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1 Introduction 

In the ocean, waves are visible during any time of a day. A wave is distrubance on the surface 

of the water, which is caused by the wind. Sometimes, the waves are of higher amplitude, 

sometimes they are barely noticable.  

In this thesis, we will derive equations of motion for surface waves. Each wave is best 

described by its amplitude, wavenumber and frequency. Amplitude of a wave is its maximum 

displacement from the equilibrium state. Frequency expresses the number of cycles of the 

repetitive waveform per second. Wavenumber is equal to the true frequency divided by the 

speed of the wave, and thus equal to the number of waves in a unit distance. Each wave 

considered here is linear, which means that it has a small amplitude in comparison to its 

wavelength.  

Some of the ocean properties are ignored, such as viscosity, as it is not crucial for the 

phenomena which will be described. The ocean is considered continuous and all equations are 

ideal hydrodynamic equations. The starting point will be the two postulates. First postulate 

states  that any wave can be described by the equation 𝜂 = 𝐴𝑐𝑜𝑠(𝑘𝑥 − 𝜔𝑡), while the second 

postulate allows us to add as many waves as we want, under the condition that the postulate 1 

is satisfied. 

In solving this linear problem, we will use many approximations and boundary conditions to 

simplify the problem as much as possible. In some way, we will make a full circle : starting 

with postulates that give us the general form of velocity components and frequency, and ending 

up with the solutions of the same form. All materials that were used in this thesis are listed 

under literature. 

https://www.britannica.com/science/wave-physics


Antea Copić: Ocean surface waves: linear theory 

 

2 

2 Basic wave postulates 

In order to study ocean waves, one must first define a coordinate system. The main axis of 

focus is 𝑧-axis, as it is used to describe the depth of the ocean. Depth of 𝑧 = 0 equals the 

ocean surface at steady state, while 𝑧 = −𝐻 equals the ocean bottom. In this system, 𝑥-axis 

and 𝑦-axis are both perpendicular to each other and to 𝑧-axis. Surface of the ocean is 

described as 𝑧 = 𝜂(𝑥, 𝑦, 𝑧, 𝑡). 

 

Figure 2-1:Ocean surface and a basic wave propagating. Blue line is the surface disturbance. 

Direction of positive z-axis is up, while the direction of psoitive x-axis is to the right. Ocean bottom is 

in this case considered flat. H is the depth of the ocean. 

There are two postulates which are used to define basic waves. The first is: 

Postulate 1. 

If |𝐴|𝑘 ≪ 1, then the equation: 

𝜂 = 𝐴𝑐𝑜𝑠(𝑘𝑥 − 𝜔𝑡), (2.1) 

describes a single, basic wave moving in the 𝑥-direction. In this equation, 𝐴 is the amplitude of 

the wave, 𝑘 is the wavenumber and 𝜔 is the frequency. All these values are constant. 

Relationship between 𝜔 and 𝑘 is given by dispersion relation: 

𝜔 = √𝑔𝑘𝑡𝑎𝑛ℎ(𝑘𝐻). (2.2) 

Here, 𝑔 = 9.8
𝑚

𝑠2 is the gravitational constant and the hyperbolic tangent function is defined as: 

𝑡𝑎𝑛ℎ(𝑘𝐻) =
𝑒𝑘𝐻 − 𝑒−𝑘𝐻

𝑒𝑘𝐻 + 𝑒−𝑘𝐻
. (2.3) 
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The second postulate is: 

Postulate 2. 

If |𝐴|𝑘 ≪ 1, then we can add as many waves as possible, if Postulate 1 is satisfied. 

One example of this motion is: 

𝜂 = 𝐴1 𝑐𝑜𝑠(𝑘1𝑥 − 𝜔1𝑡) + 𝐴2 𝑐𝑜𝑠(𝑘2𝑥 − 𝜔2𝑡), (2.4) 

under the condition that (𝑘1, ω1) and (𝑘2, ω2) satisfy the following equations: 

𝜔1 = √𝑔𝑘1 𝑡𝑎𝑛ℎ(𝑘1𝐻)  ,  𝜔2 = √𝑔𝑘2 𝑡𝑎𝑛ℎ(𝑘2𝐻). (2.5) 

These two postulates will be our starting points. Other important relations between the constants 

are: 

𝜆 =
2𝜋

|𝑘|
, (2.6) 

where λ is the wavelength. Equation that gives the period of the wave is: 

𝑇 =
2𝜋

𝜔
. (2.7) 

The phase speed 𝑐 of the wave is given by: 

𝑐 =
𝜔

𝑘
. (2.8) 

 

 

Figure 2-2:Blue curve represents a wave propagating. In this case, positive direction of z-axis is up, 

and positive direction of x-axis is to the right. The wave height is twice the wave amplitude. 

Wavelength is the distacne between two crests troughs or any two points of the same phase on the 

wave.  
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3 Deep water and shallow water equations 

In both postulates, we mentioned the restriction 𝐴|𝑘| ≪ 1. This is an important restriction. It 

states that the wave height must be small compared to the wavelength. Small amplitude 𝐴 means 

that we are considering linear waves. Linear theory cannot explain energy transfer between 

waves or wave breaking.  

Equations (2.1) and (2.2) have physically incomplete description. To complete the 

description, we must define how the velocity of the fluid is connected with location and time. 

Velocity of the fluid is a vector field, depending on variables (𝑥, 𝑦, 𝑧, 𝑡). It can be written as: 

𝑣(𝑥, 𝑦, 𝑧, 𝑡) = (𝑢(𝑥, 𝑦, 𝑧, 𝑡), 𝑣(𝑥, 𝑦, 𝑧, 𝑡), 𝑤(𝑥, 𝑦, 𝑧, 𝑡)). (3.1) 

For the wave described by equations (2.1) and (2.2), 𝑣 =  0. The 𝑥-componet and 𝑧-component 

of velocity are: 

𝑢 = 𝐴𝜔
𝑐𝑜𝑠ℎ(𝑘(𝑧 + 𝐻))

𝑠𝑖𝑛ℎ(𝑘𝐻)
𝑐𝑜𝑠(𝑘𝑥 − 𝜔𝑡), (3.2) 

𝑤 = 𝐴𝜔
𝑠𝑖𝑛ℎ(𝜅(𝑧 + 𝐻))

𝑠𝑖𝑛ℎ(𝑘𝐻)
𝑠𝑖𝑛(𝑘𝑥 − 𝜔𝑡). 

 

(3.3) 

These expressions are somewhat complex. But, if we let 𝑘 be positive, we are focusing only on 

the waves propagating to the right. First we will focus at the case of deep water waves, by 

observing the limit 𝑘𝐻 ≫ 1 

𝑡𝑎𝑛ℎ(𝑘𝐻) =
𝑒𝑘𝐻 − 𝑒−𝑘𝐻

𝑒𝑘𝐻 + 𝑒−𝑘𝐻
→

𝑒𝑘𝐻

𝑒𝑘𝐻
= 1, (3.4) 

𝑐𝑜𝑠ℎ(𝑘(𝑧 + 𝐻))

𝑠𝑖𝑛(𝑘𝐻)
=

𝑒𝑘(𝑧+𝐻) + 𝑒−𝑘(𝑧+𝐻)

𝑒𝑘𝐻 − 𝑒−𝑘𝐻
→

𝑒𝑘(𝑧+𝐻)

𝑒𝑘𝐻
= 𝑒𝑘𝑧 , 

(3.5) 

𝑠𝑖𝑛(𝑘(𝑧 + 𝐻))

𝑠𝑖𝑛(𝑘𝐻)
=

𝑒𝑘(𝑧+𝐻) − 𝑒−𝑘(𝑧+𝐻)

𝑒𝑘𝐻 − 𝑒−𝑘𝐻
→

𝑒𝑘(𝑧+𝐻)

𝑒𝑘𝐻
= 𝑒𝑘𝑧 . 

(3.6) 

 

This means that the deep water waves are described with the following equations: 

𝜂 = 𝐴 𝑐𝑜𝑠(𝑘𝑥 − 𝜔𝑡), (3.7) 

𝜔 = √𝑔𝑘, (3.8) 

𝑢 = 𝐴𝜔𝑒𝑘𝑧 𝑐𝑜𝑠(𝑘𝑥 − 𝜔𝑡), (3.9) 

𝑤 = 𝐴𝜔𝑒𝑘𝑧 𝑐𝑜𝑠(𝑘𝑥 − 𝜔𝑡). (3.10) 
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The other case is the limit 𝑘𝐻 ≪ 1. This is for the shallow water waves where depth 𝐻 is much 

smaller than the wavelength λ: 

𝑡𝑎𝑛ℎ(𝑘𝐻) =
𝑒𝑘𝐻 − 𝑒−𝑘𝐻

𝑒𝑘𝐻 + 𝑒−𝑘𝐻
=

(1 + 𝑘𝐻 + ⋯ ) − (1 − 𝑘𝐻 + ⋯ )

(1 + 𝑘𝐻 + ⋯ ) + (1 − 𝑘𝐻 + ⋯ )
→

2𝑘𝐻

2

= 𝑘𝐻, 

(3.11) 

𝑠𝑖𝑛(𝑘(𝑧 + 𝐻))

𝑠𝑖𝑛(𝑘𝐻)
=

𝑒𝑘(𝑧+𝐻) − 𝑒−𝑘(𝑧+𝐻)

𝑒𝑘𝐻 − 𝑒−𝑘𝐻

=
(1 + 𝑘(𝐻 + 𝑧) + ⋯ ) + (1 − 𝑘(𝐻 + 𝑧) + ⋯ )

(1 + 𝑘𝐻 + ⋯ ) − (1 − 𝑘𝐻 + ⋯ )
→

2

2𝑘𝐻

=
1

𝑘𝐻
, 

(3.12) 

𝑠𝑖𝑛(𝑘(𝑧 + 𝐻))

𝑠𝑖𝑛(𝑘𝐻)
=

𝑒𝑘(𝑧+𝐻) − 𝑒−𝑘(𝑧+𝐻)

𝑒𝑘𝐻 − 𝑒−𝑘𝐻

=
(1 + 𝑘(𝐻 + 𝑧) + ⋯ ) − (1 − 𝑘(𝐻 + 𝑧) + ⋯ )

(1 + 𝑘𝐻 + ⋯ ) − (1 − 𝑘𝐻 + ⋯ )

→
2𝑘(𝐻 + 𝑧)

2𝑘𝐻
= 1 +

𝑧

𝐻
. 

 

(3.13) 

The shallow water waves  are therefore described by: 

𝜂 = 𝐴 𝑐𝑜𝑠(𝑘𝑥 − 𝜔𝑡), (3.14) 

𝜔 = √𝑔𝐻𝑘, (3.15) 

𝑢 =
𝐴𝜔

𝑘𝐻
𝑐𝑜𝑠(𝑘𝑥 − 𝜔𝑡), 

(3.16) 

𝑤 = 𝐴𝜔 (1 +
𝑧

𝐻
) 𝑠𝑖𝑛(𝑘𝑥 − 𝜔𝑡). (3.17) 
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Figure 3-1:Particle motion in deep water, intermediate deep water and shallow water and its velocity. 

Motion of the particle in the first image is circular, and radius of the motion decreases with depth. On 

the second image, at the ocean surface, motion is curcular, but as depth increases, the motion follows 

elliptic curve. For shallow water, shown at the last image, motion is elliptic, while at the bottom it 

becomes one dimensional (moving from the left to the right). 

On the Figure 3-1, we can see motion of a partcle in deep water, intermediate deep water and 

shallow water. Horizontal velocity for the case of deep water decreases almost exponentionaly 

with depth. After certain point, it can be neglected. For intermediate-deep water, velocity also 

decreases, but not as fast as in the case of deep water. For shallow water, horizontal velocity is 

constant with depth. 
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4 Derivation of the equations of motion  

Fluid mechanic is a field theory. Typically, fields used to describe any fluid are pressure 

𝑝(𝑥, 𝑦, 𝑧, 𝑡), mass density 𝜌(𝑥, 𝑦, 𝑧, 𝑡) and fluid velocity 𝑣(𝑥, 𝑦, 𝑧, 𝑡). Distribution of mass in 

space is continuous.  

Let 𝑛 be the amount of 𝑋 per unit volume. The amount of 𝑋 is conserved, then the next equation 

is true for 𝑛: 

𝜕𝑛

𝜕𝑡
+ ∇𝐹⃗ = 0. (4.1) 

In the equation above, 𝐹⃗ = (𝐹𝑥 , 𝐹𝑦, 𝐹𝑧) is the flux of 𝐹. Using the definition of a flux, the 

equation can be rewritten as: 

𝜕𝑛

𝜕𝑡
+

𝜕𝐹𝑥

𝜕𝑥
+

𝜕𝐹𝑦

𝜕𝑦
+

𝜕𝐹𝑧

𝜕𝑧
= 0. (4.2) 

If the velocity of 𝑋 is 𝑞⃗, then equation can also be recast in following form: 

𝜕𝑛

𝜕𝑡
+ 𝛻(𝑛𝑞⃗) = 0. (4.3) 

In a fluid, velocity of mass is 𝑣 = (𝑢, 𝑣, 𝑤). Conservation law for mass is: 

𝜕𝜌

𝜕𝑡
+ 𝛻(𝜌𝑣) = 0. (4.4) 

Now, momentum per unit volume is ρ𝑣. Conservation can be applied to each component of 

momentum. Considering the 𝑥-component and the fact that force causes a change in the 

momentum, it can be written as: 

𝜕𝜌𝑢

𝜕𝑡
+ 𝛻(𝜌𝑢𝑣) = 𝑓𝑥 . (4.5) 

In this equation, 𝑓𝑥  is the 𝑥-component of force per unit volume, 𝑓. 

There are many different forces that can act on a fluid, but amongst those, pressure force of 

the fluid on itself is the one that is present in any situation. If a small cubic volume of a fluid is 

taken, then the pressure force per unit volume is 𝑓 = −∇𝑝. The negative sign means that the 

fluid is being pushed away from a high pressure area to a low pressure area.  

Taking all this into account, equation (4.5) becomes: 

𝜕(𝜌𝑢)

𝜕𝑡
+ 𝛻(𝜌𝑢𝑣) = −

𝜕𝑝

𝜕𝑥
. (4.6) 
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Changing 𝑥 to 𝑦, and 𝑢 to 𝑣, equation for 𝑦-component can be obtained: 

𝜕(𝜌𝑣)

𝜕𝑡
+ ∇(𝜌𝑣𝑣) = −

𝜕𝑝

𝜕𝑦
. (4.7) 

For 𝑧-component, the equation has a small difference. There is an additional term, since gravity 

needs to be accounted for: 

𝜕(𝜌𝑤)

𝜕𝑡
+ ∇(𝜌𝑤𝑣) = −

𝜕𝑝

𝜕𝑧
− 𝜌𝑔. (4.8) 

If density of the fluid is constant, then: 

𝛻𝑣 = 0. (4.9) 

Equations (4.6), (4.7) and (4.8) simplify to: 

𝜕𝑢

𝜕𝑡
+ 𝑣𝛻𝑢 = −

𝜕𝑝

𝜕𝑥
 , (4.10) 

 

𝜕𝑢

𝜕𝑡
+ 𝑣𝛻𝑣 = −

𝜕𝑝

𝜕𝑦 
, (4.11) 

 

𝜕𝑤

𝜕𝑡
+ 𝑣𝛻𝑤 = −

𝜕𝑝

𝜕𝑧
− 𝑔. (4.12) 

These equations can now be written as a single vector equation: 

𝐷𝑣

𝐷𝑡
= −𝛻(𝑝 + 𝑔𝑧). (4.13) 

Advective derivative operator 
𝐷

𝐷𝑡
 was used to simplify the equations: 

𝐷

𝐷𝑡
≡

𝜕

𝜕𝑡
+ 𝑣𝛻 =

𝜕

𝜕𝑡
+ 𝑢

𝜕

𝜕𝑥
+ 𝑣

𝜕

𝜕𝑦
+ 𝑤

𝜕

𝜕𝑧
. (4.14) 

Usually, in any fluid, there is also viscosity. Viscosity does not contribute to the phenomena 

discussed here. All equations are ideal hydrodynamics equations. 

Velocity is given as three independent fields, 𝑢(𝑥, 𝑦, 𝑧, 𝑡), 𝑣(𝑥, 𝑦, 𝑧, 𝑡) and 𝑤(𝑥, 𝑦, 𝑧, 𝑡). If the 

velocity is written using a single scalar field Φ(𝑥, 𝑦, 𝑧, 𝑡): 

𝑣 = (𝑢, 𝑣, 𝑤) = 𝛻𝛷 = (
𝜕𝛷

𝜕𝑥
,
𝜕𝛷

𝜕𝑦
,
𝜕𝛷

𝜕𝑧
), (4.15) 
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then equations: 

∂𝑢

∂𝑦
=

∂𝑣

∂𝑥
,

∂𝑢

∂𝑧
=

∂𝑤

∂𝑥
,

∂𝑣

∂𝑧
=

∂𝑤

∂𝑦
, (4.16) 

are true for potential flow. Potential flow describes the velocity field as the gradient of a scalar 

function: the velocity potential Φ. Now, if velocity can be rewritten using (4.15), equation (4.9) 

becomes Laplaces's equation: 

𝛻2𝛷 = 0. (4.17) 

Upon substituting Laplace's equation in (4.10), we get: 

𝜕

𝜕𝑡

𝜕𝛷

𝜕𝑥
+ 𝛻𝛷 ⋅ 𝛻 (

𝜕𝛷

𝜕𝑥
) = −

𝜕𝑝

𝜕𝑥
, (4.18) 

Rewriting ∇ (
∂Φ

∂𝑥
) as 

∂

∂x
∇Φ yields: 

𝜕

𝜕𝑡

𝜕𝛷

𝜕𝑥
+ 𝛻𝛷 ⋅

𝜕

𝜕𝑥
𝛻𝛷 = −

𝜕𝑝

𝜕𝑥
, (4.19) 

further simplifying to: 

𝜕

𝜕𝑡

𝜕𝛷

𝜕𝑥
+

𝜕

𝜕𝑥
(

1

2
𝛻𝛷 ⋅ 𝛻𝛷) = −

𝜕𝑝

𝜕𝑥
, (4.20) 

which results in: 

∂

∂x
(

∂Φ

∂t
+

1

2
∇Φ ⋅ ∇Φ + p) = 0. (4.21) 

Similar to this, from equations (4.11) and (4.12) we get: 

𝜕

𝜕𝑦
(

𝜕𝛷

𝜕𝑡
+

1

2
𝛻𝛷 ⋅ 𝛻𝛷 + 𝑝) = 0, (4.22) 

𝜕

𝜕𝑧
(

𝜕𝛷

𝜕𝑡
+

1

2
𝛻𝛷 ⋅ 𝛻𝛷 + 𝑝 + 𝑔𝑧) = 0. 

(4.23) 

As equations (4.10), (4.11) and (4.12) were written together as a single vector equation, these 

equations can also be written as a single equation: 

𝛻 (
𝜕𝛷

𝜕𝑡
+

1

2
𝛻𝛷 ⋅ 𝛻𝛷 + 𝑝 + 𝑔𝑧) = 0. (4.24) 

 

Since the gradient of the prior function in parentheses is equal to zero, this means that the 

function is only a function of time: 

 𝐶(𝑡) =
𝜕𝛷

𝜕𝑡
+

1

2
𝛻𝛷 ⋅ 𝛻𝛷 + 𝑝 + 𝑔𝑧. (4.25) 
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If Φ is replaced by Φ + ∫ 𝐶(𝑡), the hydrodinamic equations are: 

𝛻2𝛷 = 0. (4.26) 

𝜕𝛷

𝜕𝑡
+

1

2
𝛻𝛷 ⋅ 𝛻𝛷 + 𝑝 + 𝑔𝑧 = 0, (4.27) 

The first equation is, as mentioned, Laplace's equation. The second equation is the Bernoulli's 

equation. These are nonlinear differential equations and they are very difficult to solve. Usually, 

the method of solving consists of many approximations. 

 

Figure 4-1: Geometry for fundamental wave theory.  Ocean bottom is considered flat with depth equal 

to −𝐻0. Blue curve represents surface distrurbance. Surface of the ocean is 𝜂(𝑥, 𝑦, 𝑡) and we are 

observing 2D system with x-axis and z-axis. 

Fundamental problem of the wave theory is now in order to be solved. Ocean with a flat bottom 

at 𝑧 = −𝐻0 is considered. Surface of the ocean is η(𝑥, 𝑦, 𝑡). Movement of the fluid is described 

using Laplace’s equation and Bernoulli’s equation. Also, boundary conditions on the top and 

bottom of the ocean are needed. Bottom boundary condition is: 

 𝑤 =
𝜕𝛷

𝜕𝑧
= 0   at   𝑧 = −𝐻0. (4.28) 

This boundary condition simply states that there is no flow through the ocean bottom. 

There are two top boundary conditions. First condition, known as the kinematic boundary 

condition, says that the fluid particles on the free surface remain there: 

 
𝐷

𝐷𝑡
(𝑧 − 𝜂(𝑥, 𝑦, 𝑡)) = 𝑤 −

𝐷𝜂

𝐷𝑡
=

𝜕𝛷

𝜕𝑧
−

𝜕𝜂

𝜕𝑡
− 𝛻𝛷 ⋅ 𝛻𝜂 = 0  at   

𝑧 = 𝜂(𝑥, 𝑦, 𝑡). 

(4.29) 
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Second top boundary condition is a dynamic boundary condition. This condition states that the 

pressure is continuous on the free surface: 

 𝑝 = 𝑝𝑎   at   𝑧 = 𝜂(𝑥, 𝑦, 𝑡). (4.30) 

In this condition, 𝑝𝑎 is atmospheric pressure. Two top boundary conditions say that the particles 

on a  free surface and free surface have the same velocity and there is no pressure discontinuity 

that results in infinite acceleration of the free surface. Combining equations and boundary 

conditions, the following equations are obtained: 

𝛻2 = 0  on  − 𝐻0 < 𝑧 < 𝜂(𝑥, 𝑦, 𝑡), (4.31) 

 

 
𝜕𝛷

𝜕
+

1

2
𝛻𝛷 ⋅ 𝛻𝛷 + 𝑝 + 𝑔𝑧 = 0  on  − 𝐻𝑜 < 𝑧 < 𝜂(𝑥, 𝑦, 𝑡), (4.32) 

with the boundary conditions: 

 
𝜕𝛷

𝜕𝑧
(𝑥, 𝑦, −𝐻0, 𝑡) = 0, (4.33) 

 

𝜕𝛷

𝜕𝑧
(𝑥, 𝑦, 𝜂(𝑥, 𝑦, 𝑡), 𝑡) −

𝜕𝜂

𝜕𝑡
− 𝛻𝛷(𝑥, 𝑦, 𝜂(𝑥, 𝑦, 𝑡), 𝑡) ⋅ 𝛻𝜂(𝑥, 𝑦, 𝑡) = 0, (4.34) 

 

𝑝(𝑥, 𝑦, 𝜂(𝑥, 𝑦, 𝑡), 𝑡) = 𝑝𝑎(𝑥, 𝑦, 𝑡). (4.35) 

  

From these equations, the boundary conditions seem rather complex. There are two unknowns: 

𝑝 and Φ, and location of those depends on η. In order to solve the problem, η must be known. 

Using linearization about the state of rest, this can be avoided. 

Another problem is 𝑝𝑎 at the surface. Atmosphere is the main generator of waves, but since its 

density is much lower than the density of the ocean, it can be replaced by vacuum. This means 

that the value of 𝑝𝑎 is 0. 

State of rest is Φ = η = 0. If the waves that are present are very small, then they represent a 

small disturbance from the state of rest. In that case, Φ and η are very small and all terms 

proportional to products of Φ and η can be neglected (product of two small numbers is an even 

smaller number). To get a linear approximation of (4.34), Taylor expansion is used: 

𝜕𝛷

𝜕𝑧
(𝑥, 𝑦, 𝜂(𝑥, 𝑦, 𝑡), 𝑡) =

𝜕𝛷

𝜕𝑧
(𝑥, 𝑦, 0, 𝑡) +

𝜕2𝛷

𝜕𝑧2
(𝑥, 𝑦, 0, 𝑡)𝜂(𝑥, 𝑦, 𝑡)  ≈

𝜕𝛷

𝜕𝑧
(𝑥, 𝑦, 0, 𝑡).  

(4.36) 
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This means that the linear approximation of (4.32) is: 

𝜕𝛷

𝜕𝑧
(𝑥, 𝑦, 0, 𝑡) =

𝜕𝜂

𝜕𝑡
(𝑥, 𝑦, 𝑡). (4.37) 

Linnear approximation of (4.33) is obtained when setting 𝑝𝑎 to zero, since it yields 𝑝 =  0 at 

𝑧 = η(𝑥, 𝑦, 𝑡). It is easier if this is also expressed over Φ and η, so by using (4.32), since it is 

true throughout the fluid, the following equation is obtained: 

𝜕𝛷

𝜕𝑡
(𝑥, 𝑦, 0, 𝑡) + 𝑔𝜂(𝑥, 𝑦, 𝑡) = 0. (4.38) 

When all this is done, solving the linear problem (LP) can begin. Linear equations are simpler 

and have certain appealing properties, such as superposition, that says that the sum of two 

solutions is also a solution. 

First step is to eliminate η from the equation (4.38) to get the top boundary condition only in 

terms of Φ: 

𝜕2𝛷

𝜕𝑡2
(𝑥, 𝑦, 0, 𝑡) + 𝑔

𝜕𝛷

𝜕𝑧
(𝑥, 𝑦, 0, 𝑡) = 0. (4.39) 

Because superposition principle holds, solutions in the following form are plausable: 

𝛷(𝑥, 𝑦, 𝑧, 𝑡) = 𝐹(𝑧) 𝑠𝑖𝑛(𝑘𝑥 + 𝑙𝑦 − 𝜔𝑡). (4.40) 

Arbitrary constants in this equation are 𝑘 and 𝑙, while ω is constant that needs to be 

determined. 𝐹(𝑧) is a function that also needs to be determined. By substituting the above into 

∇2= 0, we get: 

𝑑2𝐹

𝑑𝑧2
= 𝜅2𝐹, (4.41) 

where κ2 = 𝑘2 + 𝑙2. This is a differential equation and its general solution reads: 

𝐹(𝑧) = 𝐶1
′𝑒𝜅𝑍 + 𝐶2

′𝑒−𝜅𝑍 . (4.42) 

Equivalent form of this equation is: 

𝐹(𝑧) = 𝐶1 𝑐𝑜𝑠ℎ(𝜅(𝑧 + 𝐻0)) + 𝐶2 𝑠𝑖𝑛ℎ(𝜅(𝑧 + 𝐻0)). (4.43) 

 

Now, the solution can be written in the form: 

𝛷(𝑥, 𝑦, 𝑧, 𝑡) = {𝐶1 𝑐𝑜𝑠ℎ(𝜅(𝑧 + 𝐻0)) (4.44) 

+𝐶2 𝑠𝑖𝑛ℎ(𝜅(𝑧 + 𝐻0))} 𝑠𝑖𝑛(𝑘𝑥 + 𝑙𝑦 − 𝜔𝑡). 
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Inserting this into the boundary condition 
∂Φ

∂𝑧
(𝑥, 𝑦, −𝐻0, 𝑡) = 0, yields: 

(𝐶1𝜅 𝑠𝑖𝑛ℎ(0) + 𝐶2𝜅 𝑐𝑜𝑠ℎ(0)) 𝑠𝑖𝑛(𝑘𝑥 + 𝑙𝑦 − 𝜔𝑡)

= 𝐶2𝜅 𝑠𝑖𝑛(𝑘𝑥 + 𝑙𝑦 − 𝜔𝑡) = 0. 

 . 

(4.45) 

This equation must be true for all possible (𝑥, 𝑦, 𝑡) and in order to be so, constant 𝐶2 must be 

zero. Now, the solution is: 

𝛷(𝑥, 𝑦, 𝑧, 𝑡) = 𝐶1 𝑐𝑜𝑠ℎ(𝜅(𝑧 + 𝐻0)) 𝑠𝑖𝑛(𝑘𝑥 + 𝑙𝑦 − 𝜔𝑡). (4.46) 

By substituting this form of the solution into the boundary condition 
∂2Φ

∂𝑡2
(𝑥, 𝑦, 0, 𝑡) +

𝑔
∂Φ

∂𝑧
(𝑥, 𝑦, 0, 𝑡) = 0, we get: 

−𝜔2𝐶1 𝑐𝑜𝑠ℎ(𝜅𝐻0) + 𝑔𝜅𝐶1 𝑠𝑖𝑛ℎ(𝜅𝐻0)   =  0. (4.47) 

There is one obvious solution to this equation, and that is putting 𝐶1 = 0 and getting Φ = 0. 

But that is not the wanted solution. Assuming 𝐶1 ≠ 0 yields: 

𝜔2 = 𝑔𝜅 𝑡𝑎𝑛ℎ(𝜅𝐻0). (4.48) 

Remembering Postulate 1, it can be seen that this is the general dispersion relation for ocean 

waves. 

Combining (4.37) and (4.46): 

𝜂 = −
1

𝑔

𝜕𝛷

𝜕𝑡
(𝑥, 𝑦, 0, 𝑡) =

𝜔𝐶1

𝑔
𝑐𝑜𝑠ℎ(𝜅𝐻0) 𝑐𝑜𝑠(𝑘𝑥 + 𝑙𝑦 − 𝜔𝑡). (4.49) 

Combining (4.15) and (4.46): 

𝑢 =
𝜕𝛷

𝜕𝑥
(𝑥, 𝑦, 𝑧, 𝑡) = 𝑘𝐶1 𝑐𝑜𝑠ℎ(𝜅(𝑧 + 𝐻0)) 𝑐𝑜𝑠(𝑘𝑥 + 𝑙𝑦 − 𝜔𝑡), (4.50) 

and 

𝑤 =
𝜕𝛷

𝜕𝑥
(𝑥, 𝑦, 𝑧, 𝑡) = 𝜅𝐶1 𝑠𝑖𝑛ℎ(𝜅(𝑧 + 𝐻0)) 𝑠𝑖𝑛(𝑘𝑥 + 𝑙𝑦 − 𝜔𝑡). (4.51) 

By setting amplitude 𝐴 to be equal to: 

𝐴 =
𝜔𝐶1

𝑔
𝑐𝑜𝑠ℎ(𝜅𝐻0) =

𝜅𝐶1

𝜔
𝑠𝑖𝑛ℎ(𝑘𝐻0), (4.52) 
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last three equations become: 

𝜂 = 𝐴 𝑐𝑜𝑠(𝑘𝑥 + 𝑙𝑦 − 𝜔𝑡), (4.53) 

𝑢 = 𝐴𝜔
𝑘

𝜅

𝑐𝑜𝑠ℎ(𝜅(𝑧 + 𝐻0))

𝑠𝑖𝑛ℎ(𝜅𝐻0)
𝑐𝑜𝑠(𝑘𝑥 + 𝑙𝑦 − 𝜔𝑡), (4.54) 

𝑤 = 𝐴𝜔
𝑠𝑖𝑛ℎ(𝜅(𝑧 + 𝐻0))

𝑠𝑖𝑛ℎ(𝜅𝐻0)
𝑠𝑖𝑛(𝑘𝑥 + 𝑙𝑦 − 𝜔𝑡). 

 

(4.55) 
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5 Conclusion 

In this thesis, ocean surface waves were described. Two postulates that describe the general 

form of the wave and allow us to add them, were used as a foundation for the derivation of the 

equations of motion. Additionaly, Laplace's equation and Bernoulli's equation, two important 

equations in fluid mechanics, were aslo used. Those are nonlinear equations, and in order to 

solve them, we used approximations. These approximations simplify the problem and allow us 

to explore the linear wave theory.  

Atmosphere is the main generator of ocean surface waves, but since its density is much lower 

than the density of the ocean, it can be replaced by vacuum. This gives us one of the 

approximations. By using Taylors expansion, we eliminated η, the wave equation, from one of 

the boundary conditions. This was done in order to get the linear equations, to simplify the 

process. One property of linear equations that was used is superposition. By using this principle, 

we wrote the general form of the solution. Although this method did ignore some of the fluid 

properties, such as viscosity, it is successful in delivering plausable equations of motion. To get 

the full description, non-linear theory should be fully explored. 
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