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Introduction 

Amazon Web Services (AWS) is the world’s most all-encompassing and broadly adopted 

cloud. It offers its solutions for load balancing, called Elastic Load Balancing. From the 

perspective of businesses and clients, probably the most significant one is the Application 

Load Balancer. Application Load Balancer serves as a single point of contact for clients as 

it distributes incoming requests to one or multiple targets. Since application availability time 

is crucial for business, the load balancer would benefit from a check, or from a connected 

service to execute checks, of all requests it receives before sending them to targets as 

anomalous requests can be the cause of the downtime.  

We looked at the existing literature on anomaly detection from AWS load balancer logs and 

through a systematic review of the literature we did not find publications that address 

anomaly detection in log files of the AWS load balancer. Furthermore, we did not find a 

benchmark dataset for this challenge either. 

With the mentioned disadvantages considered, we have collected log files from an AWS 

Application Load Balancer of a privately owned company and devised three methods for 

anomaly detection. Methods and evaluation metrics were chosen based on the systematic 

review of literature in the areas of anomaly detection and outlier detection for time series 

and anomaly detection and outlier detection for log files. 

We would like to note that this work is not a comprehensive overview of the field and that 

as a starting point for future research it might omit relevant information unknown to us at 

the time of writing this thesis. 

Additionally, this research is not a full-fledged machine/statistical learning analysis of the 

possibilities and challenges of presented approaches but an introduction to the topic. 

Having a real-world time series dataset as the first dataset to work on is quite challenging 

and can be discouraging in some ways but that approach mimics reality for many professions 

and serves as a well-prepared introduction to industry for soon to be graduates. Thus, the 

findings presented here might be far away from the ideal case scenario but at least are a start. 
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1. Systematic literature review 

To position our research in the corresponding state-of-the-art, we planned and conducted a 

systematic review and meta-analysis of the literature, following guidelines of "Preferred 

Reporting Items for Systematic Reviews and Meta-Analyses" (PRISMA) [1]. 

In the following sections we will outline the process of conducting and reporting a systematic 

review of publications, starting with the formulation of 7 research questions. 

1.1. Planning 

The systematic literature review and empirical study that will be conducted afterward intend 

to address the subsequent research questions: 

1. RQ1: What methods are usually used to detect anomalies in AWS load balancer logs? 

2. RQ2: What measures are usually used to evaluate the accuracy of anomaly detection 

models in AWS load balancer logs? 

3. RQ3: What datasets are usually used when comparing different models? 

4. RQ4: Which method is the most effective for anomaly detection in AWS load 

balancer logs? 

5. RQ5: What are the advantages and disadvantages of the methods used to detect 

anomalies in AWS load balancer logs? 

6. RQ6: What methods are used as baseline methods for anomaly detection in AWS 

load balancer logs? 

7. RQ7: How to apply statistical, probabilistic, and deep learning methods on AWS 

ALB logs to detect anomalies in different metrics presented in the logs? 

Research questions were formulated by writing down questions of interest for anomaly 

detection of AWS load balancer logs and using the publication's supplement [2]. 

After searching the electronic databases, we applied the selection criteria outlined in Table 

1.1. to check the eligibility of retrieved publications. Selection criteria are exclusion criteria 

and operate in a way that, if a piece of work meets a criterion, it is excluded from the 

subsequent activities in the systematic literature review. 
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Exclusion criteria 

Publications that perform only univariate time series analysis 

Publications that do not suit research questions 

Editorials, presentations, prefaces, awards notes, conference summaries, keynote talks, 

and tutorials 

Not publicly available publications 

Publications authored in a non-English language. 

Table 1.1 Exclusion criteria for the systematic literature review. 

After the application of exclusion criteria, by using specific criteria guidelines from [2], we 

adopted specific criteria for the evaluation of the methodological quality of retrieved 

publications. Specific criteria are outlined in Table 1.2. 

Specific criteria 

Is the paper categorized as an empirical study or a review article? 

Are the computational frameworks and datasets used in the study publicly available? 

Is there a valid justification for the parameter settings used in the predictive models from 

the publication? 

Does the publication mention advantages, disadvantages, limitations, and 

implementations issues of the statistical or machine learning methods for anomaly 

detection? 

Table 1.2 Specific criteria for checking methodological quality of retrieved publications. 

1.2. Conducting 

By applying exclusion criteria and sorting retrieved publications from the newest to the 

oldest, we have chosen 2 publications outlined in Table 1.3 as the latest systematic review 

publications. 
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Publication information Extracted Information 

Title 
A Comprehensive Review of Anomaly Detection in 

Web Logs 

Authors 
M. Majd, P. Najafi, S. A. Alhosseini, F. Cheng and 

C. Meinel 

Name of Journal 

2022 IEEE/ACM International Conference on Big 

Data Computing, Applications and Technologies 

(BDCAT) 

Publication Date 
06-09 December 2022 (date of conference), 13 March 

2023 (added to IEEE Xplore) 

Title 
A Survey of Deep Anomaly Detection for System 

Logs 

Authors X. Zhao, Z. Jiang and J. Ma 

Name of Journal 
2022 International Joint Conference on Neural 

Networks (IJCNN) 

Publication Date 
18-32 July 2022 (date of conference), 30 September 

2022 (added to IEEE Xplore) 

Table 1.3 Latest systematic review publications. 

We used a systematic review protocol to select publications from these. By applying 

methods from the protocol, 49 publications were identified and reduced to 6 publications 

after the application of exclusion criteria. All 6 publications satisfied the specific criteria and 

all of them will be included in our systematic review and meta-analysis. Information for 

every publication is presented in Table 1.4. 
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Publication information Extracted information 

Title 

Anomaly detection on OpenStack logs 

based on an improved robust principal 

component analysis model and its 

projection onto column space 

Authors 
Kalaki, Parisa & Shameli-Sendi, Alireza & 

Abbasi, Behzad 

Name of Journal Software: Practice and Experience 

Publication Date November 2022 

Title 

Design and Evaluation of Unsupervised 

Machine Learning Models for Anomaly 

Detection in Streaming Cybersecurity Logs 

Authors 
Sánchez-Zas, C.; Larriva-Novo, X.; 

Villagrá, V.A.; Rodrigo, M.S.; Moreno, J.I. 

Name of Journal Mathematics 2022 

Publication Date 31 October 2022 

Title 
Utility Analysis about Log Data Anomaly 

Detection Based on Federated Learning 

Authors Shin, T.-H.; Kim, S.-H. 

Name of Journal Appl. Sci. 2023 

Publication Date 1 April 2023 

Title 

 

Semi-supervised and unsupervised 

anomaly detection by mining numerical 

workflow relations from system logs 
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Authors 

Zhang, Bo & Zhang, Hongyu & Le, Van-

Hoang & Moscato, Pablo & Zhang, 

Aozhong 

Name of Journal Automated Software Engineering 

Publication Date December 2022 

Title 

BERT-Log: Anomaly Detection for 

System Logs Based on Pre-trained 

Language Model 

Authors Song Chen & Hai Liao 

Name of Journal Applied Artificial Intelligence 

Publication Date 17 November 2022 

Title 
Learning-Based Anomaly Detection Using 

Log Files with Sequential Relationships 

Authors M. Fält, S. Forsström, Q. He and T. Zhang 

Name of Journal 
2022 6th International Conference on 

System Reliability and Safety (ICSRS) 

Publication Date 

23-25 November 2022 (Date of 

conference), 21 March 2023 (added to 

IEEE Xplore)  

Table 1.4 Selected publications 

1.3. Meta-analysis 

By analyzing six chosen publications, we were able to conduct the following meta-analysis: 

 Anomaly detection methods - Given the frequency at which methods were referenced 

in the publications, 4 out of 6 publications (66.6%) employed supervised learning 

methods, 1 out of 6 publications (16.6%) employed unsupervised learning methods, 

1 out of 6 (16.6%) publications employed semi-supervised learning methods,  5 out 
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of 6 (83.3%) publications employed Deep Learning methods, 2 out of 6 publications 

(33.3%) employed probabilistic methods, 1 out of 6 (16.6%) methods comprised 

clustering methods, and 1 out of 6 publications (16.6%) employed hybrid model. 

 Evaluation measures - Given the regularity with which the evaluation measures were 

used in the published literature, 4 out of 6 (66.6%) publications used recall, 4 out of 

6 (66.6%) publications used precision, 4 out of 6 (66.6%) publications used F1-score, 

3 out of 6 (50%) publications used accuracy, 1 out of 6 (16.6%) publications used 

weighted F1-score, and 1 out of 6 (16.6%) publications used WSSE (Within-Cluster 

Sum of Squares Error). 

 Parameters setting – 2 out of 6 (33.3%) publications explicitly mentioned the used 

search technique for parameters setting, 1 of them employed k-Fold Cross 

Validation, and the other employed Grid Search, 2 out of 6 (33.3%) publications only 

mentioned the split of the dataset on training data and validation data, and the 

remaining 2 out of 6 (33.3%) publications did not mention anything related to the 

search for parameter setting. 

 Baseline methods – 3 out of 6 (50%) publications compared the results of proposed 

methods with the baseline or baseline methods, 3 out of 6 (50%) publications did not 

compare the results with baseline methods; of the publications that employed 

baseline method, one of them (16.6%) uses DeepLog as a baseline method, one of 

them (16.6%) used all the methods mentioned in the paper trained with centralized 

learning as a baseline method, and one of them (16.6%) used Standard Vector 

Machines, LogRobust, A2Log, and HitAnomaly methods as baseline methods. 

 Datasets used – 5 out of 6 (83.3%) publications used labeled datasets, 1 out of 6 

(16.6%) publications used unlabeled datasets, 3 out of 6 (50%) publications used 

publicly available datasets, other half used datasets that are not publicly available, 1 

out of 6 (16.6%) publications used the combination of a real dataset and a synthetic 

dataset, all datasets that are publicly available and that were used were Hadoop 

Distributed File System and Blue Gene/L log datasets, one of the mentioned datasets 

is comprised of logs of Hadoop Distributed File System that was run of Amazon EC2 

Platform. 
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1.4. Summary of the selected publications 

In this section, we provide an overview of the six identified publications: 

1. New methods for anomaly detection in OpenStack log files were investigated in [3], 

along with the systematic review of related work. Since there was no suitable dataset 

of OpenStack logs, the authors made a dataset of 25,000 logs accompanied by the 

injection of three anomalies. The authors evaluated PCA, DeepLog, and variation of 

PCA PRPCA-CS on the generated dataset. Authors improved the anomaly detection 

in OpenStack logs in terms of F1-score, recall, and precision relative to identified 

recent studies that applied PCA and DeepLog algorithm. Furthermore, the running 

time in relation to the amount of log data has been decreased by 30 seconds in 

comparison to the DeepLog approach. 

2. The objective of [4] was to introduce a practical environment that enables the real-

time management of substantial data volumes and that was built upon a scalable 

open-source system. The aim was to introduce a system capable of processing logs 

from heterogenous cybersecurity devices in real-time. This system utilizes similarly 

trained models to detect anomalies in communications. In addition to that, the authors 

developed an unsupervised learning system that can detect anomalies in a set of data 

from different devices in real-time. The developed anomaly detection system is based 

on the development of the thresholding system in conjunction with the clustering 

algorithm selected. Three clustering algorithms were explored, namely K-Means, 

Bisecting K-Means, and GMM. WSSE and Silhouette scores were used to optimize 

the hyperparameters of the model. The results of the experiment highlight the K-

Means as optimal, obtaining better metrics and prediction results close to 99%. 

3. A comparative study of deep learning models trained for anomaly detection with 

centralized learning and of deep learning models trained for anomaly detection with 

federated learning was conducted in [5]. The following deep learning models were 

trained: CNN1D-based log anomaly detection model with convolutional layers and 

LSTM-based log anomaly detection model with LSTM cells. The models were 

trained by the application of federated learning to analyze the applicability of 

federated learning for log anomaly detection. The authors demonstrated that the 

hybrid model combining the two models performs better than the application of a 

single deep learning algorithm, CNN1D, LSTM, in log anomaly detection. 
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4. In [6], authors proposed ADR (an acronym that stands for Anomaly Detection by 

workflow Relations), a novel approach to mining numerical relations from logs and 

using the relations for anomaly detection. Authors highlighted that ADR requires a 

very small size of training data and that it can produce comparable results with the 

state-of-the-art approaches. Furthermore, authors highlighted that for training of 

ADR only logs that are produced when the system is running normally are required. 

ADR was evaluated on log data from the HDFS dataset and BGL dataset in an online 

and offline manner. ADR achieved high precision and recall scores (all greater than 

0.9) for offline anomaly detection and outperformed the state-of-the-art methods. 

5. Authors in [7] proposed BERT-Log, which regards the log sequence as a natural 

language sequence. The authors employed a pre-trained language model to acquire 

semantic representations of both normal and anomalous logs. Subsequently, they 

fine-tuned the BERT model using a fully connected neural network to fine-tune its 

ability to detect anomalies. A new log feature extractor on the BGL dataset was 

proposed by authors to obtain log sequence by sliding window. The new proposed 

method achieved an F1-score of 98.9% with 1% of the training ratio on the BGL 

dataset. As compared to other related works, it had smaller parameters and stronger 

generalization ability. 

6. The work in [8] aimed to examine log sequence anomaly detection and to present a 

method that can compete with state-of-the-art methods. The authors showed how 

self-attention transformer networks compare to LSTM networks in the task of log 

sequence anomaly detection. The key finding was that the self-attention transformer 

model attained a higher recall score compared to the LSTM model, but both models 

achieved an identical precision score, indicating that they were equally good at 

finding the anomalous events. The main conclusion was that the self-attention 

transformer model can achieve a better or similar results to LSTM-based models. 
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2. Anomaly detection 

In the subsequent sections, we will describe the procedure for anomaly detection. 

2.1. Outliers and anomalies 

One of the best definitions of outliers was provided by Hawkins in [9]: “An outlier is an 

observation which deviates so much from the other observations as to arouse suspicions that 

it was generated by a different mechanism.”  

Here are some definitions of outliers from the literature: 

 Outliers can be seen as data points that diverge from the anticipated pattern or 

behavior [10]. 

 A data point that exhibits notable dissimilarity from the rest of the dataset is 

identified as an outlier, as per [11]. 

 An outlier is defined as a data point that is very different from the rest of the data 

based on some measure [12]. 

Considering the previously provided definitions, we will adopt a definition of outliers as 

observations that demonstrate a significant dissimilarity from most of the data, as quantified 

by a particular measure. 

Data is typically generated in most applications by one or multiple data generation processes. 

When the generative process displays unusual behavior, outliers are created as a result [11]. 

In the areas of application of outlier detection techniques, such as credit card fraud, network 

intrusion detection, financial applications, and marketing, the data often follows a normal 

model, with the outliers being identified as departures from the mentioned model [11]. 

It is often a subjective judgment, as to what constitutes a “sufficient” deviation for a point to 

be considered an outlier. In real applications, the data may be embedded in a significant 

amount of noise, and such noise may not be of any interest to the analyst as it is usually the 

significantly interesting deviations that are of interest. The distinction between normal data 

and outliers, as well as noise and anomalies, is regulated by the analyst's specific interests 

and objectives [11]. 

The mentioned can be explained using the Figure 2.1: 
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 The primary patterns or clusters within the data remain the same in both situations. 

 The notable differences exist beyond the primary clusters. 

 In Figure 2.1 (a), a data point designated as “A” appears to display substantial 

dissimilarity from the remaining data points, resulting in its categorization as an 

outlier. 

 When referring to Figure 2.1 (b) the data point labeled as “A” also resides in a 

sparsely populated region of the data as on (a), nevertheless, it is much harder to 

confidently state that it is an outlier. The data point labeled as “A” is more likely a 

noise in the data as it fits a pattern represented by other points that seem to be 

randomly distributed [11]. 

 

Figure 2.1 Comparison between noise and anomalies [11] 

Figure 2.2 illustrates two meanings of outliers. 

The outliers labeled as "Unwanted data" are associated with noise, errors, or undesired data. 

These data points are not of interest to the analyst, and their removal or correction is 

necessary to enhance data quality [10]. The process of deletion or correction results in a 

cleaner dataset that can be effectively utilized by data mining algorithms [10].

 

Figure 2.2 Meaning of outliers based on the analyst's judgment [10] 

The distinction between normal data and weak or strong outliers is illustrated in Error! 

Reference source not found.. Every data point lies on a continuous spectrum from normal 

data to noise [11]. 
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The separation of distinct regions within this spectrum lacks a precise definition and is 

determined in an ad hoc manner, based on application-specific criteria [11]. In unsupervised 

scenarios, noise serves as the semantic threshold differentiating normal data from genuine 

anomalies [11]. 

Commonly, noise is conceptualized as a less severe form of outliers, occasionally failing to 

meet the strict criteria needed to classify a data point as adequately interesting [11].

 

Figure 2.3 The spectrum from normal data to outliers [11] 

Here are some definitions of anomalies from the literature: 

 An anomaly is a pattern that does not conform to past patterns of behavior [13]. 

 Anomalies are patterns in data that do not conform to a well-defined notion of normal 

behavior [11]. 

We will accept the following high-level definitions of outliers and anomalies, based on 

definitions provided in [11]: 

 To define the concept of “outlier,” one can consider it as either an anomaly or noise 

when referring to a data point. 

 The term “anomaly” refers to a unique subset of outliers that holds particular 

significance for an analyst. 

Although we accepted the definitions mentioned above, we must acknowledge that 

determining anomalies in a suitable manner is highly application-dependent, necessitating 

that the analyst possesses a good understanding of the application domain [11]. 

2.2. Outliers and anomalies for time series data 

A data series is an ordered sequence of data points [15]. 
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Now, we will define univariate and multivariate time series based on definitions provided in 

[10]. Here are the definitions: 

 A univariate time series X, denoted as {xt} for t ∈ T, represents a sequential 

collection of real-valued observations, with each observation recorded at a distinct 

time point t from a set T, which belongs to the positive integers Z+. 

 A multivariate time series X, represented as {xt} for t ∈ T, comprises an arranged 

collection of k-dimensional vectors. Each vector is recorded at a particular time point 

t ∈ T, where T is a subset of positive integers Z+, and these vectors contain k real-

valued observations, denoted as xt = (x1t, ..., xkt). 

Here we will deal with both univariate and multivariate time series as log files of the AWS 

load balancer can have both. 

The inclusion of temporal dependencies significantly alters the anomaly detection process, 

even when considering its definition [11].  

Here are the reasons why [11]: 

 A time series consists of a sequence of values often obtained through continuous 

measurement over a duration of time. 

 The values in successive time intervals exhibit either minimal fluctuations or change 

in a gradual manner. 

 In such scenarios, abrupt alterations in the fundamental data records may be seen as 

extraordinary events. 

When temporal dependencies are present, the assumption of temporal continuity becomes 

pivotal in the identification of outliers [11]. Temporal continuity represents the fact that 

patterns within the data typically do not undergo abrupt changes unless abnormal processes 

are in operation [11]. In the realm of time-series data, one anticipates a strong and immediate 

presence of temporal continuity [11]. 

Two different scenarios can arise for temporal data [11]: 

 Sudden change in time series – In such cases, the outlier is characterized as atypical 

as it demonstrates a discontinuity regarding either its latest or extended history. 

Illustrations include abrupt shifts in time-series values in relation to the recent past 

and distinctive subsequence patterns within the time series with regard to its extended 

historical context. 
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 Novelty and variations within multivariate data - In such cases, the data consists of 

independent multivariate points and temporal continuity is considerably less 

prominent in comparison to time series data. 

The example makes it clear that temporal data offers several approaches for defining 

anomalies. 

It's worth emphasizing that while the analysis of temporal data for changes and detection of 

outliers share a close relationship, they are not identical problems [11]. 

In temporal data, change can happen in two ways [11]: 

 The data stream experiences gradual changes in values and trends over time, a 

phenomenon known as concept drift [11]. In such instances, detecting concept drift 

requires thorough analysis over an extended period and often goes unnoticed in many 

scenarios. 

 The data stream's values and patterns undergo sudden shifts, prompting immediate 

suspicion that the fundamental data generation process has fundamentally changed. 

Between the two scenarios, only the second one is applicable for identifying outliers [11]. 

Based on the [10] and [11], we have two types of time series outliers or anomalies: 

 Point or contextual outliers or anomalies – They refer to values that display abnormal 

behavior at specific time instances[10]. This abnormality can be in relation to other 

values within the entire time series (global outlier or anomaly) or its neighboring data 

points (local outlier or anomaly). 

 Subsequence or collective outliers or anomalies - Consecutive values in a time series 

that collectively exhibit unusual behavior when contrasted with other values within 

the same time series (global outlier or anomaly) or with their neighboring data points 

(local outlier or anomaly), even if each individual value might not qualify as a point 

outlier. 

Subsequence or collective outliers or anomalies can be further divided into the following 

[11]: 

 Complete series anomaly - The time series database is used to compare the entire 

time series pattern that is categorized as anomaly. 

 Anomaly-based on subsequences - When dealing with time series data that spans an 

extended duration, it might display regular patterns in shorter intervals. In such cases, 



 

15 

we detect unusual shapes by looking at small sections of the time series and 

identifying deviations from these usual patterns. 

Point outliers can be univariate or multivariate. In Figure 2.4 (on the left), there are two 

instances of univariate point outliers or anomalies represented by O1 and O2 [11]. In Figure 

2.5 (on the right), which consists of a multivariate time series involving three variables, there 

are both single-variable (O3) and multi-variable (O1 and O2) individual point outliers [10].

 

Figure 2.4 Point outliers or anomalies [10] 

Figure 2.5 illustrates an example of univariate (O1 and O2 in Figure 2.5 (left), and O3 in 

Figure 2.5 (right)) and multivariate (O1 and O2 in Figure 2.5 (right)) subsequence outliers 

or anomalies [10]. 

 

Figure 2.5 Subsequence outliers or anomalies [10] 

The difference between local and global outliers is the following, based on [10]: 

 When the detection method utilizes the entire time series as contextual information, 

the detected outliers or anomalies are categorized as global. 

 When the detection method focuses solely on a time window, the outliers it identifies 

are regarded as local, as they exhibit distinct characteristics within that particular 

neighborhood. 
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Some local outliers may appear ordinary when considering all the time series data, but they 

can be seen as unusual when we look only at their nearby context, as shown by O1 in Figure 

2.4 [10]. 

2.3. Anomaly detection methods for time series data 

The outcome of the algorithm for detecting anomalies can be divided into one of two groups, 

based on [11]: 

 Outlier score – A score that quantifies the extent of "outlierness" for every data point 

can be used to sort the data points according to each data point’s likelihood of being 

an outlier. This type of output preserves all the information generated by an algorithm 

but does not define which data points are outliers. 

 Binary label - Some algorithms produce binary labels by applying thresholds to 

outlier scores, with the threshold determined by the statistical distribution of the 

scores. This type of output doesn't retain all the information generated by an 

algorithm but does specify which data points are considered outliers. 

Labels can be used to guide the process of detecting anomalies. Within the realm of time 

series, these labels might be linked to specific time moments, time intervals, or the entire 

time series [11]. In such instances, anomaly detection problem becomes an instance of rare-

class detection problem [11]. In most cases, supervised approaches tend to deliver superior 

performance compared to unsupervised methods due to their capacity to identify 

abnormalities tailored to the specific application. Therefore, the common advice is to 

leverage supervision whenever it is accessible [11]. 

Temporal continuity plays a crucial role in methods for detecting anomalies in time series 

data. This is due to the assumption that time series values are tightly interconnected from 

one time step to the subsequent one, and that temporal patterns don't change suddenly [11]. 

We will only focus on detecting point outliers therefore an explanation of methods used for 

full time series anomaly detection and subsequence-based anomaly detection will not be 

presented. 
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2.3.1. Prediction-based methods 

Temporal outlier detection is most frequently applied to identify deviations at specific time 

points by utilizing regression-based forecasting models. This approach can fulfill either the 

objective of foundational process sudden shifts detection or of noise elimination from the 

core data streams [11]. Outliers based on deviations in time series have a significant 

connection to the process of time series forecasting, as they are recognized by their 

deviations from expected (forecasted or predicted) values [11]. 

Since our dataset is not labeled, as will be described in the section where the technical 

overview of chosen algorithms and dataset will be presented, here is the explanation of how 

prediction can be used for unsupervised outlier detection based on [11]: 

 Outliers are instances where data dependencies deviate from the expected model.  

 A prediction model assists in representing the stated dependencies. 

 Breaking these relationships signifies a departure from the normal model of data and, 

as a result, corresponds to outliers. 

In some cases, the input time series consists of multiple variables that may be correlated, 

rather than being a single-variable time series. When we apply univariate techniques to each 

of these time-dependent variables independently, we disregard the correlation relationships 

between them, resulting in a loss of information. In order to tackle this challenge and 

leverage the extensively developed univariate detection methods, some researchers employ 

a pre-processing strategy on the multivariate time series [10]. This strategy involves 

uncovering a new set of uncorrelated variables that are suitable for applying univariate 

techniques. This is achieved by simplifying the multivariate series into a lower-dimensional 

representation using dimensionality reduction techniques before applying univariate 

detection methods. Since the new series are composed of combinations of the original input 

variables (some dimensionality reduction techniques determine the new set of uncorrelated 

variables by computing linear combinations of the initial variables), the detected outliers 

exhibit multivariate characteristics [10]. 

For multivariable time series, the following methods can be used for anomaly detection 

based on [10]: 

 Anomaly detection methods for univariate time series that are employed individually 

for each variable. 
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 Multivariate time series anomaly detection methods. 

The connections within an individual time series or among multiple series can be utilized for 

prediction purposes [11]. 

Two forms of correlations are employed: 

 Correlations across time - Time-based correlations are commonly established 

through autoregressive modeling and forecasting. Outliers are identified as 

substantial deviations from the anticipated (predicted or forecasted) values [11]. 

 Correlations across series - For instance, when a bird call is detected by one sensor, 

it is likely to be captured by a neighboring sensor as well (time series that often 

exhibit strong correlations). In such situations, one series can often be employed to 

forecast another. Anomalies can be identified when there are differences between 

these anticipated predictions. The concept here is that distinct time series may 

frequently convey similar information and sometimes exhibit lagged correlations 

[11]. 

First, we will explain univariate time series outlier detection methods. Their division is 

illustrated in Figure 2.6. 

 

Figure 2.6 Univariate time series point outlier detection methods [10] 

As per the definition of point outliers, when working with a univariate time series, a point at 

time t can be identified as an outlier if the absolute difference between its observed value 

and the expected value exceeds a predefined threshold τ: |xt − xˆt | > τ [10]. 

Methods for detecting outliers that rely on the concept mentioned earlier are known as 

model-based methods and are widely used in research literature, based on [10].  

The following are their characteristics [10]: 

 Each technique computes the expected value xˆt and threshold τ using unique 

approaches. 

 Each method fits a model to the data. 
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Here's the differentiation between estimation-based and prediction-based methods, based on 

[10]: 

 When xˆt is computed by considering both preceding and subsequent observations to 

xt (encompassing past, present, and future data), it falls within the category of 

estimation model-based methods. 

 If xˆt is determined solely using prior observations to xt (past data), it falls under 

prediction model-based methods. 

The following estimation models are often used [10]: 

 Simple estimation models - Using basic models that rely on fundamental statistics 

like the median or the Median Absolute Deviation (MAD), we calculate the expected 

value xˆt [10]. 

 The approaches that aim to identify data points that would be considered improbable 

under the assumption that a specific model or distribution generated the data. Such 

techniques encompass B-splines, kernel methods, various adaptations of the 

Exponentially Weighted Moving Average (EWMA) approach, Gaussian Mixture 

Models (GMM), a method that presumes a normal distribution in the absence of 

outliers, and a method that models alterations in slopes both before and after time t 

(while assuming minimal slope changes at a particular time point) [10]. 

 Various approaches examining all residuals derived from different models for outlier 

identification. Among the techniques employed are STL decomposition, ARIMA 

models incorporating exogenous factors, linear regression, or Artificial Neural 

Networks [10]. While many of these models are also capable of prediction, in this 

context, the focus is on identifying outliers within the residual dataset using historical 

and future data. After the model is trained, hypothesis testing, such as the ESD test, 

is applied to the residuals to pinpoint outliers [10]. 

 Methods that examine all the differences between observed and predicted values 

obtained from various models to find outliers - Some of the methods used include 

ARIMA models with external inputs, STL decomposition, Artificial Neural 

Networks (ANNs), and linear regression [10]. 

The following prediction models are often used [10]: 
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 Models that remain constant and do not adapt to changing data over time – Deep 

learning models (DeepAnT algorithm that uses fixed Convolutional Neural 

Networks, deep neural networks with LSTM cells) [10].  

 Autoregressive models – ARIMA [10] 

 Adaptable models – One approach involves forecasting the value xˆt by employing 

the median of historical data, while another method relies on an ARIMA model that 

dynamically adapts its parameters using a sliding window as it progresses forward 

[10]. 

Now, we will explain multivariate time series outlier detection methods. Their division is 

also illustrated in Figure 2.6. 

When applying the point outlier definition to a multivariate time series, a point at time t can 

be classified as an outlier if the distance between its actual k-dimensional data point, xt, and 

its expected value, xˆt, surpasses a predefined threshold τ: ||xt − xˆt || > τ [10]. 

Model-based methods are the prevailing methods frequently encountered in the literature 

when dealing with multivariate time series. The definitions of estimation-based and 

prediction-based models are the same, except xt and xˆt are k-dimensional data points. 

The following estimation models are often used [10]: 

 Autoencoders without modeled temporal correlation - Neural networks that prioritize 

learning the most essential aspects of a training dataset are used as a reference for 

what's considered normal. As outliers typically involve atypical characteristics, 

autoencoders struggle to reconstruct them, resulting in significant errors [10]. 

 Autoencoders with modeled temporal correlation – The methods employed consist 

of Variational Autoencoders (VAE) in combination with a Gated Recurrent Unit 

(GRU) [10]. 

The following prediction models are often used [10]: 

 Contextual Hidden Markov Model (CHMM) 

 The DeepAnt algorithm 

Based on [11], the following methods are used for the prediction-based approach (not to 

confuse with the division of model-based methods on evaluation and prediction-based 

methods, prediction based methods in this context mean that the model is fitted and used to 

predict for outlier detection): 
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 Autoregressive models - Very useful for single-variable time series data. Commonly 

employed methods include autoregressive moving average (ARMA) and 

autoregressive integrated moving average (ARIMA) models [11]. 

 Time series regression models - The basic idea is to predict the target time series, y, 

by assuming it has a linear connection with other time series, x [17]. 

 PCA-based techniques with other models - PCA-based methods are typically more 

resilient in the presence of noise and outliers. A set of k uncorrelated time series is 

generated by projecting the d-dimensional values at each timestamp projecting onto 

the leading k eigenvectors. Variance of the remaining (d−k) time series is minimal 

and the resulting time series can be considered as invariable time series, without the 

necessity of forecasting using autoregressive model. Consequently, a single auto-

correlation model can be used for analysis using the larger eigenvectors [11]. 

 Combination of PCA-based models with other models - Combining PCA-based 

models with other models is often more robust when dealing with noise and outliers. 

This is achieved by projecting the d-dimensional values at each timestamp onto the 

top k eigenvectors of the matrix, resulting in a set of k uncorrelated time series. The 

analysis can be carried using a single auto-correlation model on the larger 

eigenvectors [11]. 

When examining techniques employed in complete time series anomaly detection and 

subsequence-based time series anomaly detection, it's important to note that the division 

between these two types of problems is somewhat arbitrary [11]. This similarity arises 

because a significant number of techniques developed for anomaly detection for 

subsequences can also find use in detecting anomalies in the entire time series. This is 

because subsequence anomaly detection typically begins with the extraction of windows 

from the time series, treating these extracted subsequences as complete series for anomaly 

detection [11]. 

2.3.2. Distance-based methods 

Numerous traditional outlier detection techniques rely on the concepts of density and 

proximity. Essentially, these methods identify outliers as data points located in sparsely 

populated regions of the dataset, far from their neighboring points (this is achieved using 

distance measures) [16]. 
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These methods are based on the computation of dissimilarity between pairs of multivariate 

data points or their representations, without the need for model fitting. When a predefined 

threshold τ is established, a point xt is considered an outlier if the dissimilarity measure s(xt, 

xˆt) between the actual k-dimensional point xt and its expected value xˆt exceeds the 

predefined threshold τ [11]. 

The basic form of the distance-based approach (without pruning) can be outlined as follows 

based on [11]: 

 Create overlapping subsequences from time series with a length of p. In a time series 

consisting of n data points, it is possible to generate a total of (n − p + 1) 

subsequences. 

 Compute outlier scores by evaluating the k-nearest neighbor distances from k-nearest 

neighbors of these subsequences, without including overlapping windows in the 

calculation. 

The following similarity or distance functions are employed based on [11]: 

 Euclidean distance 

 Dynamic Time Warping 

 Other similarity functions 

The following are limitations of distance-based methods based on [16]: 

 They face a challenge known as the curse of dimensionality, which makes many 

traditional distance measures ineffective when the dataset has a high number of 

dimensions. The core issue is that in high-dimensional spaces most distance 

measures become compressed resulting in almost identical distances between all 

pairs of data points. 
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3. An introduction to applied methods and the 

dataset 

In the following sections we will present a short introduction to the applied methods and the 

dataset we used. 

3.1. Methods 

We have decided to work with 3 methods: 

 A method we will call “Statistical method”, 

 A method we will call “Probabilistic method”, 

 A deep learning based method. 

The statistical method is the simplest method in terms of implementation complexity and the 

number of parameters. The probabilistic method is a bit more complex than the statistical 

method while the deep learning-based method is the most complex one, based on the 

underlying algorithms and the number of parameters. 

In all three cases, we used a threshold-based mechanism to mark possible anomalies and 

outliers. 

3.1.1. The statistical method 

The idea for the statistical method was to have a method that would “walk” through our time 

series and collect some type of volatility and if a value goes outside the, loosely defined, 

“95% confidence interval” the point would be declared as an outlier. 

For this task we have chosen the leverage statistic. 

High leverage points are data points where the value appears unusual given other values of 

the same variable [19]. 

The expression for the leverage statistic for the unidimensional case is 
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As xi moves further away from arithmetic mean, the leverage statistic hi increases. The value 

of the statistic is always bounded by 1/n and 1.  

The reasons why we have chosen the leverage statistic: 

 An example of contextual anomaly is a rapid increase in the values of a time series 

since it greatly diverges from the most recent time stamps’ values. The important 

insight here is that the latest time records establish the time series' expected value, 

and departures from expected value are considered anomalies [11]. 

 hi increases as xi moves further away from its arithmetic mean. 

 We can modify the threshold value based on the application-specific criteria. 

If at least one predictor value for the observation has an extreme value based on the threshold 

defined by leverage statistic, we classify the observation as anomalous.  

We will compute the leverage statistic: 

 For unidimensional vectors, if a value of the observation is a high leverage value, 

then we classify the observation as anomalous (it is possible to have an observation 

where its values fall well within the range of each predictor's values, except for one 

predictor). 

 For multidimensional vectors as it is possible to have an observation that falls well 

within the range of each predictor's values individually but is anomalous when 

considering the values of the entire set of predictors (no predictor has extreme value, 

but the observation is unusual when all predictor's values are considered). 

The pseudocode for the statistical method for the unidimensional case is shown in Table 3.1. 

Statistical method unidimensional case 

leverage_statistic_values = list() 

for every column in log files columns: 

    for i in range from window_size to number of observations: 
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        leverage statistic = compute leverage statistic for the first window_size values of the 

column 

         add leverage statistic to leverage_statistic_values 

     sort leverage_statistic_values from lowest to biggest value 

     top_10_leverage_statistic_values = leverage_statistic_values last 10 values 

     anomalies_indices = indices of values from top_10_leverage_statistic_values 

Table 3.1 Pseudocode for the statistical method for unidimensional case 

The pseudocode for the statistical method for multidimensional case is shown in Table 3.2. 

Statistical method multidimensional case 

leverage_statistic_values = list() 

for i in range from window_size to number of observations: 

        leverage statistic = compute leverage statistic for the first window_size values of all 

columns 

        add leverage statistic to leverage_statistic_values 

sort leverage_statistic_values from lowest to biggest value 

top_10_leverage_statistic_values = leverage_statistic_values last 10 values 

anomalies_indices = indices of values from top_10_leverage_statistic_values 

Table 3.2 Pseudocode for the statistical method for multidimensional case 

3.1.2. The probabilistic method 

For the probabilistic method, we have chosen the non-seasonal ARIMA model. ARIMA is 

short for Autoregressive Integrated Moving Average. 

We have chosen the non-seasonal ARIMA model because: 

 A seasonal pattern arises when a time series is influenced by seasonal factors, such 

as the time of the year or the day of the week [17]. Seasonality in such cases always 

follows a fixed and identifiable period [17]. Based on the visual inspection of the 

time series, no seasonal pattern was observed. 
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 In a non-seasonal ARIMA model, time stamps are not needed as we are not modeling 

seasonality as it is non-existent. Since our time series does not have a fixed period, 

it is harder to represent a non-periodic time series with a seasonal ARIMA model 

(even if the time series has a fixed period). 

 An ARIMA model is typically not easily interpretable in terms of visible data 

patterns like trends and seasonality. It has the capability to capture a broad range of 

time series patterns [17]. We have not identified trends or seasonal patterns by visual 

inspection of our time series. 

ARIMA is made up of three parts [17]: 

 Autoregressive part (lagged observations are used as inputs) 

 Integrated part (differencing to make series stationary) 

 Moving Average part (lagged errors are used as inputs) 

Autoregressive part explanation: 

 In an autoregression model, the prediction for the variable of interest is determined 

by the linear combination of its past values [17]. 

Differencing part explanation (integrated same as differencing): 

 A stationary time series is one that maintains consistent statistical properties 

regardless of the time of observation [17]. Time series with trends or seasonality are 

non-stationary because these patterns can cause variations in the series at different 

time points [17]. On the other hand, a white noise series is considered stationary 

because its statistical properties remain the same regardless of when it is observed 

[17]. To make a non-stationary time series into a stationary one, we often use 

differencing, which computes the differences between consecutive observations [17]. 

 Transformations such as logarithms can help to stabilize the variance of a time series 

[17]. Differencing can help stabilize the mean of a time series by removing changes 

in the level of a time series and therefore eliminating (or reducing) trend and 

seasonality [17]. 

 Taking the logarithm of time series values can stabilize the time series' variance [17]. 

Differencing can stabilize the mean of a time series by removing level changes, 

which helps mitigate or eliminate trends and seasonality [17]. 

Moving Average part explanation: 
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 Instead of relying on previous values of the forecast variable in a regression, a 

moving average model incorporates past errors in a regression-like manner [17]. 

The ARIMA model is commonly denoted as ARIMA (p, d, q) model, where: 

 p is the order of the autoregressive part [17]. 

 d s the order of the differencing [17]. 

 q is the order of the moving average part [17]. 

Special cases of ARIMA models are presented in Figure 3.1. 

 

Figure 3.1 Special cases of ARIMA models [17] 

We used the ARIMA model to detect anomalies in the following way: 

 Using the model structure, we computed the expectation of the variable. 

 Using the model structure, we computed the standard error. 

 For every data point, if the data point is outside the interval [expectation – 2 * 

standard error, expectation + 2 * standard error], the data point is declared an 

anomaly. 

We did not consider the distribution of predictor values or the distribution of differenced 

predictor values (based on the value of d), i.e., we did not select an appropriate probabilistic 

model for the data (we only know the structure of the model based on the output of ARIMA). 

The interval [expectation – 2 * standard error, expectation + 2 * standard error] is only an 

approximate interval because we assumed that the variables are normally distributed (the 

above interval is obtained for random variables that have a normal distribution and which 

are standardized), without looking at their histograms or using hypothesis tests. 

The method was applied in R as R has an automatic procedure for finding the best possible 

parameters (p, d, and q) and coefficients for the ARIMA model. 

Figure 3.2 illustrates the general forecasting process using an ARIMA model. The automated 

algorithm that we will use is shown in Figure 3.3. Some of the algorithms’ steps will be 

explained in later chapters. The Hyndman-Khandakar algorithm only deals with steps 3 to 5 

described in Figure 3.2 [17]. 



 

28 

 

Figure 3.2 General forecasting process using an ARIMA model [17].  

The Hyndman-Khandakar algorithm is shown in Figure 3.3. 
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Figure 3.3 Hyndman-Khandakar algorithm for automatic ARIMA modeling [17]. 

Table 3.3 illustrates pseudocode for the probabilistic method. 

The probabilistic method 

ARIMA model = output of Hyndman-Khandakar algorithm for automatic ARIMA 

modelling 

expectation = expectation of a variable based on ARIMA model 

standard error = standard error of variable based on ARIMA model 

anomalies indices = list() 

for every value of time series: 

    if absolute value (value) > expectation + 2 * standard error: 

        add the index of the value to the list of anomalies indices 

Table 3.3 Pseudocode for probabilistic method 
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3.1.3. The autoencoder method 

For the deep learning-based method, we have chosen an autoencoder neural network 

architecture with LSTM cells. Here are the reasons why: 

 Based on [10], they are the most mentioned estimation models. 

 Autoencoders are a special type of unsupervised neural network that learns during 

training to effectively compress input data and to reconstruct the data from the 

compressed representation so that the reconstructed data is as similar as possible to 

the original data. Autoencoders reduce the dimensionality of the data by learning to 

ignore the noise contained in the data. As mentioned in [11], in practical scenarios 

data often contains a considerable amount of noise that might not be relevant to the 

analyst's objectives. Therefore, the neural network can eliminate the noise and can 

leave only the deviations that are of interest to the analyst. 

 Autoencoder learns to effectively compress the data and to reconstruct the data from 

the compressed representation. If the autoencoder predominantly (anomalies belong 

to rare class) learns to compress the data that are generated by data generating process 

that performs normally (data has a normal model), then the autoencoder will not 

reconstruct the anomalies effectively, i.e., reconstruction error will be significantly 

bigger than for normal data points. 

The architecture of the autoencoder we used is presented in Figure 3.4. 
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Figure 3.4 Autoencoder architecture used. 

We did not know how complex the problem is in advance so we used cells with a higher 

number of parameters (cell type will be updated during training). 

Table 3.4 illustrates pseudocode for the autoencoder method.  

The autoencoder method 

train the neural network and chose the best model based on validation  

find residuals 

use residuals with a pre-defined threshold to mark possible anomalies 

Table 3.4 Pseudocode for the autoencoder method 

3.2. Dataset 

The dataset we have obtained from an ALB from a private company consists of the following 

7 files: 

 alb-logs-20230503.csv 

 alb-logs-20230504.csv 

 alb-logs-20230505.csv 

 alb-logs-20230506.csv 
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 alb-logs-20230507.csv 

 alb-logs-20230508.csv 

 alb-logs-20230509.csv 

The mentioned Application Load Balancer balances traffic for only one application. 

A load balancer functions as the primary point of contact for clients [20]. Its role is to 

distribute incoming application traffic across numerous targets, like EC2 instances, situated 

in different Availability Zones [20]. 

The basic components of the AWS Application Load Balancer are shown in Figure 3.5. 

 

Figure 3.5 Basic components of AWS Application Load Balancer [20] 

Here is the description of all basic components of the AWS Application Load Balancer based 

on [20]: 

 A listener is responsible for inspecting connection requests from clients, utilizing the 

protocol and port settings that are specified [20]. The load balancer's routing of 

requests to its registered targets is determined by the rules that are established for a 

listener [20]. Each rule comprises a priority, one or more actions, and one or more 

conditions [20]. Actions associated with a rule are executed when the rule’s 

conditions are met [20]. 

 Each target group routes requests to one or more registered targets, such as EC2 

instances, using the protocol and port number that you specify. You can register a 

target with multiple target groups. You can configure health checks on a per-target 

group basis. Health checks are performed on all targets registered to a target group 

that is specified in a listener rule for your load balancer. 
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 Each target group directs requests to one or more registered targets [20]. It is possible 

to register a target with multiple target groups [20]. Health checks can be configured 

separately for each target group [20]. These health checks are conducted on all targets 

that belong to a specific target group defined in a listener rule for the load balancer 

[20]. 

Contents of every file were saved in a unique pandas data frame and afterward, all data 

frames were concatenated as a single data frame. 

Thus, we have obtained a dataset, that without pre-processing, has: 

 2577066 observations 

 28 features 

Import timestamps in the dataset are: 

 The first timestamp is 2023-05-03 23:55:00.936341 

 The last timestamp is 2023-05-09 23:55:00.496609 

The dataset is not labeled, since labeling is a daunting process requiring more resources than 

we had, and therefore we do not have a domain expert’s confirmation on which observations 

are anomalies, and which are not. 

Columns of the dataset, along with their descriptions, are shown in Table 3.5.  
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Field Description 

type Connection or request type. 

time 
Timestamp when the response to the client 

was generated by the load balancer. 

elb Load balancer resource ID. 

client:port Requesting client’s IP address and port. 

target:port 
Target’s IP address and port. Target is a 

machine the processed the request. 

request_processing_time 

The time taken from request received to 

request sent by the load balancer (in 

seconds, with millisecond precision). 

target_processing_time 

The time from request sent by the load 

balancer to target until target started 

sending response headers (in seconds, with 

millisecond precision). 

response_processing_time 

The time from load balancer receiving 

response header to sending response to the 

client, including queuing and connection 

time (in seconds, with millisecond 

precision). 

elb_status_code Load balancer response’s status code. 

target_status_code Target’s response status code. 

received_bytes Client’s request size in bytes. 

sent_bytes The response's byte size sent to the client. 

request Client’s request. 
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user_agent Client’s user agent. 

ssl_cipher The encryption cipher used for SSL. 

ssl_protocol The SSL communication protocol. 

target_group_arn 
The ARN for the target group in Amazon 

Resource Name format. 

trace_id X-Amzn-Trace-Id header’s content. 

domain_name 
The client's SNI domain during the TLS 

handshake. 

chosen_cert_arn The certificate's ARN sent to the client. 

matched_rule_priority The matched request's rule priority value. 

request_creation_time 
Timestamp when client’s request was 

received by the load balancer. 

actions_executed 
The steps performed when handling the 

request. 

redirect_url 
The URL of the redirect destination in the 

HTTP response's location header. 

error_reason The error code indicating the reason. 

target:port_list 
A list of target IP addresses and ports used 

for processing this request. 

target_status_code_list 
A list of status codes from target 

responses. 

classification Desync mitigation classification. 

classification_reason The reason code for classification. 

Table 3.5 Columns in the log files of AWS ALBs and their description [21] 
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4. The experimental part 

In the following sections we will describe the experimental part. 

4.1. Anomalies for log files of AWS load balancer 

First, we have to define anomalies for the log files of the AWS load balancer. 

4.1.1. Anomalies for the statistical method 

We will use two variants of the statistical method: 

 Variant for the unidimensional case 

 Variant for the multidimensional case 

Anomaly for the unidimensional case is defined as follows: 

 If any of the predictor’s values leverage statistic is above the predefined threshold 

for that predictor, the observation is defined as an anomalous observation. 

Anomaly for the multidimensional case is defined as follows: 

 If the leverage statistic for multidimensional observation is above the predefined 

threshold, the observation is defined as anomalous observation. 

4.1.2. Anomalies for the probabilistic method 

The probabilistic method was trained only for single predictors. 

Anomalies for the probabilistic method are defined as follows: 

 If the predictors’ value of the observation is outside the predefined interval, the 

observation is defined as anomalous observation. 

4.1.3. Anomalies for the autoencoder method 

Anomalies for the autoencoder are defined as follows: 

 If the residual of the observation is higher than the predefined threshold, the 

observation is defined as anomalous observation. 
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4.2. Data preparation 

Before concatenating data frames, we did the following: 

 alb-logs-20230503 data frame – Drop column classification_reason as it had 5 values 

that were not missing values, and all of them had value “-”; drop zero variance 

columns as they do not contain information; we are left with 25 columns. 

 alb-logs-20230504 data frame - Drop column classification_reason as it had 5 values 

that were not missing values, and all of them had value “-”; drop zero variance 

columns as they do not contain information; we are left with 25 columns. 

 alb-logs-20230505 data frame - Drop column classification_reason as it had 5 values 

that were not missing values, and all of them had value “-”; drop zero variance 

columns as they do not contain information; we are left with 26 columns. 

 alb-logs-20230506 data frame - Drop zero variance columns as they do not contain 

information; we are left with 25 columns. 

 alb-logs-20230507 data frame - Drop zero variance columns as they do not contain 

information; we are left with 25 columns. 

 alb-logs-20230508 data frame - Drop zero variance columns as they do not contain 

information; we are left with 25 columns. 

 alb-logs-20230509 data frame - Drop column classification_reason as it had 5 values 

that were not missing values, and all of them had value “-”; drop zero variance 

columns as they do not contain information; we are left with 28 columns. 

After that, the data frames were concatenated into a single data frame. 

Based on the meeting with the domain expert, basic requirements on useful observation 

windows were agreed upon. The reason for this was the following: 

 Size of the data frame when the full set of observations is taken. 

 Our constraints with computational power. 

We have decided to take the first 100,000 observations. 

After that, we’ve dropped the following columns: 

 elb as variance = 0 for values that are not nan 

 classification as variance = 0 for values that are not nan when we exclude the value 

"Ambiguous". 
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Additionally, we dropped the following columns: 

 client_port 

 target_port 

 ssl_protocol 

 trace_id 

 chosen_cert_arn 

 matched_rule_priority 

 target_port_list 

 target_status_code_list 

 request_creation_time 

We are well-aware that these features would be useful in anomaly detection but with the 

resources we had, significant increase in complexity of our research was not possible. 

However, we are hoping we will continue this research with some of these variables included 

in our future methods. 

Every row of the column request was disassembled into the following parts to reduce the 

cardinality of the column: 

1. HTTP method 

2. protocol 

3. host 

4. port 

5. URI 

6. HTTP version 

After that, rows were reordered by column time. 

After we applied everything mentioned above, we were left with the following columns and 

their data types: 

 type – data type is object 

 time – data type is datetime64[ns] 

 request_processing_time – data type is float64, we will change data type to float16 

 target_processing_time – data type is float64, we will change data type to float16 

 response_processing_time – data type is float64, we will change data type to float16 

 elb_status_code – data type is int64, we will change data type to uint16 
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 target_status_code – data type is object 

 received_bytes – data type is int64, we will change data type to uint16 

 sent_bytes – data type is int64, we will change data type to uint16 

 request – data type is object 

 user_agent – data type is object 

 ssl_cipher – data type is object 

 target_group_arn – data type is object 

 domain_name – data type is object 

 actions_executed – data type is object 

 redirect_url – data type is object 

The last step was to encode categorical features as the statistical method, probabilistic 

method, and autoencoder expect input that is numerical. 

Here is the cardinality of columns that were encoded: 

 type – cardinality is 3 

 elb_status_code – cardinality is 7 

 target_status_code – cardinality is 6 

 request – cardinality is 47477 

 user_agent – cardinality is 247 

 ssl_cipher – cardinality is 2 

 target_group_arn – cardinality is 3 

 domain_name – cardinality is 3 

 actions_executed – cardinality is 2 

 redirect_url – cardinality is 3 

For encoding, we have chosen one hot encoding. 

4.3. The training phase 

In the following sections we will describe the training approach if used. 
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4.3.1. The statistical method 

Statistical method was used for detecting anomalies only for the following columns: 

 request_processing_time 

 target_processing_time 

 response_processing_time 

 received_bytes 

 sent_bytes 

 number of requests 

For the statistical method, we did the following: 

 unidimensional case – Method “walks” through values of all predictors separately 

and flags anomalous values (belonging to observations) whose leverage statistic is 

higher than the pre-defined threshold. 

 multidimensional case – Method “walks” through observations and flags anomalous 

observations whose leverage statistic is higher than the defined threshold. 

We could have played with the window size as the parameter for our statistical method but 

have decided not to do so due to time constraints. We have chosen just one window size and 

no training phase was employed in this case. 

4.3.2. The probabilistic method 

The probabilistic method was used for detecting anomalies only for the following columns: 

 request_processing_time 

 response_processing_time 

 target_processing_time 

 received_bytes 

 sent_bytes 

The training procedure for ARIMA used The Hyndman-Khandakar algorithm shown in 

Figure 3.3. We used the implementation of the mentioned algorithm that is implemented as 

function auto.arima from the forecast package in R. 

We have observed the following challenges with the probabilistic method: 

 auto.arima can only accept equally-spaced time periods, 
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 time series we have do not have equally-spaced time periods. 

Thus, we’ve tried to set the period in the following way: 

1. We found the greatest common divisor of all differences between timestamps. 

2. We expressed every timestamp as a multiple of the greatest common divisor. 

Period length was 0.000244140625 milliseconds. The total number of timestamps after 

setting a period would have been 2123365634282, which is too large, and the data frame 

would not fit in available RAM. 

After that, we did the following: 

1. The first and last timestamp will be fixed. 

2. The period will be (difference between the first and the last timestamp) / (number of 

timestamps - 1) 

The period is now 201.1589979519837 milliseconds. We used the timestamps we made that 

way for the statistical method, although dates are not needed for that method. 

We are quite aware that this approach is a heuristic and might deviate from common 

practices, but we wanted to see if a bit of a fresh approach might result in a good method. 

4.3.3. The autoencoder method 

We used the following columns for the autoencoder: 

 time 

 request_processing_time 

 target_processing_time 

 response_processing_time 

 received_bytes 

 sent_bytes 

 type – one hot encoded 

 elb_status_code – one hot encoded 

 target_status_code – one hot encoded 

 request – one hot encoded 

 user_agent – one hot encoded 

 ssl_cipher – one hot encoded 
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 target_group_arn – one hot encoded 

 domain_name – one hot encoded 

 actions_executed – one hot encoded 

 redirect_url – one hot encoded 

First, we had to generate datasets for training. The process of generating datasets is shown 

in Figure 4.1. 

 

Figure 4.1 Making attribute-value table from time series values [2] 

We applied a window size of 4. Since we have a multivariate time series, the window size 

of 4 is applied to every column so that for every column we have an attribute-value table as 

in Figure 4.1. 

After that, we scaled the data and then we split the dataset into the training dataset and the 

test dataset. 

We used the following hyperparameters for training: 

 epochs = 100 

 batch_size = 32 

 windows_size = 4 

 min_delta for early stopping criterion = 10-2 

The optimizer that we used was adam and the loss function was the mean squared error.  

For the training, we did the following: 
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 We used the early stopping criterion that stops training if the difference between the 

mean squared error for the current epoch and the previous epoch is less than or equal 

to 10-2. 

 We used a checkpoint that saves the model that has the lowest validation mean 

squared error. 

 We shuffled the vectors before training to remove the order in the values of the 

predictors if the order exists. 

4.4. Results 

In the following sections we will describe the results of the methods we used. 

4.4.1. The statistical method 

As mentioned earlier, we worked with only one window size (n=50) due to time constraints.  

Histograms of the obtained leverage values for all variables used with the statistical method 

are shown in Figure 4.2, Figure 4.3, Figure 4.4, Figure 4.5, Figure 4.6, and Figure 4.7. 

 

Figure 4.2 request_processing_time leverage statistic values 
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Figure 4.3 target_processing_time leverage statistic values 

 

Figure 4.4 response_processing_time leverage statistic values 
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Figure 4.5 received_bytes leverage statistic values 

 

Figure 4.6 sent_bytes leverage statistic values 
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Figure 4.7 number of requests leverage statistic values 

Results for the statistical method in the unidimensional case, for the variable 

request_processing_time: 

 10 highest leverage statistic values relate to 10 distinct observations. Based upon 

visual inspection of the 10 observations flagged as anomalous, all of them are spikes 

and we would mark them as true anomalies. All observations flagged as anomalous, 

i.e., all spikes, are the highest spikes on the time series plot (all other spikes have the 

same or smaller values). 

Results for the statistical method in the unidimensional case, for the variable 

target_processing_time: 

 10 highest leverage statistic values relate to 10 distinct observations. Based upon 

visual inspection of the 10 observations flagged as anomalous, all of them are spikes 

and we would mark them as true anomalies. All observations flagged as anomalous, 

i.e., all spikes, are the highest spikes on the time series plot (all other spikes have the 

same or smaller values). 

Results for the statistical method in the unidimensional case, for the variable 

response_processing_time: 
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 10 highest leverage statistic values relate to 170 distinct observations. Based upon 

visual inspection of the 10 chosen observations (among the 170 distinct observations) 

flagged as anomalous, all of them are spikes and we would mark them as true 

anomalies. All observations flagged as anomalous, i.e., all spikes, are the highest 

spikes on the time series plot (all other spikes have the same or smaller values). 

Results for the statistical method in the unidimensional case, for the variable received_bytes: 

 10 highest leverage statistic values relate to 10 distinct observations. Based upon 

visual inspection of the 10 observations flagged as anomalous, all of them are spikes 

and we would mark them as true anomalies. All observations flagged as anomalous, 

i.e., all spikes, are the highest spikes on the time series plot (all other spikes have the 

same or smaller values). 

Results for the statistical method in the unidimensional case, for the variable sent_bytes: 

 10 highest leverage statistic values relate to 10 distinct observations. Based upon 

visual inspection of the 10 observations flagged as anomalous, all of them are spikes 

and we would mark them as true anomalies. All observations flagged as anomalous, 

i.e., all spikes, are the highest spikes on the time series plot (all other spikes have the 

same or smaller values). 

Results for the statistical method in the unidimensional case, for the variable 

number_of_requests: 

 10 highest leverage statistic values relate to 10 distinct observations. Based upon 

visual inspection of the 10 observations flagged as anomalous, all of them are spikes 

and we would mark them as true anomalies. All observations flagged as anomalous, 

i.e., all spikes, are the highest spikes on the time series plot (all other spikes have the 

same or smaller values). 

Results for statistical method in the multidimensional case: 

 10 highest leverage statistic values relate to 10 distinct observations. Based upon 

visual inspection of the 10 observations flagged as anomalous, all of them are spikes 

and we would mark them as true anomalies. 

The statistical method worked well for the top leverage values which is great since we could 

use it in future as the baseline method. Especially since the computational complexity is low 

and we can raise an alarm on anomalies without looking at future values. 



 

48 

 

4.4.2. The probabilistic method 

The probabilistic method for request_processing_time resulted in: 

 ARIMA(0, 0, 0) with constant 4 * 10-4. 

 Our model flagged 0 observations as anomalies. 

 Based on Figure 4.8, there are visible spikes 

 We conclude that either the assumption about the interval is wrong or the model is 

not working properly for this time series. 

 

 

Figure 4.8 request_processing_time plot 

The probabilistic method for response_processing_time time resulted in: 

 ARIMA(5, 1, 0). 

 Our method flagged 0 observations as anomalies. 

 Based on Figure 4.9, there are visible spikes. 

 We conclude that either the assumption about the interval is wrong or the model is 

not working properly for this time series. 
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Figure 4.9 response_processing_time differenced one time plot 

The probabilistic method for target_processing_time time resulted in: 

 ARIMA(1, 1, 0) with drift. 

 Our model flagged 4366 observations as anomalies, as shown in Figure 4.8. 

 Based on Figure 4.8, almost all real spikes are flagged as anomalies. 

 Based on Figure 4.8, some values that are not spikes are also flagged as anomalies. 

 

 

Figure 4.8 target_processing_time anomalies plot 
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The probabilistic method for received_bytes time resulted in: 

 ARIMA(0, 1, 1). 

 Our flagged 86763 observations as anomalies, as shown in Figure 4.10. 

 Based on Figure 4.10, almost all spikes are flagged as anomalies. 

 Based on the number of observations that are flagged as anomalies and based on 

Figure 4.10, a lot of values that are not spikes are also flagged as anomalies. That is, 

we get a lot of false positives. 

 

 

Figure 4.10 received_bytes anomalies plot 

The probabilistic method for sent_bytes time resulted in: 

 ARIMA(5, 1, 0). 

 Our method flagged 8 observations as anomalies, as shown in Figure 4.9. 

 Based on the number of observations flagged as anomalies and based on Figure 4.9, 

only significant spikes were flagged as anomalies. 
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Figure 4.9 sent_bytes anomalies plot 

 

It is interesting to notice that our approach with the probabilistic method resulted in a wide 

range of results: from 0 findings to a significant number of findings. It could be that our 

method assumptions were completely wrong but also that the ARIMA model works on some 

time series and for others it is not suitable, as is already well-known in the literature and, to 

be honest, expected. 

We also made some changes to the time series time values (x’s) and we are aware that this 

means that the ARIMA model obtained this way might not be appropriate for other time 

series or new periods of activity of the same time series. 

Additionally, the threshold of 2 * standard error is based on normality and should be explored 

with a wider range of values in future research. 

4.4.3. The autoencoder method 

For the training and validation of the autoencoder, we only used the first 200,000 

observations (before sliding the window through data) since the computational resources we 
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used were budget constrained. From the technical perspective, we were renting an NVIDIA 

A100 Tensor Core GPU for the training and validation processes. 

Figure 4.10 shows the output of training and validation mean squared error for epochs while 

Figure 4.11 shows a plot of training and validation mean squared error for epochs. From the 

figures mentioned, we can see that six epochs were used. 

From Figure 4.10, we can also see that: 

 As the number of epochs increases, the training mean squared error decreases 

monotonically. 

 As the number of epochs increases, validation mean squared error decreases 

monotonically. 

We believe that overfitting did not happen based on the following definition from [19]: 

 When a method produces a low training mean squared error and a high validation 

mean squared error, it is referred to as overfitting the data [19]. 

 Our method achieves a small training mean squared error and a small test mean 

squared error. 

It is worth noting that, whether or not overfitting has happened, we typically anticipate the 

training mean squared error (MSE) to be lower than the test MSE [19]. This is because most 

statistical learning methods aim to minimize the training MSE, either directly or indirectly 

[19]. 

Some additional comments based on Figure 4.10 (from [19]): 

 A monotone decrease in the training mean squared errors and a U-shape in validation 

mean squared errors is observed as the flexibility of the statistical learning method 

increases. This is a fundamental aspect of statistical learning, applicable regardless 

of the dataset or the specific statistical method used [19]. 

 We have not observed a U-shape in the validation mean squared error. 

The mean squared error of the best model we obtained was 0.9992541670799255 on 

validation data. 
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Figure 4.10 Training and validation mean squared errors for epochs 

 

Figure 4.11 Plot of training and validation mean squared error for epochs 

Figure 4.12 shows the histogram of residuals. Imposing a threshold on residuals is a 

challenging task but we need to start with something. Thus, based on Figure 4.12, a good 

starting point seems to be value 6 (all points that have residual higher than 6). 
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Figure 4.12 Histogram of residuals values 

Results when 6 is used as the threshold: 

 Our method flagged 1188 windows as anomalies. 

Results when 7 is used as the threshold: 

 Our method flagged 42 windows as anomalies. 

Results when 8 is used as the threshold: 

 Our method flagged 9 windows as anomalies. 

By increasing the number used as the threshold less windows were marked as outliers and 

thus, we had more reason to believe these are anomalies. 

If a window is flagged as anomalous, all observations that belong to that window will be 

considered as anomalous. If there is a value in the window that can be identified as a spike 

on the plot, we will accept that window as being anomalous. Based on the interpretation of 

the results and based on the visual inspection of each time series, the autoencoder method 

with the threshold value equal to 7 flagged 9 windows correctly as anomalous, of 42 

windows flagged in total.  
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Plots used for visual inspection can be seen in Figure 4.13, Figure 4.14, Figure 4.15, Figure 

4.16, and Figure 4.17. 

 

Figure 4.13 Received_bytes variable flagged observations 

 

Figure 4.14 Request_processing_time variable flagged observations 
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Figure 4.15 Response_processing_time flagged observations 

 

Figure 4.16 Sent_bytes flagged observation 
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Figure 4.17 target_processing_time flagged observations 

4.4.4. Answers to research questions 

Since we have not found publications that directly deal with the detection of anomalies in 

AWS load balancer logs, we cannot answer research questions RQ1-RQ6 with more than 

the fact that such research is yet to be published. Regardless of that, these research questions 

have guided us through our own research and have proved extremely valuable in defining 

our approach to the subject and the research question RQ7. 

Although this thesis is not meant to server as a scientific breakthrough in the subject, we 

think that it can serve on its own as an introductory example on how to answer the research 

question RQ7, i.e., by utilizing a systematic review of the literature and devising methods 

that can be applied within the given budget restraints. This should not be the end of course; 

other methods could have been applied and we have no doubt that they will be in future 

research on the subject. 

 

 



 

58 

Conclusions 

The result of the systematic literature review described in Chapter 1 is the absence of 

publications that directly deal with the detection of anomalies in AWS load balancer logs 

and the absence of a benchmark dataset that would be used for the evaluation of existing and 

new methods. Therefore, there exists a gap in the literature that needs to be completed with 

a publication that will extensively evaluate the collection of chosen methods on the 

benchmark dataset, based on a systematic literature review encompassing the domains of 

time series outlier and anomaly detection, as well as log file anomaly and outlier detection. 

 By systematically reviewing the literature in the fields of anomaly detection, anomaly 

identification in time series data, and both anomaly and outlier detection within log files, we 

observed the need to define a baseline method that will be highly interpretable because the 

existing methods are based on probabilistic and deep learning methods that have many 

parameters and are, therefore, often uninterpretable. 

By conducting the experimental part, we saw a need for domain expertise in data 

preprocessing, defining anomalies, and setting threshold values for all models, an act that 

would save a significant amount of time. 

Although we believe everyone should give preference to supervised methods, if possible, we 

used unsupervised methods because our data set was not labeled. The above points out to 

the need for a labeled dataset that will be labeled by different domain experts, whose 

decisions will be agreed into a single decision. 

By interpreting the results of the statistical method, we can conclude that something as 

simple as the method we’ve applied is a good choice for the baseline method and probably 

the first thing that should be applied for a proof-of-concept or a minimum viable product in 

industry. 

The probabilistic method had variable results, but many prerequisites for ARIMA models 

were not thoroughly checked and thus the method we have presented should be taken as a 

heuristic at its best. 

The autoencoder method had a lot of false positives and based on our experience with the 

computational complexity and requirements and the overall interpretability of autoencoders 

we would not recommend it as the first step in applications. The results could have been 
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better with more time invested into the autoencoder architecture and with more expertise in 

the subject itself, but it is not probable that such an investment is feasible for everyone in 

today’s world. The shortage of AI engineers is still quite observable in many areas of the 

world. 

Finding the appropriate threshold is hard and we should have some prior knowledge about 

the expected number of anomalies. On the other hand, as an exploratory technique (i.e. 

without raising alarms for current anomalies) or a post-mortem technique the thresholds can 

be varied and fine-tuned over time. 

We have found that the visual introspection of potential anomalies should be based on some 

ranking to make it easier for users to mark findings as anomalies or just outliers. Otherwise, 

it is quite a tedious job as we can confirm. 

The aim of this thesis was to lay a foundation for systematic literature review and to 

experiment with a personally collected dataset, i.e., to check the possibilities of certain 

computer methods in detecting anomalies for metrics from AWS ALB logs. Unfortunately, 

we cannot share the data we collected publicly but at least we believe we were able to present 

an introduction to the subject and open a path to future research and applications. 
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