
�S�p�e�c�t�r�a�l� �f�o�r�m�u�l�a�t�i�o�n� �o�f� �t�h�e� �c�r�i�t�i�c�a�l� �d�e�p�t�h� �t�h�e�o�r�y

�T�u�r�
�i�n�o�v�,� �R�o�b�e�r�t

�M�a�s�t�e�r�'�s� �t�h�e�s�i�s� �/� �D�i�p�l�o�m�s�k�i� �r�a�d

�2�0�2�1

�D�e�g�r�e�e� �G�r�a�n�t�o�r� �/� �U�s�t�a�n�o�v�a� �k�o�j�a� �j�e� �d�o�d�i�j�e�l�i�l�a� �a�k�a�d�e�m�s�k�i� �/� �s�t�r�u�
�n�i� �s�t�u�p�a�n�j�:� �U�n�i�v�e�r�s�i�t�y� �o�f� 

�S�p�l�i�t�,� �U�n�i�v�e�r�s�i�t�y� �o�f� �S�p�l�i�t�,� �F�a�c�u�l�t�y� �o�f� �s�c�i�e�n�c�e� �/� �S�v�e�u�
�i�l�i�a�t�e� �u� �S�p�l�i�t�u�,� �P�r�i�r�o�d�o�s�l�o�v�n�o�-�m�a�t�e�m�a�t�i�
�k�i� 

�f�a�k�u�l�t�e�t

�P�e�r�m�a�n�e�n�t� �l�i�n�k� �/� �T�r�a�j�n�a� �p�o�v�e�z�n�i�c�a�:�h�t�t�p�s�:�/�/�u�r�n�.�n�s�k�.�h�r�/�u�r�n�:�n�b�n�:�h�r�:�1�6�6�:�0�7�1�2�5�9

�R�i�g�h�t�s� �/� �P�r�a�v�a�:�A�t�t�r�i�b�u�t�i�o�n�-�N�o�n�C�o�m�m�e�r�c�i�a�l�-�N�o�D�e�r�i�v�a�t�i�v�e�s� �4�.�0� �I�n�t�e�r�n�a�t�i�o�n�a�l

�D�o�w�n�l�o�a�d� �d�a�t�e� �/� �D�a�t�u�m� �p�r�e�u�z�i�m�a�n�j�a�:�2�0�2�2�-�0�8�-�0�8

�R�e�p�o�s�i�t�o�r�y� �/� �R�e�p�o�z�i�t�o�r�i�j�:

�R�e�p�o�s�i�t�o�r�y� �o�f� �F�a�c�u�l�t�y� �o�f� �S�c�i�e�n�c�e

https://urn.nsk.hr/urn:nbn:hr:166:071259
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://repozitorij.pmfst.unist.hr
https://zir.nsk.hr/islandora/object/pmfst:1264
https://repozitorij.svkst.unist.hr/islandora/object/pmfst:1264
https://dabar.srce.hr/islandora/object/pmfst:1264


University of Split

Faculty of Science

SPECTRAL FORMULATION OF THE

CRITICAL DEPTH THEORY

Master thesis

Robert Tur�cinov

Split, September 2021



Zahvale

Zahvaljujem svom mentoru doc. dr. sc. �arku Kova�cu koji mi je svojim stru�cnim savjetima

pomogao i motivirao me tijekom izrade ovog rada.

Zahvaljujem�clanovima povjerenstva za obranu diplomskog rada profesorici doc. dr. sc. Ivani

Weber te profesorici doc. dr. sc. Jadranki Šepić na stru�cnim komentarima i savjetima tijekom
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Robert Tur�cinov: Spectral formulation of critical depth theory

1 Introduction

Phytoplankton (plant plankton) are free-�oating autotrophic organisms living in ocean. The

word phytoplankton was �rst used by the German scientist Victor Heusen in 1887 and comes

from the Greek word "phyton" which means plant, and "planktos" which means wanderer or

tramp. These organisms �rst appeared two billion years ago. Phytoplantkon is found in the sur-

face illuminated layer of the ocean where there is enough sunlight needed for photosynthesis.

Phytoplankton actively participate in the carbon cycle due to carbon assimilation in photosyn-

thesis. Phytoplankton biomass contains only one percent of the carbon of the entire biosphere,

and the life cycle of phytoplankton is much shorter than the life cycle of terrestrial plants. It is

therefore extremely sensitive to changes in the environment, but it is also an enviromental reg-

ulator due to the enormous carbon �ow in global primary production. Phytoplantkon form the

basis of the food chain in rivers, seas and oceans. Their photosynthetic activity is responsible

for almost 50 % of global primary production.

The regulation of the environment is also in�uenced by man (anthropogenic in�uence). Ac-

cording to some theories, oil is formed after dead organisms such as plankton remain trapped

beneath sedimentary rocks exposed to high pressure and temperature. Nowadays, the carbon

stored in these deposits is used as fuel and released into the atmosphere which affects climate

change. Primary production process removes carbon dioxide and releases oxygen. Phytoplank-

ton that sinks to the seabed consequnetly reduces the concentration of carbon in the atmosphere.

This process is called "the biological pump". Global phytoplankton primary production is es-

timated at about 50 PgC per year, of which about 8 % is needed to maintain the total annual

world �shing efforts. With the above we see that the research of primary production of the

oceans and seas is of great interest for �sheries and the study of the climate system. Since the

surface of the ocean is huge, research of the primary production necessarily involves measuring

and modelling the process itself, for which different approaches have been developed.

In 1953 Norwegian oceanographer and meteorologist H. U. Sverdrup published an article [1]

in which he proposed the concept of the critical depth to explain the initiation of the spring

bloom in the North Atlantic. Considering the work before him, Sverdrup was the �rst to make

a mathematical model of critical depth theory. Sverdrup's model was among the �rst models to

explore physical - biological interactions in the ocean. His work has now been applied, adapted

and tested across many aquatic systems worldwide.

Critical depth theory uses the following assumptions:

1) Whithin the surface layer turbulance is strong enough to distributes the plankton homoge-

neously through the layer.

2) Whithin the mixed layer photosynthesis is not limited by a lack of nutrients.

3) The production of organic matter by photosinthesis is proportional to the light energy at

depth.

1



Robert Tur�cinov: Spectral formulation of critical depth theory

Using the above assumptions we can obtain an expression for the critical depth. The exact

value of critical depth depends on the incoming solar radiation, amongst other things.

There are two different parts of the critical depth concept that Sverdrup proposes [2]: the �rst

part deals with the use of the law of conservation of mass in the water column to calculate the

change in the amount of phytoplankton concentration. In this part he uses formulas (known

before his work, proposed by Gran and Braarud in 1935) which are axiomatic (taken as correct

whithout testing). The second part refers to the study of the main factors responsible for the

formation of blooms (these are hypotheses amenable to testing). In general, we can say that

in Svedrup's model the biological dynamics in the ocean is described by equations which are

based on the principles of the law of conservation of mass (mass balance).

There are three important depths that need to be mentioned in this work [2]:

1) Critical depth (biological depth horizon) is the depth to which phytoplantkon can be sus-

tained.

2) Mixing depth or mixed layer depth is the depth of active mixing.

3) Euphotic depth is the depth to which light can penetrate.

Based on Sverdrup's work, models were made that gave a new perspective on phytoplankton

dynamics and various factors responsible for phytoplankton blooms. Phytoplantkon blooms

have been described as periods of rapid (explosive) growth in phytoplantkon biomass. It is im-

portant to note that some blooms are fast (happen quickly, have short periods), while some

blooms are long lasting (have long periods). Blooms are actually a condition of elevated

(increased) phytoplantkon concentrations. The concentration of the photosynthetic pigment

chlorophyll (Chl) is taken as a measure of phytoplankton concentration. It can be detect from

space.

One of the processes that is of societal importance and is related to primary production is

upwelling. Upwelling is an oceanographic phenomenon that involves wind-driven motion of

dense, cooler, and usually nutrient-rich water from deep water towards the ocean surface, re-

placing the warmer, usually nutrient-depleted surface water. The nutrient-rich upwelled water

stimulates the growth and reproduction of primary producers such as phytoplankton. Due to the

biomass of phytoplankton and presence of cool water in these regions, upwelling zones can be

identi�ed by cool sea surface temperatures (SST) and high concentrations of chlorophyll-a. [3]

The idea of this work is to apply Sverdrup's model to a monochromatic and a spectral model

for phytoplankton competition. We begin with a basic competition model for two species.

2
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In Table 1 all parameters and variables used in monochromatic and spectral model for phyto-

plankton populations are listed.

Table 1: Parameters and variables used in this work.

Variable's name Variable's mark Variable's unit

Primary production P = P(z; t) mgC m� 3 h� 1

Primary production for each population Pi = Pi (z; t) mgC m� 3 h� 1

Phytoplankton biomass B = B (z; t) mgChl m� 3

Phytoplankton biomass for each population B i = B i (z; t) mgChl m� 3

Irradiance (light intensity) I = I (z; t) W m � 2

Two spectral bands of irradiance I 1 = I 1(z; t), I 2 = I 2(z; t) W m � 2

Attenuation coef�cient K = K (z; t) m� 1

Optically uncoupled critical depth C = const: m

Optically coupled critical depth S = S(t) m

Parameter's name Parameter's mark Parameter's unit

Surface irradiance I 0 = const: W m � 2

Loss (mortality) rate L = const: s� 1

Loss rate for each population L i = const: s� 1

Mixed layer depth zm = const: m

Critical depth zc = const: m

Initial slope (growth rate) � = const: mgC (mgChl) � 1 W � 1 m� 2 h� 1

Initial slope for each population � i = const: mgC (mgChl) � 1 W � 1 m� 2 h� 1

Seawater attenuation coef�cient K W = const: m� 1

Speci�c attenuation coef�cient kB = const: m2 (mgChl) � 1

Speci�c attenuation coef�cient for each populationkBi = const: m2 (mgChl) � 1

Initial phytoplankton biomass B0 = const: mgChl m� 3

Number of populations N = const: -

Index of population i = 1 ; :::; N -

Time index n -

Depth z m

Time t h

Time step � t h

Diffusion coef�cient D m2 s� 1

3
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2 Competition model

In this model [4], the subject of observation are two species which compete for the same lim-

ited food source or in some way inhibit each other's growth. Using 2-species Lotka-Volterra

competition model we obtain the change in quantity of each species (N1 andN2) over time [4]:

dN1

dt
= r1N1

�
1 �

N1

K 1
� b12

N2

K 1

�
; (2.1)

dN2

dt
= r2N2

�
1 �

N2

K 2
� b21

N1

K 2

�
; (2.2)

wherer1 andr2 are the linear birth rates,K 1 andK 2 are the carrying capacities (enviromental

capacities) andb12 andb21 are measures of the competitive effect ofN1 andN2. It is useful to

introduce the substitutions:

u1 =
N1

K 1
; u2 =

N2

K 2
; � = r1t; � =

r2

r1
; a12 = b12

K 2

K 1
; a21 = b21

K 1

K 2
: (2.3)

Now equations (2.1) and (2.2) become:

du1

d�
= u1

�
1 � u1 � a12u2

�
= f 1(u1; u2); (2.4)

du2

d�
= �u 2

�
1 � u2 � a21u1

�
= f 2(u1; u2): (2.5)

The steady states are solutions for whichf 1(u1; u2) = f 2(u1; u2) = 0 .

On Figure 1 we can see four different situations in the phase space for various cases ofa12

anda21. Blue and orange lines are called nulclines and they represent steady states of equations

(2.4) and (2.5).

In the �rst case, shown in Figure 1a), wherea12 < 1 with a21 < 1 there is a stable steady

state where both species coexist. For example, if carrying capacitiesK 1 andK 2 are the same

and interspeci�c competition isb12 < 1 andb21 < 1, then the two species have low population

size (competition is not aggresive which means that one population will not be exterminated).

On Figure 1a) points on theu1 axis are(1; 0) and(0; 1=a21) and on theu2 axis are(0; 1) and

(0; 1=a12), where points are de�ned as(u1; u2). If the b12 andb21 are about the same and theK 1

andK 2 are different, it is not easy to say what will happen.

In the second case, shown in Figure 1b), wherea12 > 1 anda21 > 1, if the K 's are about

equal, then theb12 > 1 andb21 > 1.

In the third case, shown in Figure 1c), in which the interspeci�c competition of one species

is much stronger than the other (b21 >> b 12), or the carrying capities are suf�ciently different

(K 1 6= K 2), the result is thatu1 species dominates and the other speciesu2 dies out.

4
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In the fourth case, shown in Figure 1d), in which the interspeci�c competition of one species

is much stronger than the other (b12 >> b 21), or the carrying capities are suf�ciently different

(K 1 6= K 2), the result is thatu2 species dominates and the other speciesu1 dies out.

(a) Case whena12 < 1 anda21 < 1 (b) Case whena12 > 1 anda21 > 1

(c) Case whena12 < 1 anda21 > 1 (d) Case whena12 > 1 anda21 < 1

Figure 1: Phase plane for the various cases ofa12 and a21. Blue curve represents steady state for
equation(2.4), orange curve represents steady state for equation(2.5).
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3 Primary production model

Phytoplantkon primary production P is de�ned as rate of anorganic carbon assimiliaton by

phytoplantkon. Generally, primary production depends on time (t) and depth (z). Chlorophyll

concentrationis used as a measure ofphytoplantkon biomassB. Primary production depends

of avaliable light and is de�ned as:

P = �I; (3.1)

where� is initial slope andI is light intensity (irradiance).Irradiance is taken as a meassure

of available sunlight and is de�ned as a light energy that in units of time passes through a

unit area perpendicular to the direction of light propagation. Generally, irradiance is a function

that depends on time (t) and depth (z). Beer-Lambert law dictates that irradiance decreasses

exponentially with depth:

I = I 0e� Kz ; (3.2)

whereI 0 is surface irradiance andK is the attenuation coef�cient which shows the rate of

decline of the amount of light in the sea.

Figure 2 respresents irradiance as function of depth mentioned in equation (3.2) and primary

production as function of depth mentioned in equation (3.1). It can be seen that the primary

production and irradiance decrease exponentially with depth. Used surface irradianceI 0 is 350

Wm� 2, intial slope� is 0:2 mgC(mgChl)� 1W � 1m� 2h� 1 and attenuation coef�cientK is 0:04

m� 1.

In the open ocean the attenuation coef�cient depends on biomass concentration:

K = K w + kB B; (3.3)

whereK w is seawater attenuation coef�cient representing light atenuation processes due to scat-

tering and apsorption of particles and solutes,kB is speci�c phytoplankton attenuation coef�-

cient representing light attenuation processes due to apsorption and scattering by phytoplankton.

6



Robert Tur�cinov: Spectral formulation of critical depth theory

Figure 2: Change of irradiance (yellow curve) and primary production (green curve) over depth in a
primary production model.
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Robert Tur�cinov: Spectral formulation of critical depth theory

4 Critical depth theory

In 1953 Harald Urlik Sverdrup set up a simple mathematical model based on a water column that

connects the roles of vertical water mixing, light attenuation with depth and seasonal increase in

light. The Sverdrup's model is a model based on an earlier one proposed by Riley [5] in 1946.

Gordon Arthur Riley was an American biological oceanographer who studied the dynamics

of plankton ecosystems. The critical depth hypothesis is the solution of Sverdrup's model.

This hypothesis predicts that blooms begins when seasonally mixed layer is shallower than the

critical depthzc.

The model rests on the following assumptions [6]:

1) Phytoplankton growth rate is proportional to the light intensity (� / I ).

2) The light extintion coef�cient (atenuation coef�cient)K is constant (K = const.).

3) Phytoplankton loss rate is constant (L = const.).

For light intensity Sverdrup used Beer-Lambert's law:

I = I 0e� Kz ; (4.1)

whereI 0 is surface irradiance required for the photosynthesis process.

Sverdrup's model can be understood in terms of differential equation for the time evolution

of phytoplankton concentration (biomass)B [6]:

@B
@t

= ( � � L)B +
@
@z

�
D

@B
@z

�
; (4.2)

where� is the rate of phytoplankton growth,L is phytoplankton loss rate andD is the vertical

mixing coef�cient (diffusion coef�cient).

The assumption that the vertical mixingD is strong enough to evenly distribute the organisms

in the ocean's surface mixed layer allows the integration of equation (4.2) from the surface

(0) to the bottom of the mixed layer (depthzm ) resulting in the equation (z axis is positive

downwards):
@hBi

@t
=

�I 0

kzm
(1 � e� kzm )hB i � LhB i ; (4.3)

wherehB i is the average phytoplankton biomass (over depth):

hB i =

zmZ

0

Bdz: (4.4)

8
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Setting@hB i
@t = 0, an equation is obtained for the critical depthzc for which the integral over

depth of growth is equal to the integral over depth of loss:

�I 0

Kz c
(1 � e� Kz c ) = L: (4.5)

The value ofzc depends on 4 model parameters:� , L , k andI 0. If zc > z m the phytoplankton

can be sustained in the mixed layer, ifzc < z m it can not.

9
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5 Monochromatic model

5.1 Monochromatic model with one phytoplankton population

In order to obtain the expression for the time evolution of phytoplankton biomass in the mixed-

layer, it is necessary to integrate the advection-diffussion-reaction equation by depth:

@B
@t

+ w
@B
@z

= D
@2B
@z2

+ PB � LB; (5.1)

where @B
@t is local change of biomass,w@B

@z is the advection term,D @2B
@z2 is the diffusion term

in which D is the diffusion coef�cient,P = P(z; t) is primary production which is function of

depthz (axis of depth is positive downwards) and timet, B = B(z; t) is phytoplantkon biomass

which is also function of depthz and timet. This equation describes the evolution of biomass

over time.

Using equations (3.1) and (3.2) primary productionP(z; t) is:

P = �I = �I 0e� Kz ; (5.2)

whereK is atenuation coef�cient which is de�ned in equation (3.3). By integrating equation

(5.1) from the surface (0) to the base of the mixed layer (zm ) we get:

zmZ

0

@B
@t

dz +

zmZ

0

w
@B
@z

dz =

zmZ

0

D
@2B
@2z

dz +

zmZ

0

�I 0e� Kz Bdz �

zmZ

0

LBdz: (5.3)

After integration, the equation (5.3) yields:

@hBi
@t

zm +
�

wB � D
@B
@z

� �
�
�
�

zm

0

= �
�I 0

K
e� Kz

�
�
�
�

zm

0

hB i � LhB i zm ; (5.4)

wherehB i is de�ned as:
zmZ

0

Bdz = hB i zm : (5.5)

One of the assumptions in this model is that there is no interaction at the boundaries (0 andzm )

which means that �ux on the surface and the mixed-layer base is equal to zero:

wB � D
@B
@z

= 0 for z = 0; (5.6)

wB � D
@B
@z

= 0 for z = zm : (5.7)
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Robert Tur�cinov: Spectral formulation of critical depth theory

Equation (5.4) devided byzm now becomes equation which is recognized as Sverdrup's equa-

tion in (4.3):
@hBi

@t
=

�I 0

Kz m

�
1 � e� Kz m

�
hB i � LhB i : (5.8)

Numerical form of equation (5.8) is:

B (n + 1) = B(n) +
�I 0� t
Kz m

�
1 � e� Kz m

�
B (n) � LB (n)� t; (5.9)

where� t is the time step andn the time index.

We de�neA as the ratio of surface production to losses (uniform over depth):

A =
�I 0

L
: (5.10)

Optically uncoupled critical depthC is the critical depth associated withkB = 0 and is de�ned

as [7]:

C =
1

K w

�
W0(� Ae� A ) + A

�
; (5.11)

whereW0 is Lambert W function. The optically uncoupled critical depth is independent of time

C 6= C(t). Optically coupled critical depthS is the critical depth associated withkB 6= 0 and

is de�ned as [7]:

S =
1

K w + kB B

�
W0(� Ae� A ) + A

�
: (5.12)

Optically coupled critical depth is time-dependedS = S(t). We now simulate the temporal

evolution of phytoplankton biomassB using equation (5.9). Parameters used in this model can

be seen in Table 2.

Table 2: Parameters used in a monochromatic model for one phytoplankton population.

Parameter Amount Unit

I 0 350 Wm � 2

L 10 s� 1

zm 150 m

� 0.2 mgC(mgChl) � 1W � 1m� 2h� 1

K W 0.04 m� 1

kB 0.014 m2(mgChl) � 1

B0 (0.1 - 0.9) mgChl m� 3
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Robert Tur�cinov: Spectral formulation of critical depth theory

Figure 3: Change of optically coupled critical depthS(t) over timet in monochromatic model with
one phytoplankton population. Blue dashed line shows base of the mixed layerzm and other lines (blue,
green, red and purple full line) show optically coupled critical depthS(t). Different start points of lines
correspond to different initial biomass conditions.

Figure 3 shows that optically coupled critical depthS(t) for one phytoplankton population,

regardless of given initial conditions, tends to the base of the mixed layer depthzm . Curves that

take values of initial biomass less than0:5 mgChl m� 3 (blue curves) decrease over time to a

�xed value of mixed layer depth of150 m. Curves that take values of initial biomass greater

than0:5 mgChl m� 3 (green, red and purple line) increase over time to a �xed value of mixed

layer depth of150 m. The duration of this simulation is 8h which is suf�cient to reach the

stabilized value of optically coupled critical depth.
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Figure 4: Change of biomass B(t) over time in a monocromatic model for one phytoplankton population
at the mixed layer depthzm . Green dashed line shows steady-state biomass and other lines (purple, red,
green, cyan and blue full line) show change of biomassB (t) over time. Different start points of lines
correspond to different initial biomass conditions.

Figure 4 shows that biomass for one phytoplankton population, regardless of biomass initial

conditions, tends to a steady-state biomass given by [7]:

B � =
K w

kB

�
C
zm

� 1
�

: (5.13)

Biomass at the begining of simulation is0:1; 0:3; 0:5; 0:7; 0:9 mgChl m� 3 (arbitrarily selected

values). Curves that use values of initial biomass less than0:5 mgChl m� 3 (blue and cyan line)

increase over time to a �xed value of steady-state biomass. Curves that used values of initial

biomass greater than0:5 mgChl m� 3 (green, red and purple line) decrease over time to a �xed

value of steady-state biomass. The duration of this simulation is 5h which is suf�cient to reach

the stabilized value of biomass.
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Figure 5: Change of irradianceI (t) over timet at the mixed layer depthzm . Red dashed line shows
steady-state irradianceI � and other lines (blue, cyan, green, yellow and purple line) show irradiance
I (t). Different start points of lines correspond to different initial biomass conditions.

Figure 5 shows that irradiance for one population at the base of the mixed layer (zm ) tends to

a steady-state irradiance which is de�ned as:

I � = I 0e� (K w + kB B � )zm : (5.14)

Steady-state irradiance pro�le has the same shape as the irradiance pro�le de�ned in equation

(3.2). The only difference is that this irradiance uses steady-state biomassB � and mixed layer

depthzm . In Figure 5 curves with values of initial biomass less than0:5 mgChl m� 3 (blue and

cyan line) decrease over time to a �xed value of steady-state irradiance. Curves with values of

initial biomass greater than0:5 mgChl m� 3 (green, red and purple line) increase over time to a

�xed value of steady-state irradiance.
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5.2 Monochromatic model with two phytoplankton populations

The mathematical procedure for two phytoplankton populations is exactly the same as for one

population. We will use indices 1 and 2 to indicate population. With two populations we have

two advection-diffussion-reaction equations (5.1), one for each population:

@B1
@t

+ w
@B1
@z

= D
@2B1

@2z
+ P1 � L1B1; (5.15)

@B2
@t

+ w
@B2
@z

= D
@2B2

@2z
+ P2 � L2B2: (5.16)

whereB1 andB2 are phytoplantkon biomass for each population,P1 andP2 are primary produc-

tion terms for each population,L1 andL2 are phytoplankton mortality rate for each population.

Primary productionsP1 andP2 for each population are de�ned as:

P1 = � 1I = � 1I 0e� Kz ; (5.17)

P2 = � 2I = � 2I 0e� Kz ; (5.18)

where� 1 and� 2 are initial slope for each population,K is atenuation coef�cient which is now

de�ned as:

K = K w + kB 1B1 + kB 2B2; (5.19)

whereK w is seawater attenuation coef�cient,kB 1 andkB 2 are speci�c phytoplankton attenua-

tion coef�cient for each population. It is important to note that in this case, the two phytoplank-

ton populations both dictateK which means that they can affect each other.

Final equations for the two phytoplantkon populations are now:

@hB1i
@t

=
� 1I 0

Kz m

�
1 � e� Kz m

�
hB1i � L1hB1i ; (5.20)

@hB2i
@t

=
� 2I 0

Kz m

�
1 � e� Kz m

�
hB2i � L2hB2i : (5.21)

wherehB1i andhB2i are de�ned as:

zmZ

0

B1dz = hB1i zm ; (5.22)

zmZ

0

B2dz = hB2i zm : (5.23)
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Robert Tur�cinov: Spectral formulation of critical depth theory

Numerical form of equations (5.20) and (5.21) is:

B1(n + 1) = B1(n) +
� 1I 0� t
Kz m

�
1 � e� Kz m

�
B1(n) � L1B1(n)� t; (5.24)

B2(n + 1) = B2(n) +
� 2I 0� t
Kz m

�
1 � e� Kz m

�
B2(n) � L2B2(n)� t; (5.25)

where� t is the time step andn the time index.

We de�neA1 andA2 as the ratio of surface production to losses (uniform over depth):

A1 =
� 1I 0

L1
; (5.26)

A2 =
� 2I 0

L2
: (5.27)

Optically uncoupled critical depthsC1 andC2 are the critical depths associated withkB 1 = 0

andkB 2 = 0 which are de�ned as [7]:

C1 =
1

K w

�
W0(� A1e� A 1 ) + A1

�
; (5.28)

C2 =
1

K w

�
W0(� A2e� A 2 ) + A2

�
: (5.29)

Optically coupled critical depthsS1 andS2 are the critical depths associated withkB 1 6= 0 and

kB 2 6= 0 which are de�ned as [7]:

S1 =
1

K w + kB 1B1 + kB 2B2

�
W0(� A1e� A 1 ) + A1

�
; (5.30)

S2 =
1

K w + kB 1B1 + kB 2B2

�
W0(� A2e� A 2 ) + A2

�
: (5.31)

Figures 7a and 7b show two different situations for optically coupled critical depthsS1 andS2

for two phytoplankton populations.
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Figure 6 shows two different situations of change of phyotplankton biomass over time for two

phytoplankton populations. Figure 6a shows that phytoplantkon biomassB2(t) for the loosing

species tends to zero (after a certain time this species dies out). Also, phytoplantkon biomass

B1(t) for the wining species tends to a steady-state biomassB �
1, regardless of initial conditions.

It can be noticed at the begin of this simulation (�rst1 h) that magenta line decreases because

of population 2 and blue line increases in that period.

Figure 6b shows that phytoplantkon biomassB1(t) for the loosing species tends to zero (after

a certain time this species dies out). Also, phytoplantkon biomassB2(t) for the wining species

tends to a steady-state biomassB �
2, regardless of initial conditions. It can be noticed at the

begining of this simulation (�rst1 h) that cyan line decreases because of population 1 and red

line increases in that period, like in Figure 6a .

Steady state biomass of each species for this model are de�ned as:

B �
1 =

K w

kB 1

�
C1

zm
� 1

�
; (5.32)

B �
2 =

K w

kB 2

�
C2

zm
� 1

�
: (5.33)

There are two cases for populations in this model:

a) The �rst case is when population 1 beats population 2, which means that the steady-state

biomass value for population 2 is equal to zero:

B �
2 = 0: (5.34)

b) The second case is when population 2 beats population 1, which means that the steady-state

biomass value for population 1 is equal to zero:

B �
1 = 0: (5.35)

17



Robert Tur�cinov: Spectral formulation of critical depth theory

(a) Case when population 1 wins (� 1 = 0 :22; � 2 = 0 :21)

(b) Case when population 2 wins (� 1 = 0 :21; � 2 = 0 :22)

Figure 6: Change of biomass B(t) over time in monochromatic model for two phytoplankton populations.
Steady-state biomassesB �

1 andB �
2 are given with red and blue dashed line. Blue and cyan full line show

phytoplankton biomassB1(t). Red and magenta full line show phytoplankton biomassB2(t). Different
start points of lines correspond to different initial biomass conditions.
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Figure 7 shows two different situations of change of optically coupled critical depthsS1(t)

andS2(t) over time for monochromatic model with two phytoplankton populations. Red and

blue line correspond to initial biomass of0:1 mgChl m� 3. Magenta and cyan line correspond

to initial biomass of0:9 mgChl m� 3.

Figure 7a shows the case when population 2 wins. In this case initial slope for popula-

tion 2 is greater than for population 1 (� 2 = 0:22 mgC (mgChl)� 1 W � 1 m� 2 h� 1, � 1 = 0:21

mgC (mgChl)� 1 W � 1 m� 2 h� 1). Loss rate for each phytoplankton population has the same

valueL1 = L2 = 10:2 s� 1. Blue and cyan line, which show value ofS2(t), over time tend to

�xed value of mixed layer depth which is set atzm = 150 m regardless of initial conditions.

They tend to the same value regardless of initial conditions.

Figure 7b shows the case when population 1 wins. In this case the initial slope for popula-

tion 1 is greater than for population 2 (� 1 = 0:22 mgC (mgChl)� 1 W � 1 m� 2 h� 1, � 2 = 0:21

mgC (mgChl)� 1 W � 1 m� 2 h� 1). Loss rate for each phytoplankton population has the same

valueL1 = L2 = 10:2 s� 1. Red and magenta curve, which show value ofS1(t), over time tend

to �xed value of the mixed layer depth, which is set atzm = 150 m. They tend to the same

value regardless of initial conditions.
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(a) Case when population 1 wins (� 1 = 0 :22; � 2 = 0 :21)

(b) Case when population 2 wins (� 1 = 0 :21; � 2 = 0 :22)

Figure 7: Change of optically coupled critical depthsS1(t) and S2(t) over timet. Blue dashed line
shows the mixed layer depthzm , red and magenta line show optically coupled critical depthS1(t), blue
and cyan line show optically coupled critical depthS2(t). Different start points of lines correspond to
different initial biomass conditions.
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Figure 8: Change of irradianceI (t) over timet at mixed layer depthzm . Red dashed line shows
steady-state irradianceI �

1 , blue dashed line shows steady-state irradianceI �
2 , blue and cyan line show

irradianceI (t). Different start points of blue lines correspond to different initial biomass conditions.

Using the equations (5.34) and (5.35) we can get two different values of steady-state irradi-

ance depending on which population wins:

I �
1 = I 0e� (K w + kB 1B �

1 )zm ; (5.36)

I �
2 = I 0e� (K w + kB 2B �

2 )zm ; (5.37)

Figure 8 shows that irradianceI (t), regardless of initial condition, tends to a steady-state

irradianceI �
2 which is iradiance of the wining species in this case. Steady-state irradiance in

this model is de�ned as:

I � = I 0e� (K w + kB 1B �
1 ++ kB 2B �

2 )zm : (5.38)
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Table 3: Parameters used in a monochromatic model for two phytoplankton populations.

Parameter Amount Unit

I 0 350 W m � 2

L 1 10.1 s� 1

L 2 10.2 s� 1

zm 150 m

� 1 0.21 mgC (mgChl) � 1 W � 1 m� 2 h� 1

� 2 0.22 mgC (mgChl) � 1 W � 1 m� 2 h� 1

K W 0.04 m� 1

kB 1 0.014 m2 (mgChl) � 1

kB 2 0.015 m2 (mgChl) � 1

B0 (0.1 - 0.9) mgChl m� 3

5.3 Monochromatic model with N phytoplankton populations

The mathematical procedure for N phytoplankton populations is exactly the same as for one

phytoplankton population. With N populations we have N advection-diffussion-reaction equa-

tions (5.1) for each population:

@Bi
@t

+ w
@Bi
@z

= D
@2B i

@2z
+ Pi � L i B i for i = 1; 2; :::; N; (5.39)

wherei is the index of each population. Primary productionPi (z; t) for each population is now

de�ned as:

Pi = � i I = � i I 0e� Kz for i = 1; 2; :::; N; (5.40)

where� i is initial slope for each population andK is atenuation coef�cient which is now de�ned

as:

K = K w +
NX

i =1

(kBi B i ): (5.41)

Final equation for i-th biomass is:

@hB i i
@t

=
� i I 0hB i i

Kz m

�
1 � e� Kz m

�
� L i hB i i : (5.42)

Numerical form of equation (5.42) is:

B i (n + 1) = B i (n) +
� i I 0� t
Kz m

�
1 � e� Kz m

�
B i (n) � L i B i (n)� t: (5.43)
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We de�neA i as the ratio of surface production to losses (uniform over depth):

A i =
� i I 0

L i
: (5.44)

Optically uncoupled critical depthCi is the critical depth associated withkBi = 0 and is de�ned

as:

Ci =
1

K w

�
W0(� A i e� A i ) + A i

�
: (5.45)

Optically coupled critical depthSi is the critical depth associated withkBi 6= 0 and is de�ned

as:

Si =
1

K w +
NP

i =1
(kBi B i )

�
W0(� A i e� A i ) + A i

�
: (5.46)

Table 4: Parameters used in a monochromatic model for N phytoplankton populations (i is the popula-
tion index in the rangei = 1 ; 2; 3; :::; N ).

Parameter Amount Unit

I 0 350 Wm � 2

L i 10.1 + 0.1(i-1) s� 1

zm 150 m

� i 0.21 + 0.01(i-1) mgC(mgChl) � 1W � 1m� 2h� 1

K W 0.04 m� 1

kBi 0.014 + 0.001(i-1) m2(mgChl) � 1

B0i 0.5 mgChl m� 3

N 5 -

Table 5: Obtained values for cricital depth, steady-state biomass and steady-state irradiance in a
monochromatic model for 10 phytoplankton populations.

Critical depthC Steady-state biomassB � Steady-state irradianceI �

174.83 0.47 0.32

181.80 0.56 0.24

188.62 0.64 0.18

195.30 0.71 0.147

201.86 0.76 0.10

208.28 0.81 0.08

214.58 0.86 0.06

220.76 0.89 0.05

226.82 0.93 0.04

232.77 0.95 0.03
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In table 5 we can see that the population which has the highest value of critical depthC and

steady-state biomassB � has the lowest value of steady-state irradianceI � .

Figure 9: Change of biomass B(t) over time in a monochromatic model for 5 phytoplankton populations.
Phtoplankton biomassesB1, B2, B3, B4, B5 are given with blue, red, orange, purple and green line.
Steady-state biomassB �

5 is given with green dashed line.

Figure 9 shows that biomassB i of each loosing species (purple, orange, red and blue line)

tends to zero. Phytoplantkon biomassB5(t) for the wining species (green line) tends to its

steady-state biomassB �
5 (green dashed line). Only one population wins, regardless of initial

conditions. At the begining of this simulation it can be seen that the biomass of the wining

species (green full line) decreases then increases. The reason for this is that in the begining other

species have a greater in�uence onK , until the victorious species overpower them. Steady-state

biomass for this model is de�ned as:

B �
i =

K w

kBi

�
Ci

zm
� 1

�
; for i = 1; 2; :::; N: (5.47)
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Figure 10: Change of optically coupled critical depth S(t) over time in a monochromatic model for 5
phytoplankton populations. Optically coupled critical depthsSi (t) for each phtoplankton population are
described with different colours (blue forS1, red forS2, orange forS3, purple forS4 and green forS5).
Green dashed line stands for the mixed layer depthzm .

Figure 10 shows that optically coupled critical depthsSi (t) for the loosing species (purple,

orange, red and blue full line) do not converge tozm . Optically coupled critical depthSi (t)

(only one) for the wining species (green full line) tends to the mixed layer depthzm (green

dashed line). Inital biomass is0:5 mgChl m� 3. The wining species has the largest biomassB

(only that species survives) and the depest optically coupled critical depthS.
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Figure 11: Change of irradiance I(t) at the mixed layer depthzm over time in a monochromatic model
for 5 phytoplankton populations. Steady-state irradiance for each population is described with different
dashed lines (red forI �

1 , orange forI �
2 , purple forI �

3 , green forI �
4 and cyan forI �

5 ). Blue full line stands
for irradianceI (t).

Figure 11 shows that irradianceI (t) at the mixed layer depthzm , regardless of initial condi-

tions, tends to steady-state irradianceI �
5 which is equal to irradiance of the wining population 5

in this case. Steady-state irradiance in this model is de�ned as:

I � = I 0e
�
�

K w +
NP

i =1

�
kBi B �

i

��
zm

: (5.48)

We can get N different values of steady-state irradiance depending on which population wins:

I �
i = I 0e� (K w + kBi B �

i )zm ; for i = 1; 2; :::; N (5.49)
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6 Spectral model

In this chapter the main idea is to observe the effect of spectrally resolved irradiancesI 1 andI 2

on one and two phytoplankton populations.

6.1 Spectral model with one phytoplankton population

Irradiance is now split into 2 spectral bandsI 1 andI 2:

I 1 = I 01e� K 1z; (6.1)

I 2 = I 02e� K 2z; (6.2)

whereI 01 and I 02 represent surface irradiance of each spectral band andK 1 andK 2 are the

atenuation coef�cients which are now de�ned as:

K 1 = K w1 + k1B; (6.3)

K 2 = K w2 + k2B; (6.4)

whereK w1 andK w2 are seawater attenuation coef�cients,k1 andk2 are speci�c phytoplankton

attenuation coef�cients. Attenuation coef�cientsK 1 andK 2 give the rate of decrease of light

intenstitiesI 1 andI 2 with depth.

We will once again use the advection-diffussion-reaction equation (5.1) to get the �nal equa-

tion for biomass:
@B
@t

+ w
@B
@z

= D
@2B
@2z

+ PB � LB: (6.5)

Primary productionP is now de�ned as:

P = � 1I 1 + � 2I 2 = � 1I 01e� K 1z + � 2I 02e� K 2z; (6.6)

where� 1 and� 2 are phytoplankton initial slopes which show the response (reaction) of phyto-

plankton to different light intensitiesI 1 andI 2. By including equations (6.3), (6.4) and (6.6) in

equation (6.5) and integrating from the surface (0 m) to the mixed layer depth (zm ) we get:

zmZ

0

@B
@t

dz+

zmZ

0

w
@B
@z

dz =

zmZ

0

D
@2B
@2z

dz+

zmZ

0

� 1I 01e� K 1zB +

zmZ

0

� 2I 02e� K 2zB �

zmZ

0

LBdz: (6.7)

After integration we get the following equation:

@hBi
@t

zm +
�

wB � D
@B
@z

� �
�
�
�

zm

0

= �
� 1I 01

K 1
e� K 1z

�
�
�
�

zm

0

hB i �
� 2I 02

K 2
e� K 2z

�
�
�
�

zm

0

hB i � LhB i zm ; (6.8)
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wherehB i is de�ned as:
zmZ

0

Bdz = hB i zm : (6.9)

The �uxes on the surface (0) and the mixed layer depth (zm ) are assumed to be zero:

wB � D
@B
@z

= 0 for z = 0; (6.10)

wB � D
@B
@z

= 0 for z = zm : (6.11)

By including these conditions and dividing equation (6.8) byzm , the �nal equation for change

of biomass over time is:

@hBi
@t

=
� 1I 01

K 1zm

�
1 � e� K 1zm

�
hB i +

� 2I 02

K 2zm

�
1 � e� K 2zm

�
hB i � LhB i : (6.12)

Now, the numerical form of equation (6.12) is:

B (n + 1) = B(n) +
� 1I 01� t
K 1zm

�
1 � e� K 1zm

�
B (n) +

� 2I 02� t
K 2zm

�
1 � e� K 2zm

�
B (n) � LB (n)� t;

(6.13)

where� t is the time step andn the time index. We now simulate the temporal evolution of

phytoplankton biomassB using equation (6.13). Table 6 contains all the parameter values used

in this model.

Table 6: Parameters used in the spectral model for one phytoplankton population.

Parameter Value Unit

I 01 200 W m � 2

I 02 150 W m � 2

L 10 s� 1

zm 150 m

� 1 0.21 mgC (mgChl) � 1W � 1 m� 2 h� 1

� 2 0.22 mgC (mgChl) � 1W � 1 m� 2 h� 1

K w1 0.041 m� 1

K w2 0.042 m� 1

k1 0.014 m2 (mgChl) � 1

k2 0.015 m2 (mgChl) � 1

B0 (0.1 - 0.9) mgChl m� 3
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Figure 12: Change of BiomassB (t) over time in a spectral model with one phytoplankton population
on the mixed layer depthzm . Green line shows phtoplankton biomassB with initial condition of0:1
mgChl m� 3, blue line shows biomassB with initial condition of0:9 mgChl m� 3 and red dashed line
shows steady-state biomassB � .

Figure 12 shows that biomass for one population with two spectral bands tends to a steady-

state biomass (in this case steady-state biomass is at about0:6 mgChl m� 3). Biomass which is

higher than steady-state biomass at the begining of the simulation decreases over time until it

stabilizes. Biomass that is lower than steady-state biomass at the beginning of the simulation

increases over time until it stabilizes. The duration of the simulation is 5h which is suf�cient

to see the stabilization of the biomass.
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Figure 13: Change of irradianceI (t) over time at the mixed layer depthzm in a spectral model with
one phytoplankton population. Red and magenta line stand for a case when surface irradiance is200
W m � 2, blue and cyan line stand for a case when it is150 W m� 2. Different start points of lines
correspond to different initial biomass conditions.

Figure 13 shows change of two different irradiances over time at the mixed layer depthzm .

Red and magenta line corresponds to surface irradiance of200 W m� 2, while blue and cyan line

shows the irradiance which corresponds to surface irradiance of150 W m� 2. The duration of the

simulation is5 h which is suf�cient to see the stabilization of the irradiance. "Red" and "blue"

irradiance correspond to initial conditions for biomass of0:1 mgChl m� 3. Red and magenta line

tend to a steady-state irradianceI �
1 . "Blue" and "cyan" irradiance correspond to initial condition

for biomass of0:9 mgChl m� 3. Blue and cyan line tend to a steady-state irradianceI �
2 . Curves

that have irradiance on the begining of simulation greater than steady-state irradiance decrease

over time. Curves that have irradiance on the begining of simulation smaller than steady-state

irradiance increase over time.
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6.2 Spectral model with two phytoplankton populations

We again use irradiance which is split into two spectral bands:

I 1 = I 01e� K 1z; (6.14)

I 2 = I 02e� K 2z; (6.15)

whereI 01 andI 02 respresent surface irradiance of each spectral band andK 1 andK 2 are atenu-

ation coef�cients which are now de�ned as:

K 1 = K w1 + k11B1 + k12B2; (6.16)

K 2 = K w2 + k21B1 + k22B2 (6.17)

whereK w1 andK w2 are seawater attenuation coef�cients,B1 andB2 are phytoplankton biomass

for each population,k11, k12, k21 andk22 are speci�c phytoplankton attenuation coef�cients.

Attenuation coef�cientsK 1 andK 2 give the rate of decrease of light intenstitiesI 1 andI 2 with

depth.

We will once again use two advection-diffussion-reaction equations (5.1) to get the �nal

equation for biomass of each population:

@B1
@t

+ w
@B1
@z

= D
@2B1

@2z
+ P1B1 � L1B1; (6.18)

@B2
@t

+ w
@B2
@z

= D
@2B2

@2z
+ P2B2 � L2B2: (6.19)

Primary productionP1 andP2 for each population is now de�ned as:

P1 = � 11I 1 + � 12I 2 = � 11I 01e� K 1z + � 12I 02e� K 2z; (6.20)

P2 = � 21I 1 + � 22I 2 = � 21I 01e� K 1z + � 22I 02e� K 2z; (6.21)

where� 11, � 12, � 21 and� 22 are phytoplankton initial slopes which show the response (reaction)

of phytoplankton photosynthesis rate of each population to different light intensitiesI 1 andI 2.

By including equations (6.20) and (6.21) in equations (6.18) and (6.19) and integrating from the

surface (0 m) to the depth of the mixed layer (zm ) we get:

zmZ

0

@B1
@t

dz +

zmZ

0

w
@B1
@z

dz =

zmZ

0

D
@2B1

@2z
dz +

zmZ

0

P1(z; t)dz �

zmZ

0

L1B1dz; (6.22)
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zmZ

0

@B2
@t

dz +

zmZ

0

w
@B2
@z

dz =

zmZ

0

D
@2B2

@2z
dz +

zmZ

0

P2(z; t)dz �

zmZ

0

L2B2dz: (6.23)

By solving these integrals we get:

@hB1i
@t

zm +
�

wB � D
@B1
@z

� �
�
�
�

zm

0

= �
� 11I 01

K 1
e� Kz

�
�
�
�

zm

0

hB1i �
� 12I 02B2

K 2
e� Kz

�
�
�
�

zm

0

hB1i � L1hB1i zm ;

(6.24)
@hB2i

@t
zm +

�
wB � D

@B2
@z

� �
�
�
�

zm

0

= �
� 21I 01

K 1
e� Kz

�
�
�
�

zm

0

hB2i �
� 22I 02

K 2
e� Kz

�
�
�
�

zm

0

hB2i � L2hB2i zm ;

(6.25)

wherehB1i andhB2i are de�ned as:

zmZ

0

B1dz = hB1i zm ; (6.26)

zmZ

0

B2dz = hB2i zm : (6.27)

The �uxes on the surface and the mixed layer depth are equal to zero:

wB1 � D
@B1
@z

= 0 for z = 0; (6.28)

wB1 � D
@B1
@z

= 0 for z = zm ; (6.29)

wB2 � D
@B2
@z

= 0 for z = 0; (6.30)

wB2 � D
@B2
@z

= 0 for z = zm : (6.31)

By including these conditions and dividing equations (6.24) and (6.25) byzm , the �nal equations

are:

@hB1i
@t

=
� 11I 01hB1i

K 1zm

�
1 � e� K 1zm

�
+

� 12I 02hB1i
K 2zm

�
1 � e� K 2zm

�
� L1hB1i ; (6.32)

@hB2i
@t

=
� 21I 01hB2i

K 1zm

�
1 � e� K 1zm

�
+

� 22I 02hB2i
K 2zm

�
1 � e� K 2zm

�
� L1hB2i : (6.33)

The numerical forms of these equations are:

B1(n+1) = B1(n)+
� 11I 01B1(n)� t

K 1zm

�
1� e� K 1zm

�
+

� 12I 02B1(n)� t
K 2zm

�
1� e� K 2zm

�
� L1B1(n)� t;

(6.34)

B2(n+1) = B2(n)+
� 21I 01B2(n)� t

K 1zm

�
1� e� K 1zm

�
+

� 22I 02B2(n)� t
K 2zm

�
1� e� K 2zm

�
� L1B2(n)� t;

(6.35)
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wheren is the time index and� t is the time step. We now simulate the temporal evolution of

phytoplankton biomassB using equations (6.32) and (6.33).

Figure 14: Change of biomass B(t) on the mixed layer depthzm in a spectral model with two phyto-
plankton population. BiomassB1 is given with red line and biomassB2 is given with blue line. Red
dashed line shows steady-state biomassB �

1 and blue dashed line shows steady-state biomassB �
2.

Figure 14 shows phytoplankton biomass in a spectral model with two phytoplankton popula-

tions. Blue line shows phytoplankton biomassB2 which has greater value of steady-state than

biomassB1 in this situation (B �
1 < B �

2). Blue line tends to a steady-state biomassB �
2. Red

line shows phytoplankton biomassB1 which has smaller value of steady-state biomass thanB2

in this situation (B �
1 < B �

2). Red line tends to a steady state biomassB �
1. The duration of the

simulation is15 hwhich is suf�cient to see the stabilization of each biomass.
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Figure 15: Change of irradiancesI 1 and I 2 over time in a spectral model with two phytoplankton
populations at the mixed layer depthzm . Red line corresponds to surface irradiance of200 Wm� 2,
while blue line corresponds to surface irradiance of150 Wm� 2. Red dashed line shows steady-state
irradianceI �

1 , blue dashed line shows steady-state irradianceI �
2 .

Figure 15 shows change of two parts of irradiance over time at the mixed layer depthzm in

a spectral model with two phytoplankton populations. The duration of the simulation is15 h

which is suf�cient to see the stabilization of the irradiance. Red line tends to a steady-state

irradianceI �
1 . Blue line tends to a steady-state irradianceI �

2 . Initial biomass for both irradiance

is 1 mgChl m� 3. Table 6 contains all the parameter values used in this model in case when two

phytoplankton populations survives.
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Table 7: Parameters used in a spectral model with two phytoplankton population in case when two
populations survives (one example).

Parameter Value Unit

I 01 200 W m � 2

I 02 150 W m � 2

L 1 10 s� 1

L 2 10 s� 1

zm 150 m

� 11 0.1 mgC (mgChl) � 1W � 1m� 2h� 1

� 12 0.15 mgC (mgChl) � 1W � 1 m� 2 h� 1

� 21 0.15 mgC (mgChl) � 1W � 1 m� 2 h� 1

� 22 0.105 mgC (mgChl) � 1W � 1m� 2h� 1

K w1 0.04 m� 1

K w2 0.04 m� 1

k11 0.05 m2 (mgChl) � 1

k12 0.02 m2 (mgChl) � 1

k21 0.02 m2 (mgChl) � 1

k22 0.05 m2 (mgChl) � 1

B01 (0.1 - 3) mgChl m� 3

B02 (0.1 - 3) mgChl m� 3
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7 Competition model for phytoplankton

The idea is to apply the analysis of the competition model in chapter 2 to our phytoplankton

model. We will use equations of spectral model for two phytoplankton populations (6.32) and

(6.33) and equalize them with zero to get stable states for each biomass:

@B1
@t

=
� 11I 01B1

K 1zm

�
1 � e� K 1zm

�
+

� 12I 02B1

K 2zm

�
1 � e� K 2zm

�
� L1B1 = 0; (7.1)

@B2
@t

=
� 21I 01B2

K 1zm

�
1 � e� K 1zm

�
+

� 22I 02B2

K 2zm

�
1 � e� K 2zm

�
� L2B2 = 0: (7.2)

Figure 16 shows the phase space of two phytoplankton biomass. In that space we can see

"biomass �ows". The arrows show us the �ow or derivation of biomass (another example could

be wind) that pushes points on the lines (in some places stronger, in some places weaker) to the

end point. The different points from which the curves starts show different initial conditions.

Regardless of the initial conditions, the curves always end at the same point, depending on the

condition. If biomassB1 wins then the curves end up on its axis and vice versa. In the case

when both species survive, the curves will not end up on the any axes, but somewhere in the

phase space.

Figure 16a shows 3 lines (orange, blue and green) that take 3 different initial conditions

for biomass at the beginning of the simulation. Orange line is corresponding to(B10; B20)

= (1, 1), blue line is corresonding to(B10; B20) = (2, 1) and green line is corresponding to

(B10; B20) = (2 :5; 2:5). All 3 lines end at the same point at(B1; B2) = (1 :22; 2:28). This point

is closer to the y axis (B2 axis) than the x axis (B1 axis) on the graph, which mean that biomass

B2 has a higher steady-state value than biomassB1 (population 2 has more than population 1).

In this case, both populations survive on the end of simulation.

Figure 16b shows 3 lines that take 3 different initial conditions for biomass at the beginning of

the simulation. Orange line is corresponding to(B10; B20) = (1 ; 1), green line is corresponding

to (B10; B20) = (1 ; 2) and blue line is corresponding to(B10; B20) = (2 :5; 2:5). All 3 lines end

at the same point at(B1; B2) = (2 :28; 1:22). This point is closer to the x axis (B1 axis) than the

y axis (B2 axis) on the graph, which mean that biomassB1 has a higher steady-state value than

biomassB2 (population 1 has more than population 2). In this case, both populations survive

on the end of simulation.

Figure 16c shows 3 lines that take 3 different initial conditions for biomass at the beginning of

the simulation. Blue line is corresponding to(B10; B20) = (1 ; 1), orange line is corresponding

to (B10; B20) = (2 ; 2) and green line is corresponding to(B10; B20) = (2 ; 3). All 3 lines end

at the same point at(B1; B2) = (0 ; 5). This point is on the y axis (B2 axis) on the graph,

which mean that population with biomassB2 is winner (steady-state value is not zero) and

population with biomassB1 is looser (steady-state is zero). In this case, population 2 at the end
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of simulation survives, while population 1 dies.

Figure 16d shows 3 lines corresponding to 3 different initial conditions for biomass at the

beginning of the simulation. Blue line is corresponding to(B10; B20) = (1 ; 2), orange line is

corresponding to(B10; B20) = (2 ; 3) and green line is corresponding to(B10; B20) = (1 ; 1).

All 3 lines end at the same point at(B1; B2) = (3 :82; 0). This point is on the x axis (B1 axis)

on the graph, which mean that population with biomassB1 is winner (steady-state of biomass

is not zero) and population with biomassB2 is looser (steady-state of biomass is zero). In this

case, population 1 at the end of simulation survives, while population 2 dies.

(a) Case when� 12 = � 21 = 0 :15, � 11 = 0 :1
and� 22 = 0 :105

(b) Case when� 12 = � 21 = 0 :15 and� 11 = 0 :105
and� 22 = 0 :1

(c) Case when� 11 = � 21 = 0 :15, � 22 = 0 :15
and� 12 = 0 :1.

(d) Case when� 11 = 0 :15, � 12 = 0 :1 and
� 21 = � 22 = 0 :105

Figure 16: The phase space of two phytoplankton biomassB1(t) and B2(t) in a spectral model with
two phytoplankton populations. The arrows on the �gures show biomass �ows that actually push certain
points in a certain direction. The different points from which the curves (green, orange and blue) starts
show different initial conditions for biomass.
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Figure 17 shows null clines of phytoplankton biomass for various cases of� 11, � 12, � 21 and

� 22 . In case the curves intersect, both species can survive. In the case when one curve is above

the other, it means that the biomass corresponding to curve above has won the competition and

has beaten the one below. It can be noticed that these curves look quite similar to the curves in

Chapter 2 where we talked about the competititon model in general.

(a) Case when� 11 = � 22 = 0 :15and
� 12 = � 21 = 0 :1

(b) Case when� 11 = � 22 = 0 :1 and
� 12 = � 21 = 0 :15

(c) Case when� 11 = � 12 = � 21 = 0 :15and
� 22 = 0 :1

(d) Case when� 22 = � 12 = � 21 = 0 :15and
� 11 = 0 :1

Figure 17: Shematic phase trajectories for the various cases of� 11, � 12, � 21 and� 22. Blue curve stands
for equation(7.1) , orange curve stands for equation(7.2).

38



Robert Tur�cinov: Spectral formulation of critical depth theory

8 Conclusion

At the beginning of this work a basic competition model, that shows competition of different

species for same resource, is described. Figure 1 shows different outcomes of competition for

two species. The idea in this work was to apply this competition model way of thinking to

Sverdrup's model of critical depth, which describes the necessary conditions for phytoplankton

survival in the ocean. In order to calculate the expression for the change of biomass over time,

the problem was formulated as a typical advection-diffusion-reaction model and was integrated

over depth for each type of phytoplakton. Initially, we explored how light intensity affects one

species of phytoplankton. For this case, Figure 4 and 5 show the change in biomass and light

intensity over time. Further in the paper, the same effect of light intensity was observed for two

and more phytoplankton species. Graphs were obtained for biomass in which it can be seen

that of the N phytoplantkon populations only one can win. The winner is the phytoplankton

population that needs the least light.

In the second part of this work, we observed the effect of spectrally resolved light on one and

two phytoplankton populations. For two phytoplantkon populations we observed that in certain

situations both species can survive. Further in the work, we applied the general competition

model to a speci�c case of phytoplankton. Using different equations ((2.4), (2.5), (7.1) and

(7.2)) in the general and speci�c (phytoplankton) competition model, very similar graphs for

different situations were obtained (Figure 1 and 17). Also, at the end of the work, Figure 16

is obtained which shows the phase space of two different phytoplankton types in which arrows

represent biomass �ows. These �ows are actually derivatives of biomass over time that “push”

the starting points on the graphs to some end points. The starting points of the curves represent

different initial conditions, while the ending points depict which species wins the competition.

This work is a continuation of the well-known theory of the part of physical oceanography

related to phytoplankton and spring blooms. In this work the competition model, critical depth

theory and a primary production model are connected with a monochromatic and a spectral

model for phytoplankton. This theory has been experimentally con�rmed which is mentioned

in [11] and other works. Many works mentioned in the literature are connected with this topic.

This work shows that competition model works well. This topic could be extended to look at a

richer light spectrum on the surface and more populations, which would further complicate the

mathematical derivation and the �nal equations obtained. Also, we could take different forms

of light intensity and in that way look at what kind of graphs and results we will get.
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A Appendix - codes

This chapter presents codes used in this thesis that were needed to obtain graphs for different

situations. MATLAB R2020b and Wolfram Mathematica 11.1 programs were used for coding.

In program MATLAB R2020b codes were made for monochromatic model with one, two and N

phytoplankton populations and the spectral model with one and two phytoplankton populations.

In program Wolfram Mathematica 11. codes were made for the competition model from the

literature [4] and competition model applied for phytoplankton.
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