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1 Introduction

Phytoplankton (plant plankton) are free- oating autotrophic organisms living in ocean. The
word phytoplankton was rst used by the German scientist Victor Heusen in 1887 and comes
from the Greek word "phyton" which means plant, and "planktos" which means wanderer or
tramp. These organisms rst appeared two billion years ago. Phytoplantkon is found in the sur-
face illuminated layer of the ocean where there is enough sunlight needed for photosynthesis.
Phytoplankton actively participate in the carbon cycle due to carbon assimilation in photosyn-
thesis. Phytoplankton biomass contains only one percent of the carbon of the entire biosphere,
and the life cycle of phytoplankton is much shorter than the life cycle of terrestrial plants. Itis
therefore extremely sensitive to changes in the environment, but it is also an enviromental reg-
ulator due to the enormous carbon ow in global primary production. Phytoplantkon form the
basis of the food chain in rivers, seas and oceans. Their photosynthetic activity is responsible
for almost 50 % of global primary production.

The regulation of the environment is also in uenced by man (anthropogenic in uence). Ac-
cording to some theories, oil is formed after dead organisms such as plankton remain trapped
beneath sedimentary rocks exposed to high pressure and temperature. Nowadays, the carbon
stored in these deposits is used as fuel and released into the atmosphere which affects climate
change. Primary production process removes carbon dioxide and releases oxygen. Phytoplank-
ton that sinks to the seabed consequnetly reduces the concentration of carbon in the atmosphere.
This process is called "the biological pump". Global phytoplankton primary production is es-
timated at about 50 PgC per year, of which about 8 % is needed to maintain the total annual
world shing efforts. With the above we see that the research of primary production of the
oceans and seas is of great interest for sheries and the study of the climate system. Since the
surface of the ocean is huge, research of the primary production necessarily involves measuring
and modelling the process itself, for which different approaches have been developed.

In 1953 Norwegian oceanographer and meteorologist H. U. Sverdrup published an article [1]
in which he proposed the concept of the critical depth to explain the initiation of the spring
bloom in the North Atlantic. Considering the work before him, Sverdrup was the rst to make
a mathematical model of critical depth theory. Sverdrup's model was among the rst models to
explore physical - biological interactions in the ocean. His work has now been applied, adapted
and tested across many aquatic systems worldwide.

Critical depth theory uses the following assumptions:
1) Whithin the surface layer turbulance is strong enough to distributes the plankton homoge-
neously through the layer.
2) Whithin the mixed layer photosynthesis is not limited by a lack of nutrients.
3) The production of organic matter by photosinthesis is proportional to the light energy at
depth.
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Using the above assumptions we can obtain an expression for the critical depth. The exact
value of critical depth depends on the incoming solar radiation, amongst other things.

There are two different parts of the critical depth concept that Sverdrup proposes [2]: the rst
part deals with the use of the law of conservation of mass in the water column to calculate the
change in the amount of phytoplankton concentration. In this part he uses formulas (known
before his work, proposed by Gran and Braarud in 1935) which are axiomatic (taken as correct
whithout testing). The second part refers to the study of the main factors responsible for the
formation of blooms (these are hypotheses amenable to testing). In general, we can say that
in Svedrup's model the biological dynamics in the ocean is described by equations which are
based on the principles of the law of conservation of mass (mass balance).

There are three important depths that need to be mentioned in this work [2]:
1) Critical depth (biological depth horizon) is the depth to which phytoplantkon can be sus-
tained.
2) Mixing depth or mixed layer depth is the depth of active mixing.
3) Euphotic depth is the depth to which light can penetrate.

Based on Sverdrup's work, models were made that gave a new perspective on phytoplankton
dynamics and various factors responsible for phytoplankton blooms. Phytoplantkon blooms
have been described as periods of rapid (explosive) growth in phytoplantkon biomass. It is im-
portant to note that some blooms are fast (happen quickly, have short periods), while some
blooms are long lasting (have long periods). Blooms are actually a condition of elevated
(increased) phytoplantkon concentrations. The concentration of the photosynthetic pigment
chlorophyll (Chl) is taken as a measure of phytoplankton concentration. It can be detect from
space.

One of the processes that is of societal importance and is related to primary production is
upwelling. Upwelling is an oceanographic phenomenon that involves wind-driven motion of
dense, cooler, and usually nutrient-rich water from deep water towards the ocean surface, re-
placing the warmer, usually nutrient-depleted surface water. The nutrient-rich upwelled water
stimulates the growth and reproduction of primary producers such as phytoplankton. Due to the
biomass of phytoplankton and presence of cool water in these regions, upwelling zones can be
identi ed by cool sea surface temperatures (SST) and high concentrations of chlorophyll-a. [3]

The idea of this work is to apply Sverdrup's model to a monochromatic and a spectral model
for phytoplankton competition. We begin with a basic competition model for two species.
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In Table 1 all parameters and variables used in monochromatic and spectral model for phyto-

plankton populations are listed.

Table 1: Parameters and variables used in this work.

Variable's name

Variable's mark

Variable's unit

Primary production P = P(z;t) mgCm 3h 1
Primary production for each population Pi = Pi(z;1) mgCm 3h 1!
Phytoplankton biomass B = B(z;t) mgChlm 3
Phytoplankton biomass for each population Bi = Bi(z;t) mgChim 3
Irradiance (light intensity) I =1(z;t) wm ?

Two spectral bands of irradiance l1=11(z;t),12=12(z;t) | Wm 2
Attenuation coef cient K = K(z;1) m !
Optically uncoupled critical depth C = const: m

Optically coupled critical depth S = S(1) m

Parameter's name

Parameter's mark

Parameter's unit

Surface irradiance lg = const: Wm 2

Loss (mortality) rate L = const: st

Loss rate for each population L; = const: st

Mixed layer depth Zm = const: m

Critical depth Zc = const: m

Initial slope (growth rate) = const: mgC (mgChl) *wW m 2h 1
Initial slope for each population i = const: mgC (mgChl) *w m 2h !
Seawater attenuation coef cient Kw = const: m 1

Speci ¢ attenuation coef cient kg = const: m? (mgChl) 1!

Speci ¢ attenuation coef cient for each populatignkg; = const: m? (mgChl) 1

Initial phytoplankton biomass By = const: mgChlm 3

Number of populations N = const: -

Index of population i=1;:uN -

Time index n -

Depth z m

Time t h

Time step t h

Diffusion coef cient D m?s 1
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2 Competition model

In this model [4], the subject of observation are two species which compete for the same lim-
ited food source or in some way inhibit each other's growth. Using 2-species Lotka-\Volterra
competition model we obtain the change in quantity of each speadiear(dN,) over time [4]:

le Nl N2
——=r4N;1 1 — — 2.1
NG LR b @)
dN2 N2 Nl
——=1-5N, 1 — — 2.2
ot 2N2 K, b21K2 ; (2.2)

wherer; andr, are the linear birth rate& ; andK , are the carrying capacities (enviromental
capacities) anth, andb,; are measures of the competitive effectNof andN,. It is useful to
introduce the substitutions:

Nl N2 ) K2 Kl
= _—- = _Z- =rqt = = = - = —: 2.
Ug Ky’ uz Ky’ b L a2 blzKl, a1 b21K2 (2.3)

Now equations (2.1) and (2.2) become:

du
d—l =u 1 u; apu = fl(ul;UZ); (24)
du
d—2 = Uus, 1 u, ayu = fz(ul; Uz): (25)

The steady states are solutions for whigfuy; u,) = f,(ug;uz) =0.

On Figure 1 we can see four different situations in the phase space for various cages of
anday;. Blue and orange lines are called nulclines and they represent steady states of equations
(2.4) and (2.5).

In the rst case, shown in Figure 1a), whesg, < 1 with ay; < 1 there is a stable steady
state where both species coexist. For example, if carrying capa€itiesndK , are the same
and interspeci ¢ competition i, < 1 andh,; < 1, then the two species have low population
size (competition is not aggresive which means that one population will not be exterminated).
On Figure 1a) points on the, axis are(1;0) and(0; 1=a,) and on theu, axis are(0; 1) and
(0; 1=&,), where points are de ned d8;; Uy). If the by, andb,; are about the same and tke
andK , are different, it is not easy to say what will happen.

In the second case, shown in Figure 1b), wheege> 1 anday; > 1, if the K's are about
equal, then thé, > 1andh,; > 1.

In the third case, shown in Figure 1c), in which the interspeci ¢ competition of one species
is much stronger than the othdn{ >> b ;,), or the carrying capities are suf ciently different
(K1 6 K3), the result is thati; species dominates and the other specjedies out.
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In the fourth case, shown in Figure 1d), in which the interspeci c competition of one species
Is much stronger than the othdx{ >> b ,,), or the carrying capities are suf ciently different
(K1 6 K3), the result is thati, species dominates and the other spegiedies out.

(a) Case whemyz < 1andaz; < 1 (b) Case whem;> > landay; > 1

Figure 1: Phase plane for the various casesagb and a,1. Blue curve represents steady state for
equation(2.4), orange curve represents steady state for equg2on).
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3 Primary production model

Phytoplantkon primary production P is de ned as rate of anorganic carbon assimiliaton by
phytoplantkon. Generally, primary production depends on tihar(d depthZ). Chlorophyll
concentrationis used as a measurepifytoplantkon biomassB . Primary production depends
of avaliable light and is de ned as:

P=1I (3.1)

where s initial slope and is light intensity (irradiance)lrradiance is taken as a meassure
of available sunlight and is de ned as a light energy that in units of time passes through a
unit area perpendicular to the direction of light propagation. Generally, irradiance is a function
that depends on time&)(and depth ). Beer-Lambert law dictates that irradiance decreasses
exponentially with depth:

| = lge ¥%; (3.2)

wherel, is surface irradiance and is the attenuation coef cient which shows the rate of
decline of the amount of light in the sea.

Figure 2 respresents irradiance as function of depth mentioned in equation (3.2) and primary
production as function of depth mentioned in equation (3.1). It can be seen that the primary
production and irradiance decrease exponentially with depth. Used surface irradi@& 860
Wm 2, intial slope is 0:2 mgC(mgChl) *W !m 2h ! and attenuation coef cier is 0:04
m L.

In the open ocean the attenuation coef cient depends on biomass concentration:
K = K, + kgB; (3.3)

whereK ,, is seawater attenuation coef cient representing light atenuation processes due to scat-
tering and apsorption of particles and solutgs,is speci c phytoplankton attenuation coef -
cient representing light attenuation processes due to apsorption and scattering by phytoplankton.
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Figure 2: Change of irradiance (yellow curve) and primary production (green curve) over depth in a
primary production model.
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4  Critical depth theory

In 1953 Harald Urlik Sverdrup set up a simple mathematical model based on a water column that
connects the roles of vertical water mixing, light attenuation with depth and seasonal increase in
light. The Sverdrup's model is a model based on an earlier one proposed by Riley [5] in 1946.
Gordon Arthur Riley was an American biological oceanographer who studied the dynamics
of plankton ecosystems. The critical depth hypothesis is the solution of Sverdrup's model.
This hypothesis predicts that blooms begins when seasonally mixed layer is shallower than the
critical depthz..

The model rests on the following assumptions [6]:
1) Phytoplankton growth rate is proportional to the light intensity (1).
2) The light extintion coef cient (atenuation coef cienk) is constantK = const.).
3) Phytoplankton loss rate is constant%£ const.).
For light intensity Sverdrup used Beer-Lambert's law:

| = loe ¥%; (4.1)

wherel g is surface irradiance required for the photosynthesis process.

Sverdrup's model can be understood in terms of differential equation for the time evolution
of phytoplankton concentration (bioma&s)6]:

@B_
@t

e+ 2 p@B. (4.2)

@z @z’
where is the rate of phytoplankton growth, is phytoplankton loss rate aridl is the vertical
mixing coef cient (diffusion coef cient).

The assumption that the vertical mixiBygis strong enough to evenly distribute the organisms
in the ocean's surface mixed layer allows the integration of equation (4.2) from the surface
(0) to the bottom of the mixed layer (depth) resulting in the equationz(axis is positive
downwards):

@Bi _ 1o KZm \ b .
ot - i (1 e*m)mBi LmBi; (4.3)
wherelBi is the average phytoplankton biomass (over depth):
Zn
Bi = Bdz: (4.4)
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Setting®! = 0, an equation is obtained for the critical depttfor which the integral over
depth of growth is equal to the integral over depth of loss:

|
KZO (1 e Xze)=L; (4.5)
C

The value ofz;, depends on 4 model parametersiL, k andlq. If z. > z,, the phytoplankton
can be sustained in the mixed layerzif< z, it can not.
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5 Monochromatic model

5.1 Monochromatic model with one phytoplankton population

In order to obtain the expression for the time evolution of phytoplankton biomass in the mixed-
layer, it is necessary to integrate the advection-diffussion-reaction equation by depth:

@8, ,@B_ @B b B (5.1)

@t W@z @z

Where%? is local change of biomasw%i is the advection terer%—g is the diffusion term
in which D is the diffusion coef cientP = P(z;t) is primary production which is function of
depthz (axis of depth is positive downwards) and tim& = B(z;t) is phytoplantkon biomass
which is also function of depth and timet. This equation describes the evolution of biomass

over time.

Using equations (3.1) and (3.2) primary producti®dfz; t) is:
P=1 =1 X (5.2)

whereK is atenuation coef cient which is de ned in equation (3.3). By integrating equation
(5.1) from the surface (0) to the base of the mixed lagg)) (ve get:

Zm Zn Zn Zm Zn
@B @B @B Kz
= + = = - + . .
@tdz W@ZdZ D @z dz | oe “*Bdz LBdz (5.3)
0 0 0 0 0
After integration, the equation (5.3) yields:
i B “" | mo :
%Zm"‘ wB D%Z O = ?Oe Kz : Bi LhBizy; (5.4)
wherehBi is de ned as: .
Bdz = lBiz,: (5.5)

0
One of the assumptions in this model is that there is no interaction at the boundariez{) and
which means that ux on the surface and the mixed-layer base is equal to zero:

@B

wB D @z: 0 for z=0; (5.6)
@B
wB D @z: 0 for z= zy: (5.7)

10
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Equation (5.4) devided bz, now becomes equation which is recognized as Sverdrup's equa-

tionin (4.3):
@Bi _ |y

— Kz m H e
@t Kz, 1 e Bi LhBi: (5.8)
Numerical form of equation (5.8) is:
B(n+1)= B(n)+ 'K; by exen B(n) LB(n) t (5.9)
m

where tis the time step and the time index.

We de neA as the ratio of surface production to losses (uniform over depth):
| o
A= —: A
- (5.10)

Optically uncoupled critical dept@ is the critical depth associated wikh = 0 and is de ned
as [7]:
1
C= . Wo( Ae M)+ A ; (5.11)
whereW, is Lambert W function. The optically uncoupled critical depth is independent of time
C 6 C(t). Optically coupled critical deptB is the critical depth associated wikg 6 0 and

is de ned as [7]:
1

" Ky + ksB
Optically coupled critical depth is time-depend8d= S(t). We now simulate the temporal

S Wo( Ae M)+ A : (5.12)

evolution of phytoplankton bioma$s using equation (5.9). Parameters used in this model can
be seen in Table 2.

Table 2: Parameters used in a monochromatic model for one phytoplankton population.

Parameterf Amount | Unit
lo 350 Wm 2
L 10 st
Zm 150 m
0.2 mgC(mgChl) W m 2h 1
Kw 0.04 m 1
ks 0.014 m?(mgChl) !
Bo (0.1-0.9)| mgChim 3

11
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Figure 3: Change of optically coupled critical dep®(t) over timet in monochromatic model with
one phytoplankton population. Blue dashed line shows base of the mixeaaged other lines (blue,
green, red and purple full line) show optically coupled critical defih). Different start points of lines
correspond to different initial biomass conditions.

Figure 3 shows that optically coupled critical def&ft) for one phytoplankton population,
regardless of given initial conditions, tends to the base of the mixed layer ggp@urves that
take values of initial biomass less th@m mgChlm 2 (blue curves) decrease over time to a
xed value of mixed layer depth 0150 m Curves that take values of initial biomass greater
than0:5 mgChlm 3 (green, red and purple line) increase over time to a xed value of mixed
layer depth ofL50 m The duration of this simulation is B which is suf cient to reach the
stabilized value of optically coupled critical depth.

12
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Figure 4: Change of biomass B(t) over time in a monocromatic model for one phytoplankton population
at the mixed layer depth,, . Green dashed line shows steady-state biomass and other lines (purple, red,
green, cyan and blue full line) show change of biomB$E) over time. Different start points of lines
correspond to different initial biomass conditions.

Figure 4 shows that biomass for one phytoplankton population, regardless of biomass initial
conditions, tends to a steady-state biomass given by [7]:

B = s 7. 1 : (5.13)
Biomass at the begining of simulation@sl; 0:3; 0:5; 0:7; 0:9 mgChlm 2 (arbitrarily selected
values). Curves that use values of initial biomass less@&mgChlm 2 (blue and cyan line)
increase over time to a xed value of steady-state biomass. Curves that used values of initial
biomass greater thah5 mgChlm 2 (green, red and purple line) decrease over time to a xed
value of steady-state biomass. The duration of this simulatiomig/bich is suf cient to reach
the stabilized value of biomass.

13
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Figure 5: Change of irradiance (t) over timet at the mixed layer depth,,. Red dashed line shows
steady-state irradianceé and other lines (blue, cyan, green, yellow and purple line) show irradiance
I (t). Different start points of lines correspond to different initial biomass conditions.

Figure 5 shows that irradiance for one population at the base of the mixed #aydefds to
a steady-state irradiance which is de ned as:

| = lge KwtkeB )zm. (5.14)

Steady-state irradiance pro le has the same shape as the irradiance pro le de ned in equation
(3.2). The only difference is that this irradiance uses steady-state bi@Bnassd mixed layer
depthz,. In Figure 5 curves with values of initial biomass less tB&mgChlm 2 (blue and

cyan line) decrease over time to a xed value of steady-state irradiance. Curves with values of
initial biomass greater tha®5 mgChlm 2 (green, red and purple line) increase over time to a
xed value of steady-state irradiance.

14
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5.2 Monochromatic model with two phytoplankton populations

The mathematical procedure for two phytoplankton populations is exactly the same as for one
population. We will use indices 1 and 2 to indicate population. With two populations we have
two advection-diffussion-reaction equations (5.1), one for each population:

@3+ W@B _ D@Bl+

@t @z @z

@B @B @B,
+ =D +

@t W @z @z

whereB; andB are phytoplantkon biomass for each populat®nandP, are primary produc-
tion terms for each populatioh, andL , are phytoplankton mortality rate for each population.

Primary production®; andP, for each population are de ned as:

P: LiBy; (5.15)

P, L2Bj: (5.16)

Pl = 1|

loe K%: (5.17)

Pa= ol = 2lee % (5.18)

where ; and , are initial slope for each populatiol, is atenuation coef cient which is now
de ned as:
K=Kyt kBlBl+ kssz; (519)

whereK ,, is seawater attenuation coef cieridz ; andkg, are speci ¢ phytoplankton attenua-
tion coef cient for each population. It is important to note that in this case, the two phytoplank-
ton populations both dictate which means that they can affect each other.

Final equations for the two phytoplantkon populations are now:

@B | . .

@1t = Klzr: 1 e X mBii L;hBii; (5.20)
@B,i | ] . .

@i = K;: 1 e mB,i LymByi: (5.21)

wherehB i andhB,i are de ned as:

Zm
B.dz= Biizy; (5.22)
0

Zn
B,dz = Bsiz,: (5.23)
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Numerical form of equations (5.20) and (5.21) is:

lo t
Bi(n+1)= By(n)+ }1<Z° 1 e Xm Bi(n) L;iBi(n) t (5.24)
m
|
Bz(n+1): Bz(n)+ 2lo t 1 e Kz m Bz(n) Lsz(n) t; (525)

m

where t is the time step and the time index.

We de neA; andA, as the ratio of surface production to losses (uniform over depth):

A, = ﬂ; (5.26)
Ly

A, = 20 (5.27)
L,

Optically uncoupled critical depth€, andC, are the critical depths associated wkigy, = 0
andkg, = 0 which are de ned as [7]:

1

Ci= — Wo( Ae ")+ A; ; (5.28)
Kw
1 A

C, = K_ Wo( A.e 2)+ A, (529)

w
Optically coupled critical depth§, andS, are the critical depths associated wkiy 6 0 and
kg2 6 O which are de ned as [7]:

1
= Wo( Ase A1)+ A; :
1 A
S, Wo( Are 2) + A, (531)

- Kw+ kg1B1+ kg2B>
Figures 7a and 7b show two different situations for optically coupled critical d&athadS,
for two phytoplankton populations.
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Figure 6 shows two different situations of change of phyotplankton biomass over time for two
phytoplankton populations. Figure 6a shows that phytoplantkon bioBw$}kfor the loosing
species tends to zero (after a certain time this species dies out). Also, phytoplantkon biomass
B (t) for the wining species tends to a steady-state bioBBassegardless of initial conditions.

It can be noticed at the begin of this simulation ( &sh) that magenta line decreases because
of population 2 and blue line increases in that period.

Figure 6b shows that phytoplantkon biom&sst) for the loosing species tends to zero (after
a certain time this species dies out). Also, phytoplantkon biofBa&g for the wining species
tends to a steady-state biomdssg, regardless of initial conditions. It can be noticed at the
begining of this simulation ( rstL h) that cyan line decreases because of population 1 and red
line increases in that period, like in Figure 6a .

Steady state biomass of each species for this model are de ned as:

B,=— — 1; 5.32
1 kBl Zn ( )
B,=— — 1: 5.33
2 kBZ Zm ( )

There are two cases for populations in this model:
a) The rst case is when population 1 beats population 2, which means that the steady-state
biomass value for population 2 is equal to zero:

B, =0: (5.34)

b) The second case is when population 2 beats population 1, which means that the steady-state
biomass value for population 1 is equal to zero:

B, =0: (5.35)
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(a) Case when population 1 wins{=0:22, ,=0:21)

(b) Case when population 2 wins{ =0:21;, ,=0:22)

Figure 6: Change of biomass B(t) over time in monochromatic model for two phytoplankton populations.
Steady-state biomassBg andB, are given with red and blue dashed line. Blue and cyan full line show
phytoplankton biomas€81(t). Red and magenta full line show phytoplankton bionisg4). Different

start points of lines correspond to different initial biomass conditions.
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Figure 7 shows two different situations of change of optically coupled critical d&qati¥
andS,(t) over time for monochromatic model with two phytoplankton populations. Red and
blue line correspond to initial biomass @fL. mgChlm 2. Magenta and cyan line correspond
to initial biomass 00:9 mgChim 3.

Figure 7a shows the case when population 2 wins. In this case initial slope for popula-
tion 2 is greater than for population 1= 0:22 mgC (mgChl) *W 'm 2h , ; =0:21
mgC (mgChl) *W m 2h 1). Loss rate for each phytoplankton population has the same
valueL, = L, = 10:2 s *. Blue and cyan line, which show value 8§(t), over time tend to
xed value of mixed layer depth which is set at, = 150 m regardless of initial conditions.
They tend to the same value regardless of initial conditions.

Figure 7b shows the case when population 1 wins. In this case the initial slope for popula-
tion 1 is greater than for population 2, = 0:22 mgC (mgChl) *W 'm 2h t, , =0:21
mgC (mgChl) *W m 2h 1). Loss rate for each phytoplankton population has the same
valueL; = L, = 10:2 s 1. Red and magenta curve, which show valu&gt), over time tend
to xed value of the mixed layer depth, which is setzgt = 150 m. They tend to the same
value regardless of initial conditions.
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(a) Case when population 1 wins{=0:22, ,=0:21)

(b) Case when population 2 wins{ =0:21;, >, =0:22

Figure 7: Change of optically coupled critical deptl® (t) and Sy(t) over timet. Blue dashed line
shows the mixed layer depth,, red and magenta line show optically coupled critical de§ifit), blue
and cyan line show optically coupled critical dea(t). Different start points of lines correspond to
different initial biomass conditions.
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Figure 8: Change of irradiancd (t) over timet at mixed layer deptlz,,. Red dashed line shows
steady-state irradiance,; , blue dashed line shows steady-state irradiahgeblue and cyan line show
irradiancel (t). Different start points of blue lines correspond to different initial biomass conditions.

Using the equations (5.34) and (5.35) we can get two different values of steady-state irradi-
ance depending on which population wins:

|0e (Kw+kp 1Bl)zm

l, : (5.36)

|, = lpe (Kw*ke2Bz)zm. (5.37)

Figure 8 shows that irradiand€t), regardless of initial condition, tends to a steady-state
irradiancel , which is iradiance of the wining species in this case. Steady-state irradiance in

this model is de ned as:
= lge (Kw+kg1Bj++ kBZBz)Zm: (538)
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Table 3. Parameters used in a monochromatic model for two phytoplankton populations.

Parametery Amount | Unit

) 350 Wm 2

Ly 10.1 st

L, 10.2 s 1

Zm 150 m

1 0.21 mgC (mgChl) *W m 2h 1
> 0.22 mgC (mgChl) *W Im 2h 1!
Kw 0.04 m 1

Ke1 0.014 m? (mgChl) 1

Kg 2 0.015 m? (mgChl) 1

Bo (0.1-0.9)| mgChim 3

5.3 Monochromatic model with N phytoplankton populations

The mathematical procedure for N phytoplankton populations is exactly the same as for one
phytoplankton population. With N populations we have N advection-diffussion-reaction equa-
tions (5.1) for each population:

@B, @B _ _ @B,

+w—=D

@t @z @z

wherei is the index of each population. Primary producti(z; t) for each population is now
de ned as:

+P LB, for i=1;2::N; (5.39)

Kz

Pi= il = jlee for i=1;2":5N; (5.40)

where ; isinitial slope for each population aikdis atenuation coef cient which is now de ned
as:
X
K=Kyt (kBi Bi): (541)
i=1

Final equation for i-th biomass is:

@Bii _  lohBii Kz m o
@t~ Kz. 1 e LihB;i: (5.42)
Numerical form of equation (5.42) is:
Bi(n+1)= Bi(n)+ o t 1 e Kem Bi(n) L;iBi(n) t: (5.43)

Kzm
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We de neA; as the ratio of surface production to losses (uniform over depth):
'IO
A= —: 5.44
=T (5.44)

Optically uncoupled critical dept@; is the critical depth associated wil; = 0 and is de ned

as:

C = 1 Wo( Aie A1)+ A; (5.45)
Kw

Optically coupled critical deptls; is the critical depth associated wiklg; 6 O and is de ned

as:
1
S = & Wo( Aie A1)+ A; (5.46)
Kw+  (KsiBi)
=1

Table 4: Parameters used in a monochromatic model for N phytoplankton populatiémthe popula-
tionindex intherangé=1;2;3;::;;N).

Parameter; Amount Unit

lo 350 wm 2

L 10.1 + 0.1(i-1) s?

Zm 150 m

i 0.21 +0.01(i-1) | mgC(mgChl) W Im 2h 1
Kw 0.04 m 1

Kgi 0.014 + 0.001(i-1)) m?(mgChl) 1

Boi 0.5 mgChlm 3

N 5 -

Table 5: Obtained values for cricital depth, steady-state biomass and steady-state irradiance in a
monochromatic model for 10 phytoplankton populations.

Critical depthC | Steady-state bioma& | Steady-state irradiande
174.83 0.47 0.32
181.80 0.56 0.24
188.62 0.64 0.18
195.30 0.71 0.147
201.86 0.76 0.10
208.28 0.81 0.08
214.58 0.86 0.06
220.76 0.89 0.05
226.82 0.93 0.04
232.77 0.95 0.03
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In table 5 we can see that the population which has the highest value of critical@epith
steady-state bioma& has the lowest value of steady-state irradiance

Figure 9: Change of biomass B(t) over time in a monochromatic model for 5 phytoplankton populations.
Phtoplankton biomassds;, B2, B3, B4, Bs are given with blue, red, orange, purple and green line.
Steady-state bioma&k; is given with green dashed line.

Figure 9 shows that bioma&; of each loosing species (purple, orange, red and blue line)
tends to zero. Phytoplantkon biomaBs(t) for the wining species (green line) tends to its
steady-state bioma$®; (green dashed line). Only one population wins, regardless of initial
conditions. At the begining of this simulation it can be seen that the biomass of the wining
species (green full line) decreases then increases. The reason for this is that in the begining other
species have a greater in uenceldn until the victorious species overpower them. Steady-state
biomass for this model is de ned as:

B = Kw g

;= — 1, for i=1;2:;N: 5.47
kBi Zm ( )
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Figure 10: Change of optically coupled critical depth S(t) over time in a monochromatic model for 5
phytoplankton populations. Optically coupled critical dep8&) for each phtoplankton population are
described with different colours (blue 84, red for S,, orange forSg, purple forS, and green foiSs).
Green dashed line stands for the mixed layer depth

Figure 10 shows that optically coupled critical dep8i&) for the loosing species (purple,
orange, red and blue full line) do not convergezip Optically coupled critical deptls;(t)
(only one) for the wining species (green full line) tends to the mixed layer dgptfgreen
dashed line). Inital biomass &5 mgChlm 3. The wining species has the largest biom@ss
(only that species survives) and the depest optically coupled critical &pth

25



Robert Tucinov: Spectral formulation of critical depth theory

Figure 11: Change of irradiance I(t) at the mixed layer deth over time in a monochromatic model

for 5 phytoplankton populations. Steady-state irradiance for each population is described with different
dashed lines (red fadr,, orange forl ,, purple forl 5, green forl , and cyan foil 5). Blue full line stands

for irradiancel (t).

Figure 11 shows that irradiantét) at the mixed layer depth,, regardless of initial condi-
tions, tends to steady-state irradiahgavhich is equal to irradiance of the wining population 5
in this case. Steady-state irradiance in this model is de ned as:

[
Kw+ Kgi Bi Zm

I =1lge i=1 : (5.48)
We can get N different values of steady-state irradiance depending on which population wins:

I, = loe KwrkeiBi)zm.  for j=1;2;::;N (5.49)
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6 Spectral model

In this chapter the main idea is to observe the effect of spectrally resolved irradigrared ,
on one and two phytoplankton populations.

6.1 Spectral model with one phytoplankton population
Irradiance is now split into 2 spectral bandsandl ;:
l1= loie %% (6.1)

l2= e 2% (6.2)

wherelo; andl g, represent surface irradiance of each spectral bandKandndK , are the
atenuation coef cients which are now de ned as:

Ki1= Kw1+ KiB; (6.3)

K2 = sz + sz, (64)

whereK ,; andK ,, are seawater attenuation coef cienits,andk, are speci ¢ phytoplankton
attenuation coef cients. Attenuation coef cienks; andK , give the rate of decrease of light
intenstitied ; andl , with depth.

We will once again use the advection-diffussion-reaction equation (5.1) to get the nal equa-
tion for biomass: @8 @B &B
—+w—=D——+PB LB: 6.5
@t @z @z (6:5)

Primary productiorP is now de ned as:
P= 11+ o= ilgie %+ olge X2 (6.6)

where ; and ; are phytoplankton initial slopes which show the response (reaction) of phyto-
plankton to different light intensitiels andl,. By including equations (6.3), (6.4) and (6.6) in
equation (6.5) and integrating from the surface (0 m) to the mixed layer dgp}hve get:

Zn Zn Zn Zn Zn Zn
@B @B @B
@tdz+ W@ZdZZ D@dz+ loe KB+ ,lge K27B LBdz: (6.7)
0 0 0 0 0 0

After integration we get the following equation:

@Bi @B " ot ki ™o 2oz ks e .
——7Zm+ WB D— = ——e ¥ mi ——e "?* mBi LHMBiz,; (6.8)
@t @Z 0 Kl 0 K2 0
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wherehBi is de ned as:
Zm

Bdz = Biz,: (6.9)
0
The uxes on the surfaceéf and the mixed layer deptla{) are assumed to be zero:

@B_ .
wB D @z 0 for z=0; (6.10)
wB D %I} 0 for z= zy: (6.11)

By including these conditions and dividing equation (6.8)Ry the nal equation for change
of biomass over time is:

@Bi 1l o1 K : 2l o2 K , -
= 1 Zm B + 1 2m B LhBi: 6.12
@t K.z, e i K.z, e [ [ ( )

Now, the numerical form of equation (6.12) is:

olop t
KZZm

ilor t
K1Zm

B(h+1)= B(n)+ 1 e K B(n)+ 1 ek B(n) LB(n) t
(6.13)

where t is the time step and the time index. We now simulate the temporal evolution of

phytoplankton biomas8 using equation (6.13). Table 6 contains all the parameter values used

in this model.

Table 6: Parameters used in the spectral model for one phytoplankton population.

Parameten Value Unit

lo1 200 Wm 2

| 02 150 Wm 2

L 10 st

Zm 150 m

1 0.21 mgC (mgChl) *W Im 2h 1
5 0.22 mgC (mgChl) *W m 2h 1
Kwi 0.041 m !

Kw2 0.042 m !

k1 0.014 m? (mgChl) 1

ko 0.015 m? (mgChl) 1

Bo (0.1-0.9)| mgChim 3

28



Robert Tucinov: Spectral formulation of critical depth theory

Figure 12: Change of BiomasB (t) over time in a spectral model with one phytoplankton population
on the mixed layer depthy,. Green line shows phtoplankton biomdsawith initial condition of 0:1
mgChim 3, blue line shows biomad3 with initial condition 0of0:9 mgChlm 2 and red dashed line
shows steady-state biomaBs.

Figure 12 shows that biomass for one population with two spectral bands tends to a steady-
state biomass (in this case steady-state biomass is at@baagChlm 3). Biomass which is
higher than steady-state biomass at the begining of the simulation decreases over time until it
stabilizes. Biomass that is lower than steady-state biomass at the beginning of the simulation
increases over time until it stabilizes. The duration of the simulationhisvbich is suf cient
to see the stabilization of the biomass.
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Figure 13: Change of irradiance (t) over time at the mixed layer dep#, in a spectral model with
one phytoplankton population. Red and magenta line stand for a case when surface irradidfife is
Wm 2, blue and cyan line stand for a case when itl50 Wm 2. Different start points of lines
correspond to different initial biomass conditions.

Figure 13 shows change of two different irradiances over time at the mixed layerzlepth
Red and magenta line corresponds to surface irradiar@@00fV m 2, while blue and cyan line
shows the irradiance which corresponds to surface irradiants00fV m 2. The duration of the
simulation is5 h which is suf cient to see the stabilization of the irradiance. "Red" and "blue”
irradiance correspond to initial conditions for biomas8:afmgChlm 3. Red and magenta line
tend to a steady-state irradiarige "Blue" and "cyan" irradiance correspond to initial condition
for biomass 00:9 mgChlm 2. Blue and cyan line tend to a steady-state irradidgceCurves
that have irradiance on the begining of simulation greater than steady-state irradiance decrease
over time. Curves that have irradiance on the begining of simulation smaller than steady-state
irradiance increase over time.
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6.2 Spectral model with two phytoplankton populations
We again use irradiance which is split into two spectral bands:
l1= lore %% (6.14)

I, = g€ KZZ; (615)

wherel o; andl ¢, respresent surface irradiance of each spectral ban& amahdK , are atenu-
ation coef cients which are now de ned as:

Ki= Kwi1+ Ki1B1 + ki2B2; (6.16)

Kz = Kw2+ k21B1 + K22B> (6.17)

whereK ,; andK ,, are seawater attenuation coef cierids, andB, are phytoplankton biomass
for each populationk; s, k12, ko andky, are speci ¢ phytoplankton attenuation coef cients.
Attenuation coef cientK ; andK , give the rate of decrease of light intenstitiesandlI , with
depth.

We will once again use two advection-diffussion-reaction equations (5.1) to get the nal
equation for biomass of each population:

@8, ©@8__@B,

+ W——

@t @z @z
@B @B __ @B,

+w——-=0D

@t @ @z

Primary productiorP; andP, for each population is now de ned as:

+ P1B;  LiBy; (6.18)

+ P2Bz  L,Bo: (6.19)

_ _ K Koz.
Pi= ulit 1d2= nlne "+ lee "% (6.20)

_ _ K Koz.
Po= ali+ 2l2= alge "+ plge ©2% (6.21)

where 11, 12, 21and ,, are phytoplankton initial slopes which show the response (reaction)
of phytoplankton photosynthesis rate of each population to different light intenisitaasl| ;.

By including equations (6.20) and (6.21) in equations (6.18) and (6.19) and integrating from the
surface () m) to the depth of the mixed layez{) we get:

Zn Zn Zn
@dz+ W%%d2= D@éledz+ P1(z;t)dz L,B1dz; (6.22)

0 0 0 0 0

Zn Zn
@B

31



Robert Tucinov: Spectral formulation of critical depth theory

Zn Zn Zn Zn Zn
B
%Btdz + W%Eezdz = D @(ci%zz dz+ Py(z;t)dz L,B,dz: (6.23)
0 0 0 0 0
By solving these integrals we get:
@B i @B ot wy ™o 121 02B2 mo .
=—~z7,+ wB D— = ek MW —"feX mBii LBiizy:
@t " @Z 0 Kl 0 K2 0 (6 Zn;_)
@B, @B | m | m .
?Zth + wB D@Z . = il—lole Kz . hB,i 2K22026 Kz . Boi  LohBjizy;
(6.25)
wherehB i andhB,i are de ned as:
Zn
B.dz= Biizy; (6.26)
0
Zn
B,dz = Bsiz,: (6.27)
0
The uxes on the surface and the mixed layer depth are equal to zero:
wB; D%Ei =0 for z=0; (6.28)
wB; D%Ei =0 for z= zy; (6.29)
wB, D%BZ =0 for z=0; (6.30)
wB, D%BZ =0 for z= zy,: (6.31)

By including these conditions and dividing equations (6.24) and (6.25),bthe nal equations
are:

i | 01hB1i | 02hB1i .
@glt': BT ey BEEL G e LBy (632)
14m m
@B, | 01hBoi | 02hB i .
@Zt = 21(312 21 e Kumm +% 1 e e LiMBsi: (6.33)
m m

The numerical forms of these equations are:

l0:B1(n) t l02B1(N) t
1l 01B1(n) 1 o Kizm 4 12lo2 1(n) 1 e Ko LiBy(n) t

B.(n+1) = B{(n)+

(6.34)
l01B l02B
By(n+1) = B,(n)+ 21 OélzZ(n) t 1 e Kizm 4 22 Oézzz(n) t 1 e Kem  By(n) ¢
m m
(6.35)
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wheren is the time index and t is the time step. We now simulate the temporal evolution of
phytoplankton biomas8 using equations (6.32) and (6.33).

Figure 14: Change of biomass B(t) on the mixed layer depthin a spectral model with two phyto-
plankton population. Biomad3; is given with red line and biomad, is given with blue line. Red
dashed line shows steady-state bionfagsand blue dashed line shows steady-state biorBgss

Figure 14 shows phytoplankton biomass in a spectral model with two phytoplankton popula-
tions. Blue line shows phytoplankton biomdswhich has greater value of steady-state than
biomassB; in this situation B; < B,). Blue line tends to a steady-state biom&ss Red
line shows phytoplankton biomaBsg which has smaller value of steady-state biomass Ban
in this situation B; < B,). Red line tends to a steady state biom@ss The duration of the
simulation is15 hwhich is suf cient to see the stabilization of each biomass.

33



Robert Tucinov: Spectral formulation of critical depth theory

Figure 15: Change of irradiance$; and |, over time in a spectral model with two phytoplankton
populations at the mixed layer depth,. Red line corresponds to surface irradiance2fo Wm 2,
while blue line corresponds to surface irradiancel®0 Wm 2. Red dashed line shows steady-state
irradiancel ;, blue dashed line shows steady-state irradiahce

Figure 15 shows change of two parts of irradiance over time at the mixed layerziepth
a spectral model with two phytoplankton populations. The duration of the simulatith fis
which is suf cient to see the stabilization of the irradiance. Red line tends to a steady-state
irradiancel ;. Blue line tends to a steady-state irradiahgelnitial biomass for both irradiance
is 1 mgChlm 3. Table 6 contains all the parameter values used in this model in case when two
phytoplankton populations survives.
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Table 7. Parameters used in a spectral model with two phytoplankton population in case when two
populations survives (one example).

Parameter Value Unit

lo1 200 Wm 2

lo2 150 Wm 2

L, 10 st

L, 10 st

Zm 150 m

11 0.1 mgC (mgChl) *W m 2h 1!
12 0.15 mgC (mgChl) W m 2h !
21 0.15 mgC (mgChl) *W m 2h 1
29 0.105 | mgC(mgChl) *W 'm ?h 1
Kwi 0.04 m 1

Kw2 0.04 m 1

K11 0.05 m? (mgChl) 1

K12 0.02 m? (mgChl) 1

ko1 0.02 m? (mgChl) 1

Koo 0.05 m? (mgChl) 1

Bo1 (0.1-3)| mgChim 3

Bo2 (0.1-3)| mgChim 3
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7 Competition model for phytoplankton

The idea is to apply the analysis of the competition model in chapter 2 to our phytoplankton
model. We will use equations of spectral model for two phytoplankton populations (6.32) and
(6.33) and equalize them with zero to get stable states for each biomass:

@B 11l01B1 K 12l 02B1 K

= 1 e®'m + 22 -1 e "2 LB, =0; 7.1
at Kz Kozn 1B1=0; (7.1)
@B _  2iloiBo 1 e Kizm 4 221 02B2 1 eKim  |B,=0- (7.2)
@t K1Zm Kzzm 2=2 . .

Figure 16 shows the phase space of two phytoplankton biomass. In that space we can see
"biomass ows". The arrows show us the ow or derivation of biomass (another example could
be wind) that pushes points on the lines (in some places stronger, in some places weaker) to the
end point. The different points from which the curves starts show different initial conditions.
Regardless of the initial conditions, the curves always end at the same point, depending on the
condition. If biomas$; wins then the curves end up on its axis and vice versa. In the case
when both species survive, the curves will not end up on the any axes, but somewhere in the
phase space.

Figure 16a shows 3 lines (orange, blue and green) that take 3 different initial conditions
for biomass at the beginning of the simulation. Orange line is correspondi(@.t0B o)
= (1, 1), blue line is corresonding (@ 10; B2o) = (2, 1) and green line is corresponding to
(B10; B2o) = (2:5; 2:5). All 3 lines end at the same point@;; B,) = (1:22 2:28). This point
Is closer to the y axisH, axis) than the x axisH; axis) on the graph, which mean that biomass
B, has a higher steady-state value than bionBasgopulation 2 has more than population 1).
In this case, both populations survive on the end of simulation.

Figure 16b shows 3 lines that take 3 different initial conditions for biomass at the beginning of
the simulation. Orange line is correspondingBao; B,o) = (1 ; 1), green line is corresponding
to (B1o; B2o) = (1 ;2) and blue line is corresponding (B 10; B2o) = (2 :5; 2:5). All 3 lines end
at the same point §B1; B,) = (2:28; 1:22). This point is closer to the x axi8¢ axis) than the
y axis B, axis) on the graph, which mean that biomBsshas a higher steady-state value than
biomassB, (population 1 has more than population 2). In this case, both populations survive
on the end of simulation.

Figure 16¢ shows 3 lines that take 3 different initial conditions for biomass at the beginning of
the simulation. Blue line is corresponding(®10; B2o) = (1 ;1), orange line is corresponding
to (B1o; B2o) = (2;2) and green line is corresponding B 10; Boo) = (2;3). All 3 lines end
at the same point gB1;B,) = (0;5). This point is on the y axisE, axis) on the graph,
which mean that population with biomaBs is winner (steady-state value is not zero) and
population with biomasB; is looser (steady-state is zero). In this case, population 2 at the end
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of simulation survives, while population 1 dies.

Figure 16d shows 3 lines corresponding to 3 different initial conditions for biomass at the
beginning of the simulation. Blue line is correspondingdBao; B2o) = (1 ;2), orange line is
corresponding t¢B0; B2o) = (2;3) and green line is corresponding (B 10; B2o) = (1;1).

All 3 lines end at the same point é8,;B,) = (3:82 0). This point is on the x axisH; axis)

on the graph, which mean that population with biomBgss winner (steady-state of biomass
is not zero) and population with biomaBs is looser (steady-state of biomass is zero). In this
case, population 1 at the end of simulation survives, while population 2 dies.

(@) Casewhen 12 = 21 =0:15 11=0:1 (b) Case when 12 = 23 =0:15and 31 =0:105
and 22, =0:105 and ,,=0:1

(c)Casewhen 11 = 21 =0:15 ,,=0:15 (d) Case when 11 =0:15, 12=0:1and
and 12=0:1L 21= 22=0:105

Figure 16: The phase space of two phytoplankton biongd) and B,(t) in a spectral model with

two phytoplankton populations. The arrows on the gures show biomass ows that actually push certain
points in a certain direction. The different points from which the curves (green, orange and blue) starts
show different initial conditions for biomass.
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Figure 17 shows null clines of phytoplankton biomass for various casesg pf 15, »1 and
22 . In case the curves intersect, both species can survive. In the case when one curve is above
the other, it means that the biomass corresponding to curve above has won the competition and
has beaten the one below. It can be noticed that these curves look quite similar to the curves in
Chapter 2 where we talked about the competititon model in general.

(a) Casewhen 11 = 2 =0:15and (b) Case when 13 = 2,=0:1and
12= 22=0:1 12= 20=0:15

(c)Casewhen 1= 1= »1=0:15and (d) Casewhen ;= 12= 51 =0:15and
22=0:1 11=0:1

Figure 17: Shematic phase trajectories for the various casesof 12, 21 and 2. Blue curve stands
for equation(7.1), orange curve stands for equatign.2).
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8 Conclusion

At the beginning of this work a basic competition model, that shows competition of different
species for same resource, is described. Figure 1 shows different outcomes of competition for
two species. The idea in this work was to apply this competition model way of thinking to
Sverdrup's model of critical depth, which describes the necessary conditions for phytoplankton
survival in the ocean. In order to calculate the expression for the change of biomass over time,
the problem was formulated as a typical advection-diffusion-reaction model and was integrated
over depth for each type of phytoplakton. Initially, we explored how light intensity affects one
species of phytoplankton. For this case, Figure 4 and 5 show the change in biomass and light
intensity over time. Further in the paper, the same effect of light intensity was observed for two
and more phytoplankton species. Graphs were obtained for biomass in which it can be seen
that of the N phytoplantkon populations only one can win. The winner is the phytoplankton
population that needs the least light.

In the second part of this work, we observed the effect of spectrally resolved light on one and
two phytoplankton populations. For two phytoplantkon populations we observed that in certain
situations both species can survive. Further in the work, we applied the general competition
model to a speci c case of phytoplankton. Using different equations ((2.4), (2.5), (7.1) and
(7.2)) in the general and speci ¢ (phytoplankton) competition model, very similar graphs for
different situations were obtained (Figure 1 and 17). Also, at the end of the work, Figure 16
Is obtained which shows the phase space of two different phytoplankton types in which arrows
represent biomass ows. These ows are actually derivatives of biomass over time that “push”
the starting points on the graphs to some end points. The starting points of the curves represent
different initial conditions, while the ending points depict which species wins the competition.

This work is a continuation of the well-known theory of the part of physical oceanography
related to phytoplankton and spring blooms. In this work the competition model, critical depth
theory and a primary production model are connected with a monochromatic and a spectral
model for phytoplankton. This theory has been experimentally con rmed which is mentioned
in [11] and other works. Many works mentioned in the literature are connected with this topic.
This work shows that competition model works well. This topic could be extended to look at a
richer light spectrum on the surface and more populations, which would further complicate the
mathematical derivation and the nal equations obtained. Also, we could take different forms
of light intensity and in that way look at what kind of graphs and results we will get.
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A Appendix - codes

This chapter presents codes used in this thesis that were needed to obtain graphs for different
situations. MATLAB R2020b and Wolfram Mathematica 11.1 programs were used for coding.

In program MATLAB R2020b codes were made for monochromatic model with one, two and N
phytoplankton populations and the spectral model with one and two phytoplankton populations.
In program Wolfram Mathematica 11. codes were made for the competition model from the
literature [4] and competition model applied for phytoplankton.
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