The SSL communication protocol.

target_group_arn
The ARN for the target group in Amazon

Resource Name format.

trace_id X-Amzn-Trace-Id header’s content.

domain_name
The client's SNI domain during the TLS

handshake.

chosen_cert_arn The certificate's ARN sent to the client.

matched_rule_priority The matched request's rule priority value.

request_creation_time
Timestamp when client’s request was

received by the load balancer.

actions_executed
The steps performed when handling the

request.

redirect_url
The URL of the redirect destination in the

HTTP response's location header.

error_reason The error code indicating the reason.

target:port_list
A list of target IP addresses and ports used

for processing this request.

target_status_code_list
A list of status codes from target

responses.

classification Desync mitigation classification.

classification_reason The reason code for classification.

Table 3.5 Columns in the log files of AWS ALBs and their description [21]

36

4. The experimental part

In the following sections we will describe the experimental part.

4.1. Anomalies for log files of AWS load balancer

First, we have to define anomalies for the log files of the AWS load balancer.

4.1.1. Anomalies for the statistical method

We will use two variants of the statistical method:

 Variant for the unidimensional case

 Variant for the multidimensional case

Anomaly for the unidimensional case is defined as follows:

 If any of the predictor’s values leverage statistic is above the predefined threshold

for that predictor, the observation is defined as an anomalous observation.

Anomaly for the multidimensional case is defined as follows:

 If the leverage statistic for multidimensional observation is above the predefined

threshold, the observation is defined as anomalous observation.

4.1.2. Anomalies for the probabilistic method

The probabilistic method was trained only for single predictors.

Anomalies for the probabilistic method are defined as follows:

 If the predictors’ value of the observation is outside the predefined interval, the

observation is defined as anomalous observation.

4.1.3. Anomalies for the autoencoder method

Anomalies for the autoencoder are defined as follows:

 If the residual of the observation is higher than the predefined threshold, the

observation is defined as anomalous observation.

37

4.2. Data preparation

Before concatenating data frames, we did the following:

 alb-logs-20230503 data frame – Drop column classification_reason as it had 5 values

that were not missing values, and all of them had value “-”; drop zero variance

columns as they do not contain information; we are left with 25 columns.

 alb-logs-20230504 data frame - Drop column classification_reason as it had 5 values

that were not missing values, and all of them had value “-”; drop zero variance

columns as they do not contain information; we are left with 25 columns.

 alb-logs-20230505 data frame - Drop column classification_reason as it had 5 values

that were not missing values, and all of them had value “-”; drop zero variance

columns as they do not contain information; we are left with 26 columns.

 alb-logs-20230506 data frame - Drop zero variance columns as they do not contain

information; we are left with 25 columns.

 alb-logs-20230507 data frame - Drop zero variance columns as they do not contain

information; we are left with 25 columns.

 alb-logs-20230508 data frame - Drop zero variance columns as they do not contain

information; we are left with 25 columns.

 alb-logs-20230509 data frame - Drop column classification_reason as it had 5 values

that were not missing values, and all of them had value “-”; drop zero variance

columns as they do not contain information; we are left with 28 columns.

After that, the data frames were concatenated into a single data frame.

Based on the meeting with the domain expert, basic requirements on useful observation

windows were agreed upon. The reason for this was the following:

 Size of the data frame when the full set of observations is taken.

 Our constraints with computational power.

We have decided to take the first 100,000 observations.

After that, we’ve dropped the following columns:

 elb as variance = 0 for values that are not nan

 classification as variance = 0 for values that are not nan when we exclude the value

"Ambiguous".

38

Additionally, we dropped the following columns:

 client_port

 target_port

 ssl_protocol

 trace_id

 chosen_cert_arn

 matched_rule_priority

 target_port_list

 target_status_code_list

 request_creation_time

We are well-aware that these features would be useful in anomaly detection but with the

resources we had, significant increase in complexity of our research was not possible.

However, we are hoping we will continue this research with some of these variables included

in our future methods.

Every row of the column request was disassembled into the following parts to reduce the

cardinality of the column:

1. HTTP method

2. protocol

3. host

4. port

5. URI

6. HTTP version

After that, rows were reordered by column time.

After we applied everything mentioned above, we were left with the following columns and

their data types:

 type – data type is object

 time – data type is datetime64[ns]

 request_processing_time – data type is float64, we will change data type to float16

 target_processing_time – data type is float64, we will change data type to float16

 response_processing_time – data type is float64, we will change data type to float16

 elb_status_code – data type is int64, we will change data type to uint16

39

 target_status_code – data type is object

 received_bytes – data type is int64, we will change data type to uint16

 sent_bytes – data type is int64, we will change data type to uint16

 request – data type is object

 user_agent – data type is object

 ssl_cipher – data type is object

 target_group_arn – data type is object

 domain_name – data type is object

 actions_executed – data type is object

 redirect_url – data type is object

The last step was to encode categorical features as the statistical method, probabilistic

method, and autoencoder expect input that is numerical.

Here is the cardinality of columns that were encoded:

 type – cardinality is 3

 elb_status_code – cardinality is 7

 target_status_code – cardinality is 6

 request – cardinality is 47477

 user_agent – cardinality is 247

 ssl_cipher – cardinality is 2

 target_group_arn – cardinality is 3

 domain_name – cardinality is 3

 actions_executed – cardinality is 2

 redirect_url – cardinality is 3

For encoding, we have chosen one hot encoding.

4.3. The training phase

In the following sections we will describe the training approach if used.

40

4.3.1. The statistical method

Statistical method was used for detecting anomalies only for the following columns:

 request_processing_time

 target_processing_time

 response_processing_time

 received_bytes

 sent_bytes

 number of requests

For the statistical method, we did the following:

 unidimensional case – Method “walks” through values of all predictors separately

and flags anomalous values (belonging to observations) whose leverage statistic is

higher than the pre-defined threshold.

 multidimensional case – Method “walks” through observations and flags anomalous

observations whose leverage statistic is higher than the defined threshold.

We could have played with the window size as the parameter for our statistical method but

have decided not to do so due to time constraints. We have chosen just one window size and

no training phase was employed in this case.

4.3.2. The probabilistic method

The probabilistic method was used for detecting anomalies only for the following columns:

 request_processing_time

 response_processing_time

 target_processing_time

 received_bytes

 sent_bytes

The training procedure for ARIMA used The Hyndman-Khandakar algorithm shown in

Figure 3.3. We used the implementation of the mentioned algorithm that is implemented as

function auto.arima from the forecast package in R.

We have observed the following challenges with the probabilistic method:

 auto.arima can only accept equally-spaced time periods,

41

 time series we have do not have equally-spaced time periods.

Thus, we’ve tried to set the period in the following way:

1. We found the greatest common divisor of all differences between timestamps.

2. We expressed every timestamp as a multiple of the greatest common divisor.

Period length was 0.000244140625 milliseconds. The total number of timestamps after

setting a period would have been 2123365634282, which is too large, and the data frame

would not fit in available RAM.

After that, we did the following:

1. The first and last timestamp will be fixed.

2. The period will be (difference between the first and the last timestamp) / (number of

timestamps - 1)

The period is now 201.1589979519837 milliseconds. We used the timestamps we made that

way for the statistical method, although dates are not needed for that method.

We are quite aware that this approach is a heuristic and might deviate from common

practices, but we wanted to see if a bit of a fresh approach might result in a good method.

4.3.3. The autoencoder method

We used the following columns for the autoencoder:

 time

 request_processing_time

 target_processing_time

 response_processing_time

 received_bytes

 sent_bytes

 type – one hot encoded

 elb_status_code – one hot encoded

 target_status_code – one hot encoded

 request – one hot encoded

 user_agent – one hot encoded

 ssl_cipher – one hot encoded

42

 target_group_arn – one hot encoded

 domain_name – one hot encoded

 actions_executed – one hot encoded

 redirect_url – one hot encoded

First, we had to generate datasets for training. The process of generating datasets is shown

in Figure 4.1.

Figure 4.1 Making attribute-value table from time series values [2]

We applied a window size of 4. Since we have a multivariate time series, the window size

of 4 is applied to every column so that for every column we have an attribute-value table as

in Figure 4.1.

After that, we scaled the data and then we split the dataset into the training dataset and the

test dataset.

We used the following hyperparameters for training:

 epochs = 100

 batch_size = 32

 windows_size = 4

 min_delta for early stopping criterion = 10-2

The optimizer that we used was adam and the loss function was the mean squared error.

For the training, we did the following:

43

 We used the early stopping criterion that stops training if the difference between the

mean squared error for the current epoch and the previous epoch is less than or equal

to 10-2.

 We used a checkpoint that saves the model that has the lowest validation mean

squared error.

 We shuffled the vectors before training to remove the order in the values of the

predictors if the order exists.

4.4. Results

In the following sections we will describe the results of the methods we used.

4.4.1. The statistical method

As mentioned earlier, we worked with only one window size (n=50) due to time constraints.

Histograms of the obtained leverage values for all variables used with the statistical method

are shown in Figure 4.2, Figure 4.3, Figure 4.4, Figure 4.5, Figure 4.6, and Figure 4.7.

Figure 4.2 request_processing_time leverage statistic values

44

Figure 4.3 target_processing_time leverage statistic values

Figure 4.4 response_processing_time leverage statistic values

45

Figure 4.5 received_bytes leverage statistic values

Figure 4.6 sent_bytes leverage statistic values

46

Figure 4.7 number of requests leverage statistic values

Results for the statistical method in the unidimensional case, for the variable

request_processing_time:

 10 highest leverage statistic values relate to 10 distinct observations. Based upon

visual inspection of the 10 observations flagged as anomalous, all of them are spikes

and we would mark them as true anomalies. All observations flagged as anomalous,

i.e., all spikes, are the highest spikes on the time series plot (all other spikes have the

same or smaller values).

Results for the statistical method in the unidimensional case, for the variable

target_processing_time:

 10 highest leverage statistic values relate to 10 distinct observations. Based upon

visual inspection of the 10 observations flagged as anomalous, all of them are spikes

and we would mark them as true anomalies. All observations flagged as anomalous,

i.e., all spikes, are the highest spikes on the time series plot (all other spikes have the

same or smaller values).

Results for the statistical method in the unidimensional case, for the variable

response_processing_time:

47

 10 highest leverage statistic values relate to 170 distinct observations. Based upon

visual inspection of the 10 chosen observations (among the 170 distinct observations)

flagged as anomalous, all of them are spikes and we would mark them as true

anomalies. All observations flagged as anomalous, i.e., all spikes, are the highest

spikes on the time series plot (all other spikes have the same or smaller values).

Results for the statistical method in the unidimensional case, for the variable received_bytes:

 10 highest leverage statistic values relate to 10 distinct observations. Based upon

visual inspection of the 10 observations flagged as anomalous, all of them are spikes

and we would mark them as true anomalies. All observations flagged as anomalous,

i.e., all spikes, are the highest spikes on the time series plot (all other spikes have the

same or smaller values).

Results for the statistical method in the unidimensional case, for the variable sent_bytes:

 10 highest leverage statistic values relate to 10 distinct observations. Based upon

visual inspection of the 10 observations flagged as anomalous, all of them are spikes

and we would mark them as true anomalies. All observations flagged as anomalous,

i.e., all spikes, are the highest spikes on the time series plot (all other spikes have the

same or smaller values).

Results for the statistical method in the unidimensional case, for the variable

number_of_requests:

 10 highest leverage statistic values relate to 10 distinct observations. Based upon

visual inspection of the 10 observations flagged as anomalous, all of them are spikes

and we would mark them as true anomalies. All observations flagged as anomalous,

i.e., all spikes, are the highest spikes on the time series plot (all other spikes have the

same or smaller values).

Results for statistical method in the multidimensional case:

 10 highest leverage statistic values relate to 10 distinct observations. Based upon

visual inspection of the 10 observations flagged as anomalous, all of them are spikes

and we would mark them as true anomalies.

The statistical method worked well for the top leverage values which is great since we could

use it in future as the baseline method. Especially since the computational complexity is low

and we can raise an alarm on anomalies without looking at future values.

48

4.4.2. The probabilistic method

The probabilistic method for request_processing_time resulted in:

 ARIMA(0, 0, 0) with constant 4 * 10-4.

 Our model flagged 0 observations as anomalies.

 Based on Figure 4.8, there are visible spikes

 We conclude that either the assumption about the interval is wrong or the model is

not working properly for this time series.

Figure 4.8 request_processing_time plot

The probabilistic method for response_processing_time time resulted in:

 ARIMA(5, 1, 0).

 Our method flagged 0 observations as anomalies.

 Based on Figure 4.9, there are visible spikes.

 We conclude that either the assumption about the interval is wrong or the model is

not working properly for this time series.

49

Figure 4.9 response_processing_time differenced one time plot

The probabilistic method for target_processing_time time resulted in:

 ARIMA(1, 1, 0) with drift.

 Our model flagged 4366 observations as anomalies, as shown in Figure 4.8.

 Based on Figure 4.8, almost all real spikes are flagged as anomalies.

 Based on Figure 4.8, some values that are not spikes are also flagged as anomalies.

Figure 4.8 target_processing_time anomalies plot

50

The probabilistic method for received_bytes time resulted in:

 ARIMA(0, 1, 1).

 Our flagged 86763 observations as anomalies, as shown in Figure 4.10.

 Based on Figure 4.10, almost all spikes are flagged as anomalies.

 Based on the number of observations that are flagged as anomalies and based on

Figure 4.10, a lot of values that are not spikes are also flagged as anomalies. That is,

we get a lot of false positives.

Figure 4.10 received_bytes anomalies plot

The probabilistic method for sent_bytes time resulted in:

 ARIMA(5, 1, 0).

 Our method flagged 8 observations as anomalies, as shown in Figure 4.9.

 Based on the number of observations flagged as anomalies and based on Figure 4.9,

only significant spikes were flagged as anomalies.

51

Figure 4.9 sent_bytes anomalies plot

It is interesting to notice that our approach with the probabilistic method resulted in a wide

range of results: from 0 findings to a significant number of findings. It could be that our

method assumptions were completely wrong but also that the ARIMA model works on some

time series and for others it is not suitable, as is already well-known in the literature and, to

be honest, expected.

We also made some changes to the time series time values (x’s) and we are aware that this

means that the ARIMA model obtained this way might not be appropriate for other time

series or new periods of activity of the same time series.

Additionally, the threshold of 2 * standard error is based on normality and should be explored

with a wider range of values in future research.

4.4.3. The autoencoder method

For the training and validation of the autoencoder, we only used the first 200,000

observations (before sliding the window through data) since the computational resources we

52

used were budget constrained. From the technical perspective, we were renting an NVIDIA

A100 Tensor Core GPU for the training and validation processes.

Figure 4.10 shows the output of training and validation mean squared error for epochs while

Figure 4.11 shows a plot of training and validation mean squared error for epochs. From the

figures mentioned, we can see that six epochs were used.

From Figure 4.10, we can also see that:

 As the number of epochs increases, the training mean squared error decreases

monotonically.

 As the number of epochs increases, validation mean squared error decreases

monotonically.

We believe that overfitting did not happen based on the following definition from [19]:

 When a method produces a low training mean squared error and a high validation

mean squared error, it is referred to as overfitting the data [19].

 Our method achieves a small training mean squared error and a small test mean

squared error.

It is worth noting that, whether or not overfitting has happened, we typically anticipate the

training mean squared error (MSE) to be lower than the test MSE [19]. This is because most

statistical learning methods aim to minimize the training MSE, either directly or indirectly

[19].

Some additional comments based on Figure 4.10 (from [19]):

 A monotone decrease in the training mean squared errors and a U-shape in validation

mean squared errors is observed as the flexibility of the statistical learning method

increases. This is a fundamental aspect of statistical learning, applicable regardless

of the dataset or the specific statistical method used [19].

 We have not observed a U-shape in the validation mean squared error.

The mean squared error of the best model we obtained was 0.9992541670799255 on

validation data.

53

Figure 4.10 Training and validation mean squared errors for epochs

Figure 4.11 Plot of training and validation mean squared error for epochs

Figure 4.12 shows the histogram of residuals. Imposing a threshold on residuals is a

challenging task but we need to start with something. Thus, based on Figure 4.12, a good

starting point seems to be value 6 (all points that have residual higher than 6).

54

Figure 4.12 Histogram of residuals values

Results when 6 is used as the threshold:

 Our method flagged 1188 windows as anomalies.

Results when 7 is used as the threshold:

 Our method flagged 42 windows as anomalies.

Results when 8 is used as the threshold:

 Our method flagged 9 windows as anomalies.

By increasing the number used as the threshold less windows were marked as outliers and

thus, we had more reason to believe these are anomalies.

If a window is flagged as anomalous, all observations that belong to that window will be

considered as anomalous. If there is a value in the window that can be identified as a spike

on the plot, we will accept that window as being anomalous. Based on the interpretation of

the results and based on the visual inspection of each time series, the autoencoder method

with the threshold value equal to 7 flagged 9 windows correctly as anomalous, of 42

windows flagged in total.

55

Plots used for visual inspection can be seen in Figure 4.13, Figure 4.14, Figure 4.15, Figure

4.16, and Figure 4.17.

Figure 4.13 Received_bytes variable flagged observations

Figure 4.14 Request_processing_time variable flagged observations

56

Figure 4.15 Response_processing_time flagged observations

Figure 4.16 Sent_bytes flagged observation

57

Figure 4.17 target_processing_time flagged observations

4.4.4. Answers to research questions

Since we have not found publications that directly deal with the detection of anomalies in

AWS load balancer logs, we cannot answer research questions RQ1-RQ6 with more than

the fact that such research is yet to be published. Regardless of that, these research questions

have guided us through our own research and have proved extremely valuable in defining

our approach to the subject and the research question RQ7.

Although this thesis is not meant to server as a scientific breakthrough in the subject, we

think that it can serve on its own as an introductory example on how to answer the research

question RQ7, i.e., by utilizing a systematic review of the literature and devising methods

that can be applied within the given budget restraints. This should not be the end of course;

other methods could have been applied and we have no doubt that they will be in future

research on the subject.

58

Conclusions

The result of the systematic literature review described in Chapter 1 is the absence of

publications that directly deal with the detection of anomalies in AWS load balancer logs

and the absence of a benchmark dataset that would be used for the evaluation of existing and

new methods. Therefore, there exists a gap in the literature that needs to be completed with

a publication that will extensively evaluate the collection of chosen methods on the

benchmark dataset, based on a systematic literature review encompassing the domains of

time series outlier and anomaly detection, as well as log file anomaly and outlier detection.

 By systematically reviewing the literature in the fields of anomaly detection, anomaly

identification in time series data, and both anomaly and outlier detection within log files, we

observed the need to define a baseline method that will be highly interpretable because the

existing methods are based on probabilistic and deep learning methods that have many

parameters and are, therefore, often uninterpretable.

By conducting the experimental part, we saw a need for domain expertise in data

preprocessing, defining anomalies, and setting threshold values for all models, an act that

would save a significant amount of time.

Although we believe everyone should give preference to supervised methods, if possible, we

used unsupervised methods because our data set was not labeled. The above points out to

the need for a labeled dataset that will be labeled by different domain experts, whose

decisions will be agreed into a single decision.

By interpreting the results of the statistical method, we can conclude that something as

simple as the method we’ve applied is a good choice for the baseline method and probably

the first thing that should be applied for a proof-of-concept or a minimum viable product in

industry.

The probabilistic method had variable results, but many prerequisites for ARIMA models

were not thoroughly checked and thus the method we have presented should be taken as a

heuristic at its best.

The autoencoder method had a lot of false positives and based on our experience with the

computational complexity and requirements and the overall interpretability of autoencoders

we would not recommend it as the first step in applications. The results could have been

59

better with more time invested into the autoencoder architecture and with more expertise in

the subject itself, but it is not probable that such an investment is feasible for everyone in

today’s world. The shortage of AI engineers is still quite observable in many areas of the

world.

Finding the appropriate threshold is hard and we should have some prior knowledge about

the expected number of anomalies. On the other hand, as an exploratory technique (i.e.

without raising alarms for current anomalies) or a post-mortem technique the thresholds can

be varied and fine-tuned over time.

We have found that the visual introspection of potential anomalies should be based on some

ranking to make it easier for users to mark findings as anomalies or just outliers. Otherwise,

it is quite a tedious job as we can confirm.

The aim of this thesis was to lay a foundation for systematic literature review and to

experiment with a personally collected dataset, i.e., to check the possibilities of certain

computer methods in detecting anomalies for metrics from AWS ALB logs. Unfortunately,

we cannot share the data we collected publicly but at least we believe we were able to present

an introduction to the subject and open a path to future research and applications.

60

Literature

[1] Systematic Reviews (OPEN ACCESS) Page MJ, McKenzie JE, Bossuyt PM,

Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an

updated guideline for reporting systematic reviews. Systematic Reviews 2021;10:89

[2] Parmezan, Antonio & Alves de Souza, Vinícius & Batista, Gustavo. (2019).

Evaluation of statistical and machine learning models for time series prediction:

Identifying the state-of-the-art and the best conditions for the use of each model.

Information Sciences. 10.1016/j.ins.2019.01.076.

[3] Kalaki, Parisa & Shameli-Sendi, Alireza & Abbasi, Behzad. (2022). Anomaly

detection on OpenStack logs based on an improved robust principal component

analysis model and its projection onto column space. Software: Practice and

Experience. 53. 10.1002/spe.3164.

[4] Sánchez-Zas, C.; Larriva-Novo, X.; Villagrá, V.A.; Rodrigo, M.S.; Moreno, J.I.

Design and Evaluation of Unsupervised Machine Learning Models for Anomaly

Detection in Streaming Cybersecurity Logs. Mathematics 2022, 10, 4043.

https://doi.org/10.3390/math10214043

[5] Shin, T.-H.; Kim, S.-H. Utility Analysis about Log Data Anomaly Detection Based

on Federated Learning. Appl. Sci. 2023, 13, 4495.

https://doi.org/10.3390/app13074495

[6] Zhang, Bo & Zhang, Hongyu & Moscato, Pablo. (2020). Anomaly Detection via

Mining Numerical Workflow Relations from Logs. 10.36227/techrxiv.12570926.v1.

[7] Caiping Hu, Xuekui Sun, Hua Dai, Hangchuan Zhang & Haiqiang Liu. (2023)

Research on Log Anomaly Detection Based on Sentence-BERT. Electronics 12:17,

pages 3580.

[8] M. Fält, S. Forsström, Q. He and T. Zhang, “Learning-Based Anomaly Detection

Using Log Files with Sequential Relationships,” 2022 6th International Conference

on System Reliability and Safety (ICSRS), Venice, Italy, 2022, pp. 337-342, doi:

10.1109/ICSRS56243.2022.10067856.

[9] D. Hawkins. Identification of Outliers, Chapman and Hall, 1980.

[10] Blázquez-García, Ane & Conde, Angel & Mori, Usue & Lozano, Jose. (2021). A

Review on Outlier/Anomaly Detection in Time Series Data. ACM Computing

Surveys. 54. 1-33. 10.1145/3444690.

[11] Aggarwal, Charu C., and Charu C. Aggarwal. An introduction to outlier analysis.

Springer International Publishing, 2017.

[12] Aggarwal, Charu C., and Philip S. Yu. “Outlier detection for high dimensional data.”

Proceedings of the 2001 ACM SIGMOD international conference on Management of

data. 2001.

[13] Freeman, Cynthia & Merriman, Jonathan & Beaver, Ian & Mueen, Abdullah. (2021).

Experimental Comparison and Survey of Twelve Time Series Anomaly Detection

Algorithms. Journal of Artificial Intelligence Research. 72. 849-899.

10.1613/jair.1.12698.

https://doi.org/10.3390/math10214043
https://doi.org/10.3390/app13074495

61

[14] Chandola, Varun & Banerjee, Arindam & Kumar, Vipin. (2009). Anomaly

Detection: A Survey. ACM Comput. Surv.. 41. 10.1145/1541880.1541882.

[15] Schmidl, Sebastian & Wenig, Phillip & Papenbrock, Thorsten. (2022). Anomaly

detection in time series: a comprehensive evaluation. Proceedings of the VLDB

Endowment. 15. 1779-1797. 10.14778/3538598.3538602.

[16] Paulheim, Heiko & Meusel, Robert. (2015). A decomposition of the outlier detection

problem into a set of supervised learning problems. Machine Learning. 100. 509-531.

10.1007/s10994-015-5507-y.

[17] Hyndman, Rob J., and George Athanasopoulos. Forecasting: principles and practice.

OTexts, 2018.

[18] PMF Sveučilište u Zagrebu, Bojan Basrak. “Statistika s primjerima u R-u”, Available

Online https://web.math.pmf.unizg.hr/~bbasrak/pdf_files/BiostatNotes0216.pdf

[19] James, Gareth, et al. An introduction to statistical learning. Vol. 112. New York:

Springer, 2013.

[20] Amazon Web Services. “What is an application load balancer“, Amazon Web

Services Documentation. Available Online

https://docs.aws.amazon.com/elasticloadbalancing/latest/application/introduction.ht

ml

[21] Amazon Web Services. “Access logs for your Application Load Balancer”, Amazon

Web Services Documentation. Available Online

https://docs.aws.amazon.com/elasticloadbalancing/latest/application/load-balancer-

access-logs.html

https://web.math.pmf.unizg.hr/~bbasrak/pdf_files/BiostatNotes0216.pdf
https://docs.aws.amazon.com/elasticloadbalancing/latest/application/introduction.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/application/introduction.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/application/load-balancer-access-logs.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/application/load-balancer-access-logs.html

62

List of figures

Figure 2.1 Comparison between noise and anomalies [11] ... 11

Figure 2.2 Meaning of outliers based on the analyst's judgment [10] 11

Figure 2.3 The spectrum from normal data to outliers [11] ... 12

Figure 2.4 Point outliers or anomalies [10] ... 15

Figure 2.5 Subsequence outliers or anomalies [10] ... 15

Figure 2.6 Univariate time series point outlier detection methods [10] 18

Figure 3.1 Special cases of ARIMA models [17] .. 27

Figure 3.2 General forecasting process using an ARIMA model [17]. 28

Figure 3.3 Hyndman-Khandakar algorithm for automatic ARIMA modeling [17]. 29

Figure 3.4 Autoencoder architecture used. .. 31

Figure 3.5 Basic components of AWS Application Load Balancer [20] 32

Figure 4.1 Making attribute-value table from time series values [2].................................. 42

Figure 4.2 request_processing_time leverage statistic values .. 43

Figure 4.3 target_processing_time leverage statistic values .. 44

Figure 4.4 response_processing_time leverage statistic values ... 44

Figure 4.5 received_bytes leverage statistic values ... 45

Figure 4.6 sent_bytes leverage statistic values .. 45

Figure 4.7 number of requests leverage statistic values... 46

Figure 4.8 target_processing_time anomalies plot .. 49

Figure 4.9 sent_bytes anomalies plot .. 51

Figure 4.10 Training and validation mean squared errors for epochs 53

Figure 4.11 Plot of training and validation mean squared error for epochs 53

Figure 4.12 Histogram of residuals values .. 54

Figure 4.13 Received_bytes variable flagged observations ... 55

63

Figure 4.14 Request_processing_time variable flagged observations 55

Figure 4.15 Response_processing_time flagged observations ... 56

Figure 4.16 Sent_bytes flagged observation ... 56

Figure 4.17 target_processing_time flagged observations ... 57

64

List of tables

Table 1.1 Exclusion criteria for the systematic literature review. ..3

Table 1.2 Specific criteria for checking methodological quality of retrieved publications. ..3

Table 1.3 Latest systematic review publications. ..4

Table 1.4 Selected publications ..6

Table 3.1 Pseudocode for the statistical method for unidimensional case 25

Table 3.2 Pseudocode for the statistical method for multidimensional case 25

Table 3.3 Pseudocode for probabilistic method .. 29

Table 3.4 Pseudocode for the autoencoder method ... 31

Table 3.5 Columns in the log files of AWS ALBs and their description [21] 35

	Introduction
	1. Systematic literature review
	1.1. Planning
	1.2. Conducting
	1.3. Meta-analysis
	1.4. Summary of the selected publications

	2. Anomaly detection
	2.1. Outliers and anomalies
	2.2. Outliers and anomalies for time series data
	2.3. Anomaly detection methods for time series data
	2.3.1. Prediction-based methods
	2.3.2. Distance-based methods

	3. An introduction to applied methods and the dataset
	3.1. Methods
	3.1.1. The statistical method
	3.1.2. The probabilistic method
	3.1.3. The autoencoder method

	3.2. Dataset

	4. The experimental part
	4.1. Anomalies for log files of AWS load balancer
	4.1.1. Anomalies for the statistical method
	4.1.2. Anomalies for the probabilistic method
	4.1.3. Anomalies for the autoencoder method

	4.2. Data preparation
	4.3. The training phase
	4.3.1. The statistical method
	4.3.2. The probabilistic method
	4.3.3. The autoencoder method

	4.4. Results
	4.4.1. The statistical method
	4.4.2. The probabilistic method
	4.4.3. The autoencoder method
	4.4.4. Answers to research questions

	Conclusions
	Literature
	List of figures
	List of tables

