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1. Introduction
The general purpose of this thesis is to analyze the rich variety of disorder present in
liquids, especially binary mixtures involving at least one hydrogen bonding compo-
nent. The liquid state, as an intermediate state between the gas and the solid, is very
wide, encompassing also soft matter, such as liquid crystals and micro-emulsions [1].
Liquids in the soft matter category constitute of large molecules, larger than wa-
ter or alcohols. For example, N-(4-Methoxybenzylidene)-4-butylaniline (MBBA), a
molecule which makes up liquid crystals (Figure 1.1, upper panel), is much larger
than the molecules of water, acetone or mono-ol alcohols [2]. Similarly, surfactant
molecules such as sodium stearate (Figure 1.1, lower panel), which sit at the in-
terfaces between water and oil in micro-emulsions, are very similar to MBBA in
size [3, 4, 5]. These two liquids are characterized by the appearance of of meso-
scopic formations, which can go up to the size of 100 nm. These formations in-
clude ordered mono-domains in liquid crystals or micellar supra-structures in micro-
emulsions [6, 7, 8].

Figure 1.1.: The 2D structures of: MBBA
(upper panel) and sodium stearate (lower
panel). Both figures are taken from Pub-
Chem [9, 10].

However, in this thesis we study liquids
in which the structuring is in the 1-10
nm range at most, and is also lacking
any of the regular geometric features
which can be found in self-assembly.
One of the goals of this study is to con-
sider them as precursor states to more
organised forms of liquids, in which they
would share the same property of be-
ing “complex” liquids. The building
block for this complexity is the hydro-
gen bond. Associative liquids such as
water or alcohols, thanks to their hy-
drogen bonding properties, certainly fall into the category of complex liquids. On
the other hand, liquid argon is the classic example of a simple liquid [1]. There are
detailed studies of simple liquids, such as the famous textbook “Theory of Simple
Liquids” by Hansen and MacDonald [11], as well as many others on soft-matter,
such as “Soft matter physics: an introduction” by Kleman and Lavrentovich [12].
However, there are almost no specific studies of the complex liquids we mention in
this work. Even though water is notoriously known as a mysterious liquid [13], with
more than 60 anomalies in the liquid state alone [14, 15], aqueous mixtures are often
considered as a straightforward extension of “simple liquids”. It would be even hard

1



Chapter 1 Introduction

to prove, in a classical way, why one should pay any specific attention to water and
aqueous mixtures, aside from the complexity brought by angle dependent interac-
tions. Indeed, the majority of studies of such liquids uses the same statistical tool as
in simple liquids - the pair correlation function [16, 17, 18, 19, 20, 21, 22, 23]. This
poses the question if complex liquids require the study of higher rank correlation
functions, such as 3-body or higher correlations. In the absence of any explicit indi-
cation requiring these hard-to-compute quantities, it would indeed seem that both
simple and complex liquids can be satisfactorily understood from pair interactions
and pair correlations. In this work, we show that it is not so much the fact that
pair correlations are studied, but rather how the complexity manifests itself in an
entirely novel and unexpected fashion with the same statistical tools used to study
simple liquids.
At the heart of this complexity lie fluctuations, which make an important difference
between classical thermodynamics and statistical thermodynamics. Classical ther-
modynamics cannot explain fluctuations, since it consider matter as a continuum
endowed with field type properties, such as heat and energy. Statistical mechanics
introduces interacting particles and allow the computation of energy and heat as
emergent quantities [24]. For example, for a simple monoatomic liquid, the excess
internal energy is written as a weighted average of the pair interaction v(r) [11]:

Eex
N

= ρ

2

ˆ
g(r)v(r)d~r

where g(r) is the radial distribution function which plays the role of the statistical
weight function. Similarly, temperature is related to the average kinetic energy of
the particles through:

Ekin
N

= 3
2kBT

and the total energy is E = Ekin+Eex. The expression for the excess internal energy
above has the same mathematical structure for complex liquids, and would depend
on the orientational properties of the molecules, described by the molecular pair
interaction v(1, 2) = v(r,Ω1,Ω2), where Ωi describes the orientation of molecule
1. For each additional (orientational) degree of freedom, the kinetic energy would
contain orientational degrees of freedom as additional 1

kBT
terms [11]. From these

expressions, one sees that the final numerical values for Eex may not explicitly allow
to differentiate one type of liquid from another, if it is only for the magnitude of
this value. Energy is a collective thermodynamic property, so it cannot be invoked
to characterize the type of local structure we wish to analyze. In fact, none of the
thermodynamic properties can directly lead us to a pertinent analysis, since they
can only reflect averages over the entire system [24]. This is precisely the crux of the

2



Introduction

problem that we meet here. Statistical average is a very convenient tool to analyse
the large number of molecules in a system. However, that same statistical tool
seems to be an inconvenient obstacle for analyzing the heterogeneity which appears
in associating mixtures.

In order to better pinpoint the nature of this problem, we can compare a liquid of
flexible polymers with a gas of strong dipolar spheres. Such spheres tend to assemble
into chains [25], which are not of the same nature as the flexible polymers, since
they are labile. And the crucial question would be: how to describe such chains?
As polymers or in terms of individual particles? This problem does not seem to be
properly adressed in the current state of knowledge in liquids. Yet, this is the type
of problem which seems to be relevant for biological systems, where the constant
assembly and dissociation of many types of molecules and macromolecules happens
in a highly concerted fashion. In view of this problem, one may ask what are exactly
the difficulties with the current statistical description of liquids, which do not allow
one to investigate complex systems? It seems that the complexity is hidden inside
the statistical quantities, and the problem is to figure out how it is hidden, where it
is hidden, but also “what” is hidden. Indeed, we do not know how to characterize
this complexity in the first place.

To illustrate, let us refer to one of the most apparent problem that has emerged in
the past decades, the nature of the fluctuations in binary aqueous mixtures. This
problem appeared through the unusually large values of the so-called Kirkwood-
Buff integrals (KBI) [26, 27, 28, 29]. These quantities combine the integrals of the
species-species correlation functions gij(r) with thermodynamic quantities such as
the total and partial molar volumes, V and Vi, the isothermal compressibility κT
and the derivative of the chemical potentials by the mole fraction of one of the
components ∂µi

∂xi
(the corresponding expressions are given in section 2.3) [30]. The

derivation of Kirkwood and Buff indicates that these quantities reflect the concen-
tration fluctuations in the system [31]. However, this leads to a new issue: why
do some stable aqueous mixtures, such as tert-butanol-water, have concentration
fluctuations as high as those which are close to demixing, like 1-butanol-water [26]?
This is further complicated by the fact that the KBIs for some aqueous mixtures
are rather small, e.g. in aqueous DMSO [26].

Figure 1.2 shows the differences in the experimental KBIs of the aqueous TBA
and DMSO systems. Concentration fluctuations by themselves are not enough to
characterize such a big diversity in the magnitude and trend of the KBIs, given the
relatively small molecular differences between the two solvents (Figure 1.2). Both
molecules have a significant non-polar part in the molecule, but TBA has a hydroxyl
group which is a donor and acceptor, while DMSO has a single oxygen atom which
acts as an acceptor [32]. These are considerations at the single molecule level, which
prompts the question of how these small differences become magnified at the mixture
level. To better understand what is happening in terms of structuring, we turn to
the snapshots of the mixtures in Figure 1.3.
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Figure 1.2.: KBIs of aqueous TBA (left) and aqueous DMSO (right) as function of water
mole fraction (taken from Matteoli and Lepori [26]). The TBA and DMSO molecules
are shown to scale.

Figure 1.3.: Snapshpot of equimolar aqueous TBA system (left panel) and aqueous
DMSO (right panel). Both systems contain 2048 molecules. Water molecules are shown
in yellow and the solute molecules in cyan.

Figure 1.3 indicates that that there is a difference in the organization of these mix-
tures. TBA-water seems to be more heterogeneous than aqueous-DMSO, which is
particularly noticeable when observing water molecules. Water molecules in TBA-
water are grouped together in large, almost globular patches, while in aqueous
DMSO the same molecules forms chain-like clusters. Investigations of these sys-
tems in our group [33, 34] have shown that the structuring of water has a crucial
effect on the concentration fluctuations. The fact that water forms chain-like clusters
in DMSO-water is the reason why the concentration fluctuations are so low, as wit-
nessed by the KBIs [34]. These studies have implied that concentration fluctuations
are subordinate to local aggregative structures. The latter are detectable through
pre-peaks in atom-atom structure factors. The statistical study of such pre-peaks
is highly difficult because of the two spatial and temporal scales involved: one of
individual molecules, which move at the sub-pico-second scale, and the other of the
heterogeneity, which “moves” at nano-second scale [35]. Returning to Figure 1.3,
the hidden feature we were looking for is the heterogeneity. Previous studies have
hinted that this is a very moving feature, which shows different facets in different
systems [36, 37, 38, 39, 40, 41].

As hinted in the paragraphs above, the problems explored in this thesis are rooted
in the physico-chemical aspects of the constituent molecules, such as the nature of
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their interactions, but emerge in the collective properties of their liquid state. For
this reason, this thesis will study many different liquid mixtures, in order to pin-
point how concentration fluctuations coarsen into the specific heterogeneity we are
interested in, and how this depends on the nature of the components. Its aim is to
describe realistic mixtures, but mostly from a structural point of view. This may
appear very restrictive, especially when considering all the other properties which
are usually studied in physical chemistry, both experimentally and theoretically, and
one may wonder about the position of the present study within the general physical
chemistry and chemical physics areas. However, physical chemistry strives to un-
derstand either macroscopic properties or properties of single/very few molecules.
Individual molecules have many properties related to their electronic distribution
and its coupling with the internal nuclear distributions [42]. Usually, this type of
property is studied through quantum mechanics. The same methodology allows the
study of small clusters of molecules, in order to understand how they bind and act
in this context. While this is supposed to give an idea of how the same molecules
would behave in condensed liquid phases, it is also often not the case. One good ex-
ample is the polarisation of water molecules, which is very different in the gas phase,
in small clusters and in neat water [43, 44]. The description of the polarisation of
water in the liquid phase has garnered controversies ever since early water models
were proposed [44, 45, 46].
At the opposite end of the spectrum, macroscopic properties represent spatial aver-
ages over many local distributions and tend to wash out such details. The relevance
of such details is then to be found in some anomalies developed by macroscopic mea-
sures. Once again, the anomalous properties of water are a good example [15, 14, 47].
Its properties stem from specific microscopic dispositions of the water molecules at
the local level [48, 49, 50]. Water molecules tend to form Hbonds, but a continuous
paving of the entire liquid with these bonds is not possible, unless it is in the solid
ice form [47] 1. Since the Hbond connected form cannot pave the entire volume,
it must have only some local extent, which must also come in a variety of forms,
buried within more disordered forms of water. The notion about water existing
in two forms has surfaced right at the start of the scientific interest for this sub-
stance, with Röngten in 1892 [52]. Since then, several studies have tried to prove
or disprove this idea [48, 53, 54, 55, 56]. In a way, neat water itself appears as
a micro-heterogeneous liquid. Incidentally, the 2005 issue of Science, mentioning
all the unsolved problems in Science, ranging from pure Mathematics all the way
to social sciences, positioned the structure of water as the 21st problem, between
superfluidity and the glass transition [57]. Since then, this particular problem has
not been really solved.
The nature of this problem perfectly describes the weakness of the current position
in the understanding of liquids. The amount to which local heterogeneity influences

1On a sidenote, there are more than a dozen forms of ice, mostly depending on applied pressure,
indicating that even the ordered form has several frustrations under pressure, which when
releaved lead to other forms of ice [51].
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the macroscopic properties is largely misunderstood. The Split and Paris groups
have brought a new understanding to this problem, based on the idea that micro-
heterogeneity was a k-fluctuation, with k 6= 0, and to be differentiated from fluctu-
ations which correspond to macroscopic observables (principally through the KBI).
This is a novelty in the field of molecular liquids and their mixtures, for the vast ma-
jority of authors, even when dealing with complex mixtures like aqueous methanol
or aqueous ethanol, concentrate their efforts on ellucidating the short range organi-
zation [58, 22, 19, 59, 20, 18, 16, 60, 61], thermodynamic [61, 60, 58, 62, 20, 63] or
transport properties [64, 58, 20, 16, 65, 66]. In contrast, the work presented in this
thesis pays particular attention to the medium to long range ordering.

This research also has tentative tangents towards biophysics, as micro-heterogeneity
could play an important role in the way various large molecules exist inside bio-
systems. Perhaps such macromolecules could be considered as active forms of micro-
heterogeneity, as opposed to the passive micro-heterogeneity found in aqueous and
non-aqueous mixtures, but that is to be defined by subsequent investigations. Either
way, the present study may be a stepping stone towards ellucidating the microscopic
mechanisms for self-assembly and giving a more fleshed out description of bio-matter
in general.

The main tools used in this thesis are statistical tools issued from the theory of
liquids, wherein the data are obtained by molecular dynamics (MD) computer sim-
ulations. MD is done within the framework of classical mechanics, relying on solving
the equation of motion of all the particles in a simulation box, hence follow their in-
dividual trajectories for a given time frame [67]. Of course, this means that quantum
aspects are not considered in our study. Furthermore, the principal interest of this
research is the analysis of static properties, such as pair correlation functions, and
thermodynamic properties. Dynamic quantities, like diffusion coefficients or time
dependent van Hove correlation functions, are not featured. This may bring up the
question of using Monte Carlo methods, which are simpler since they are limited to
the calculation of energy [68]. However, the necessity of simulating large systems
for long simulation times, in order to track the evolution of micro-heterogeneity,
requires the use of fast and efficient programs. It’s much more practical to use an
already available program package, like Gromacs [69, 70, 71], for a homemade Monte
Carlo code is too slow at the current stage of development to be an efficient rival.

The details of the chapters can be summarised and put into perspective of the ideas
that fed into the present work, in the following way.

Chapter 2 is an exposé of the theoretical foundations relevant for this work. First, the
computer simulation methodology is detailed as it is the main tool utilized. Then,
important results of the statistical theory of liquids are covered, pertaining to the
structural analysis, such as pair correlation functions and site-site structure factors.
The connection between site-site structure factors and X-ray radiation scattering is
detailed. Finally, through the Kirkwood-Buff integrals, results related to density
and concentration fluctuations are elucidated.
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Chapter 3 presents the concept of simple and complex disorder in mixtures, exem-
plified through binary mixtures with benzene as the common solvent. The chapter
is based on one publication [72], clarifying issues such as what generates MH, is
water necessary to have MH in the system and the influence of solute shape on
MH. Chapter 4 discusses the concept of ideal mixtures, concerning specifically mix-
tures of small monohydric alcohols (mono-ols). When mixed with water, methanol
and ethanol exhibit very different structural properties, but when mixed with each
other, the picture changes. This is the material from one publication [73]. In Chap-
ter 5, the difference between clustering and MH is revealed by a detailed structural
analysis, contrasting the results of site-site structure factors and cluster distribution
probabilities in two different MH mixtures. The content of this chapter stems from
[74]. Chapter 6 concerns three aqueous mono-ol mixtures in cold conditions and
investigates the temperature dependence of the structural properties. This research
is featured in two publications [75, 76].
The following two chapters shift their focus from mixtures with mono-ols and explore
changes in structure when a different type of co-solvent is added. Chapter 7 studies
the structural properties of neat propylamine and its aqueous mixture, in comparison
with previous mono-ol investigations. Its content is the basis of one paper [77]. In
Chapter 8, the attention is centered on dihidric alcohols (diols), both as neat liquids
and related mixtures. This research was published in two papers [78, 79].
Chapter 9 is the Conclusion. Some of the work in current completion is briefly
discussed, as well as other projects. Some of the latter couldn’t be fully investi-
gated for a variety of reasons and might be explored at a later stage, while others
exceeded the temporal limits of this thesis. Finally, Appendices A and B contain
all the relevant simulation details on neat liquids and liquid mixtures, respectively.
They also contain supplementary results and more technical discussions not featured
elsewhere.
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2. Theory and methodology

The theoretical groundwork about the statistical theory of liquids and simulation
methodology is laid out in this chapter. It covers the basics in brief, as details can
be found in many excellent textbooks, such as “Theory of simple liquids” by Hansen
and MacDonald [11], “Computer simulations of liquids” by Allen and Tildesley [68],
“Theory of Molecular Fluids” [80] by Gray and Gubbins and many others[1, 81, 82].

However, the majority of these works focuses heavily on simple systems, such as
monoatomic liquids and/or their binary mixtures. As mentioned in the Introduc-
tion, both the statistical theory and computer simulations face challenges when
encountering a systematic non-uniformity in liquids - micro-heterogeneity (MH).
This problem is closely linked to the appearance of density (in single component) or
concentration fluctuations (CF) (in mixtures). Fluctuations are at the very heart of
the statistical approach, since they signal the first departure from the average homo-
geneity. When a mixture is close to a macroscopic phase transition, it exhibits high
concentration fluctuations, which are an indicator that the components would prefer
to phase separate rather than being in a homogeneous mixture. MH systems may
have high CF, as shown by the KBI experimental results published by Matteoli and
Lepori [26]. However, MH systems are proven to be stable in ambient conditions,
and the question of how MH helps the stability of a mixture is not quite resolved.

Furthermore, a wide variety of KBI behaviour can be noticed for co-solvents which
have points in common. To take the example from the Introduction, tert-butanol and
DMSO are both large molecules with a considerable non-polar part. Yet, aqueous-
DMSO displays near-ideal KBIs, while aqueous-TBA has a strongly non-ideal trend
in the KBIs, which is leaning towards demixing. This illustrates the fact that dif-
ferences in the interactions could be dramatically enhanced in the fluctuations, all
while being far from the critical point. This is the most important idea here.

These large experimental KBIs also pose many problems in computer simulations.
When dealing with systems where there is considerable segregation, yet no demix-
ing, it’s a prerequisite to have a reliable robust force field description, in order to
avoid finding demixing in simulation conditions. Also, it is necessary to simulate
very large systems for a long time, to ensure the proper sampling of the complex
motion of the labile segregated domains, which are of the nanometer scale. Cur-
rently, simulation box sizes may go up to 128 or 256 thousand molecules, which is
considered exceptionally large for such small molecules and comes at a considerable
computational cost. The majority of the simulations for complex systems in this
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work are performed for 16 thousand molecules, which is sufficient for the systems
studied herein.
The present chapter reviews the theoretical context in order to clarify the points
which are relevant to the study of the micro-heterogeneity. After a brief account of
molecular dynamics as a method and the program package Gromacs as the main
tool for simulation, we step over to the main means of analysis. The site-site cor-
relation functions are the principal descriptor tool for the structural distribution of
molecules and are directly obtainable from simulations. From a theoretical point of
view, the main quantity should be the molecular correlation function. However, this
quantity contains angular contributions [11], which are not suitable for analysis of
directed Hbond correlations. It is necessary to sum several angular projections of
the molecular correlation to achieve this [11], which is very cumbersome. Therefore,
we will restrict ourselves to site-site correlations.
From site-site correlation functions, we can access the site-site structure factors, and
from them the scattering intensity, which can be obtained from radiation experi-
ments. Thus, site-site correlation functions have a link to experimental observables.
This will be derived later in the chapter.
Returning to the structure factor, the statistical theory of liquids relates the k = 0
behavior of the structure factor to concentration fluctuations. At k = 0, it’s not
important whether the site-site or species-species (center-of-mass) structure factors
are used, for they will lead to the same value. Finally, this is connected to the
oft-mentioned Kirkwood-Buff integrals, which are a measure of concentration fluc-
tuations and are calculated from the integral of the pair correlation function. This
integral is independent of the choice of the center of integration, and for this reason,
KBIs can be evaluated from any atom-atom correlation function. As will be shown
later in the thesis, the emphasis will be put on distingushing KBIs, which represent
macroscopic thermodynamic concentration fluctuations, from the small-k behaviour
of the structure factor, which represents k-dependent concentration fluctuations.
The latter embodies the inhomogeneity we would like to describe in this work.
Last but not least, another type of structural analysis - cluster probability distribu-
tions - will also be presented.

2.1. Molecular dynamics

The conception of molecular dynamics can be traced back to the pioneering works
of Alder and Wainwright. Even though the duo employed the method for simulating
hard spheres in 1957 [83], they gave the detailed outline of MD in their seminal article
from 1959 [84]. Alder and Wainwright recognized MD’s limitations (due to the lack
of computational power back then, the main issue was the small number of particles
contained in the simulated systems), but have also pointed it out as an alternative
to the then-known Monte Carlo (MC) method. Unlike MC simulations, which are
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basically sampling experiments which use accumulation of random numbers followed
by a limited number of arithmetic and logical operations [68], MD has the advantage
of allowing the study of time-dependent processes [11].

Alder and Wainwright later extended their simulations to elastic discs [85], but the
next advance in simulation was Rahman’s work on liquid argon in 1964 [86]. It took
ten years before Stillinger and Rahman joined forces to simulate the first realistic
liquid system: water [87].

Afterwards, MD rapidly developed as a method, encompassing more versatile and
complex systems such as proteins [88] and nucleic acids [89]. However, the basic MD
procedure hasn’t changed from the early days. The first step in the MD simulation
is to choose a force field which will define the interaction between the particles in
the system [90]. Afterwards, it is necessary to designate a set of initial coordinates
within a cell of fixed volume for each particle of the N-particle system. A set of
velocities, derived from the Maxwell distribution at the desired temperature, is then
assigned so that the net linear momentum of the system is zero. The motion of
the particles is then described by numerical integration of the classical equations of
motion [11]:

mi
d2~ri
dt2

= ~Fi,i = 1...N (2.1)

Leaving a system to run and develop for a period of time is necessary so that the
system can reach equilibrium at the new state point [68]. Usually, information
from an MD simulation is extracted by taking the time averages of the equilibrium
properties of the system over the whole dynamical history of the system [11].

2.1.1. Potentials in MD

The starting point to replicating macroscopic systems in silico is the interaction
of the particles. The potential is vitally important for obtaining reliable results
in particle simulations, because forces are calculated from it in the course of the
simulation [68]:

~Fi = −∇iU, i = 1...N (2.2)

To calculate the potential energy of a system, one needs to define the potential
energy function U(rN). This function usually has two contributions: intramolecular
interactions, which come from the atoms on the same molecule, and intermolecular
interactions, which are calculated from atoms on different molecules [68].
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The intramolecular interaction of a simple molecular model will contain terms for
“bound” atoms in a molecule: Uintra = Ubonds + Uangles + Udihedrals, where the terms
describe the deviation of bond lengths, bond angles and torsion angles (dihedrals)
away from equilibrium values. The intermolecular interactions will be made up of
contributions from non-bonded pairs of atoms describing van der Waals and electro-
static interactions: Uinter = UvdW + UEl. Usually, the van der Waals interaction is
described with the Lennard-Jones potential, while the electrostatics is handled via
the Coulomb potential [90]:

Uinter =
N∑
i

N∑
j

4εij

(σij
rij

)12

−
(
σij
rij

)6
+ qiqj

4πε0rij

 (2.3)

where σ and ε are characteristic length and energy of the pair potential, while q
represents the partial electric charge on a particle. These pair potentials are taken
to be pairwise-additive (apart from long-range Coulomb forces), so the sum of non-
bonded pair interactions will give rise to non-bonded forces.
However, different systems require different bond lengths, bond angles, force con-
stants, van der Waals parameters and partial charges. A set of such parameters,
together with the adequate equation for the potential energy of the system, is collec-
tively called a force field. There are many force fields available today, the majority
of which were developed by taking into consideration quantum mechanical calcu-
lations, and/or experimental data obtained by thermodynamic and spectroscopic
measurements [91].

2.1.2. Interaction computation

There are several approaches to the interaction computation (Figure 2.1). First we
have the all pairs method (simple to implement, but not very efficient when the
cut-off radius is small compared with the linear size of the simulation region [91]),
then cell subdivision (where the simulation domain is divided into cells with an edge
length greater than or equal to the cut-off radius of the interaction to be computed.
The particles are sorted into these cells and the interactions are computed between
particles in the same or neighboring cells [91].) and at last neighbor lists (where for
each particle a list is constructed that lists all other particles within the potential
cut-off distance, beyond which particle interactions are ignored [92]). From all those
listed above, the most popular one is the neighbor list, thanks to its efficiency [91].
So far it’s established that the potential, which is a function of the atomic positions
(3N) of all the atoms in the system, is necessary for solving the equations of motion.
The more complex the simulated system is, the more complex the potential functions
of its atoms, and the only way to solve them is using a numerical method. Many
numerical algorithms have been developed for integrating the equations of motion
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2.1 Molecular dynamics

Figure 2.1.: The different approaches to computing interactions: all pairs (left panel),
cell subdivision (middle panel), and neighbor lists (right panel). Illustration taken from
[91].

like Verlet [92], velocity Verlet [93], Leapfrog [94] and the predictor-corrector (PC)
type (Beeman’s algorithm [95] is a Verlet-type algorithm modified with the PC part).

Both have advantages and disadvantages. While the PC type algorithm is more
flexible, it requires more work and storage than Leapfrog or Verlet [91]. Their
accuracies are discussed in more detail elsewhere [91, 96]. As an example, we will
take the Leapfrog algorithm and explain the way it operates [94]. The velocity is
always a half-step ahead of positions and forces (hence the name). The first velocity
at a half time step is calculated as:

~v(t+ 1
2∆t) = ~v(t− 1

2∆t) + ~a(t)∆t (2.4)

and then the position advances for the full time step:

~r(t+ ∆t) = ~r(t) + ~v(t+ 1
2∆t)∆t (2.5)

During the full step, the current velocities are calculated for they are necessary for
energy calculation:

~v(t) = 1
2

(
~v(t+ 1

2∆t) + ~v(t− 1
2∆t)

)
(2.6)

After that step, the algorithm loops again and again, until the desired number of
steps is reached.

To cut down the simulation time, it’s advantageous to use geometric constraints
that tie bond lengths and angles to given values, because that will fixate lengths
of the chemical bonds and the values of the angles within the molecules and thus
eliminate the degrees of freedom for the bond and angle potentials, which are the
high-frequency degrees of freedom. There are various methods for incorporating

13



Chapter 2 Theory and methodology

geometric constraints, and the popular algorithms are SHAKE [97], RATTLE [98]
and LINCS [99]. There are several ways to introduce constraints into the numerical
intergation schemes. In the case of SHAKE, the numerical integration step without
constraints is done first, in order to get new particle coordinates. Then, the new
coordinates are modified in regards to the constraints in the second step, using
an iterative method [97]. LINCS operates in a similar way, however, it uses a
non-iterative single step procedure to acquire the constrained distances after an
unconstrained step [99]. This makes it faster and more stable than SHAKE, though
it’s most suited for bond length constraints and isolated angle constraints.

Figure 2.2.: Illustration of the periodic
boundary conditons, taken from [90]

To simulate a system which closely re-
sembles a macroscopic system, it’s nec-
essary to minimize surface effects and
this is done by using periodic boundary
conditions [11], which basically means
having an infinite array of copies of the
simulation region [91], as illustrated in
Figure 2.2. Since each cell is surrounded
by its images, the particles that immi-
grate have the same relative position
and momenta in all cells [11]. The di-
rect consequence of periodicity is the

fact that if a particle leaves the “cell” through one side, it immediately appears
through the opposite side. Also, particles positioned within the cut-off distance of a
boundary interact with particles in an adjacent copy of the system, or with particles
near the opposite boundary [91].

It’s worth mentioning how long-range interactions are dealt with in MD. “Long-
range” often denotes the case where the spatial interaction decays slower than r−d,
where d is the dimensionality of the system. An example of this type of interaction
is the Coulomb interaction, which has a r−1dependence. The slow decay of that
interaction means that one cannot truncate the potential after a cut-off distance; it
has to be accounted for with different means.

One method for the treatment of such potentials relies on Ewald summation, where
the potential is split into its short-range and long-range part, each of which can
be computed efficiently with a specific separate approach [96]. The original charge
distribution, represented by a set of delta functions, is screened by a new charge dis-
tribution (described by Gaussian functions) which has the same magnitude but the
opposite charge as the original distribution. Then, a set of compensating Gaussians
is added to cancel the effect of the screening Gaussians, with the compensating ones
being equal in magnitude and opposite in charge as the screened ones.

The screened interactions become short ranged, and their contributions to the total
potential are summed over all of the sites in the central cell and their images in
the real space. The cancelling Gaussian distributions are added together in the
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reciprocal space. Also, an additional correction term is required, to exclude the
interaction of the Gaussian with itself. The total Coulomb energy can then be
written as [67]:

UCoul = USR + ULR − Uself =

= 1
2

N∑
j 6=i=1

qiqj
rij

erfc
(√

αrij
)

+ 1
2V

∑
~k 6=0

4π
k2

(
e−

k2
4α |ρ(~k)|2

)
−
√(

α

π

) N∑
i=1

q2
i

(2.7)

where q are the charges, rij the distance between the charges, α is the parameter of
convergence, k is the wave vector and ρ(~k) = ∑N

i=1 qie
i~k~ri .

Mesh Ewald methods approximate the reciprocal part of the Ewald sum through a
discrete convolution on the mesh, which is solved with fast Fourier transform (FFT).
If the parameter α is chosen well, the computational cost goes down from O(N3/2)
to O(NlogN). There are different mesh methods, like particle-mesh Ewald (PME)
[100], smooth-particle-mesh Ewald (SPME) [101] and particle-particle-particle mesh
(PPPM) [102]. However, all mesh methods produce errors during the interpolation,
FFT and differentiation. If time is more important than precision, though, mesh
methods are the way to go.

2.1.3. MD and statistical mechanics

It’s important to note how closely MD is linked to statistical mechanics. MD gener-
ates information about atomic positions, velocities and interactions, i.e. the micro-
scopic level, but gives output in the form of macroscopic properties such as pressure
and temperature [67]. That gap between the microscopic and macroscopic proper-
ties of a system is bridged by statistical mechanics. Statistical mechanics deals with
systems with a vast multitude of particles, where it’s difficult to track the precise
changes in state in a system. Furthermore, there is some knowledge of the system,
but insufficient to precisely define a state. To combat that problem, statistical me-
chanics studies the behavior of an ensemble (collection) of system representations
(all of which are similar to the system of interest), which is distributed over a range
of precise states [24]. The system representations in the ensemble are not identical at
the molecular level; it’s vital that their thermodynamic properties are the same [90].
According to the ergodic hypothesis [24], the average calculated over a large number
of system representations in the ensemble is exactly the same as the time average
that would be calculated by studying the time evolution of the system of interest.
Knowing the average behavior of the system representations in the ensemble, it’s
possible to predict what will, on average, happen with the system of interest [24].
An ensemble is classified by the (bulk) thermodynamic properties kept constant in
each system the ensemble contains [90]. Following that classification, there are:
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1. the canonical ensemble, where the number of particles N, volume V and tem-
perature T are constant;

2. the microcanonical ensemble, where N, V and energy E are constant;

3. the isothermal-isobaric ensemble, where N, T and pressure p are constant and

4. the grand canonical ensemble, where the chemical potential µ, V and T are
constant. [67]

All ensembles are equivalent in the thermodynamic limit, so the thermodynamic
properties of a model system can be calculated in averages in any ensemble (or the
most convenient one) [68]. Behind each ensemble there are mathematically derived
expressions such as their respective partition functions [11], which in turn can be
used to calculate thermodynamic properties (shown in detail in [11] and [24]), in
terms of ensemble averages that correspond to experimental observables.

2.1.4. Temperature and pressure coupling

Performing an MD simulation in any other ensemble than microcanonical requires
a means to keep at least one quantity constant (on average) during the simulation.
There are two ways of attaining that - applying a hard boundary (more information
in [68]) or a soft boundary, which leaves room for fluctuations in the instantaneous
observable, only requiring its average to remain equal to the macroscopic value. Soft
boundary methods include weak-coupling, stochastic-coupling and so on [103].

In terms ot temperature coupling algorithms, or thermostats, an example of weak-
coupling is the Berendsen thermostat [104], where the simulated system is coupled
with a heat bath of a desired temperature T0. The temperature of the system is
controlled by scaling the velocities to every time step with a factor:

λ =
√

1 + ∆t
τT

(
T0

T
− 1

)
(2.8)

where T0 is the desired temperature, T is the actual temperature, ∆t is the time step
of the integration algorithm and τT is a constant. Since this thermostat suppresses
kinetic energy fluctuations, it doesn’t generate trajectories in the canonical ensemble
and cannot be used to calculate properties. However, it’s a very efficient algorithm
to get a system to a desired temperature, so it’s widely used for system equilibration.
For production runs, thermostats like Nosé-Hoover [105, 106] are more appropriate
since they reproduce the behavior of a canonical ensemble. It does so by introducing
a dynamical variable ζ, the thermodynamic friction coefficient, which has the role
of accelerating or deccelerating particles until the temperature reaches the desired
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value. The equation of motion is thus modified in the following way:

d~v(t)
dt

=
~F (t)
m
− ζ~v(t) (2.9)

where ζ is defined as:

dζ~v(t)
dt

= 1
Q

(∑ m~v(t)2

2 − Ndf

2 kBT

)
(2.10)

whereQ is a parameter that determines the relaxation of the dynamics of the friction,
T is the desired temperature and Ndf refers to the number of degrees of freedom in
the system.
Barostats are algorithms used to attain and control the pressure of the system. An
example of a such an algorithm is the Berendsen barostat [104], which is analogous
to its temperature counterpart in the sense that it couples the system to a pressure
bath. It introduces an extra term to to the equations of motion which affects the
change in pressure:

dP

dt
= (Pext − P )

τP
(2.11)

where Pext is the pressure of the external bath, P is the instantaneous pressure and
τP is the time constant.
At every step of the simulation, the coordinates and the box sides are rescaled with
the factor η:

η = 1− κT∆t
3τP

(Pext − P ) (2.12)

where κT is the isothermal compressibility of the system. Since κT affects only the
time constant of the pressure relaxation and not the average pressure itself, its value
can be estimated. For example, many molecular dynamics program packages use the
compressibility of water (κT = 4.5·10−5 bar-1 at ambient conditions [107]). However,
the fluctuations in instantaneous pressure produced by the Berendsen thermostat
are not accounted for accurately.
The Parrinello-Rahman barostat [108, 109] is the analogue of the previously de-
scribed Nosé-Hover thermostat because it also introduces an extra degree of freedom
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to simulate the effect of weak coupling to a pressure bath. The additional degree of
freedom imitates a piston which corrects the pressure toward its desired value. The
simulation cell is modelled by a second order differential equation which depends
on the difference between the desired pressure tensor and instantaneous pressure
tensor. Also, the equations of motions are modified to based on the dynamics of the
cell size. Typically, the Parrinello-Rahman barostat takes four to five times longer
to obtain the desired pressure than the Berendsen barostat, so the two barostats
can be used in tandem, i.e. Berendsen to bring a system quickly to the designated
pressure and Parrinello-Rahman to construct accurate trajectories.

2.1.5. The GROMACS program package

All of the simulations presented in this work have been performed by the program
package GROMACS [69, 70, 71]. GROMACS is the acronym for ’GROningen MA-
chine for Chemical Simulations’, as it was conceived at the University of Groningen
in the 1990s. Nowadays, the program package is develped by scientists from the
Royal Institute of Technology and Uppsala University, Sweden, and counts more
than 1,5 milion lines of code [110].
GROMACS was mainly developed as a tool for simulating biomacromolecules, such
as proteins, lipids and nucleic acids, but it’s versatile enough to perform simulations
of liquids and non-biological systems, such as polymers. One of its main advantages
is high performance - due to algorithmic and processor-specific optimizing, it runs
several times faster than many simulation programs. Simulations can be run on
CPUs or GPUs, and they can be executed in parallel, using the Message Passing
Interface (MPI) or threads.
Another advantage is that it is very flexible in terms of force fields, supporting
many different force fields and having an extensive built-in parameter library. Since
the package is geared towards biomacromolecule simulation, it includes a fully au-
tomated topology builder for proteins. However, as the topology and parameter
files are written in clear text format, it’s convenient to write topologies for small
molecules. It’s also possible to have conditional parts in the topology and include
other files, since a C preprocessor is used.
GROMACS handles every part of simulation process, from setting up the initial
configuration of the system, minimizing the energy of the system, running the actual
simulation and calculating the results. The input configuration files can be of many
formats, for example the Protein Data Bank (PDB) format, which is then converted
into the internal file format.
During the course of the simulation, the trajectory data can be stored compactly,
using lossy compression, with the precision being designated by the user. Gromacs
also offers a number of trajectory analysis tools, with the output provided in the
.xvg format, suitable for plotting in the Xmgr/Grace program. These tools include
the calculation of the pair correlation function, cluster probability distribution, root
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mean square displacement, radius of gyration and many more. The output config-
urations and trajectory can be visualized with a number of visualization programs,
like VMD [111] and Pymol [112].

2.2. Structural analysis

2.2.1. Pair correlation functions

As mentioned in the introduction of this chapter, the principal quantity which we
study is the pair correlation function g(r). For the case of a homogenous, isotropic
liquid, g(r) is oftentimes referred to as the radial distribution function (RDF) [30]. A
detailed derivation of the pair correlation function is provided in textbooks [11, 30],
so we will briefly mention the most important points.
The N -particle distribution function g(n)

N (~rn) is defined in terms of the corresponding
particle density ρ(n)

N (~r1, ...~rn) by [11]:

g
(n)
N (~rn) = ρ

(n)
N (~r1, ...~rn)∏n
i=1 ρ

(1)
N (~ri)

(2.13)

where N is the number of particles.
In the case of homogenous systems, the particle distribution function measures the
which extent the structure of a fluid deviates from the complete randomness. In a
homogenous, isotropic system, the pair distribution function gN(r1, r2) is a function
of r1,2 = |r1 − r2|:

g
(2)
N = ρ

(2)
N (~r1, ~r2)
ρ2 ≡ g(r) (2.14)

Particle densities can also be expressed through delta functions as an ensemble
average over pairs[68]:

gij(r) = 1
ρN

〈
N∑
i

∑
j 6=i

δ(~r − ~rij)
〉

(2.15)

However, as we’re primarily concerned with the long-range behavior of studied sys-
tems, we must look into the g(r) when the distance between the particles is suffi-
ciently large (r →∞). In systems of finite size, such as those in computer simulation
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(despite being pseudo-infinite through periodic boundary conditions), the exact limit
of the g(r) for a system of finite size with N particles is [113]:

limr→∞gij(r) = 1− εij
N

(2.16)

where εij is [72]:

εij = 1
ρxixj

(
∂ρi
∂βµi

)
TV µk

(2.17)

In Equation 2.17, ρi is the number density of species i, µi is the chemical potential
of the said species and β = 1

kBT
(kB being the Boltzmann constant and T the

temperature). If we were to have an infinite system, N →∞, Equation 2.16 would
go to unity.
Equation 2.16 was first derived by Lebowitz and Percus in 1961[113], while a more
intuitive derivation of the LP asymptote correction for both neat liquids and mix-
tures has been published by Požar et al. [72].
It’s important to mention that the LP correction is often presented for the ideal
mixture case, where εij = 1, and consequentially, g(r) → 1 − 1

N
. This is especially

relevant for the systems studied in this thesis, for a good deal of them doesn’t fall
into the category of ideal mixtures.
For large systems (N ∼ 103 particles and more), Equation 2.16 is not very important
for the calculation of quantities such as the excess internal energy, which involve
multiplying with the pair interaction which is often very short ranged. On the other
hand, if the integration of the g(r) over the volume of the system is necessary, the
fact that the g(r) doesn’t oscillate around 1 as the horizontal asymptote will become
amplified. We proposed to correct this problem by multiplying g(r) by the factor
1/
(
1− εij

N

)
≈ 1 + εij

N
, which leads to the correct asymptote of 1.

We also note that Equation 2.17 holds only for simulations in the NVT ensemble,
while Equation 2.16 holds both in the canonical and in the isobaric-isothermal en-
semble that we use in our simulations. Since we use a numerical method to shift the
asymptote, the differences for the asymptote correction between the NVT and NpT
ensemble are implicitly addressed. The numerical procedure for shifting is discussed
in depth in previous papers by Perera et al. [40, 114]. An example of the LP correc-
tion can be seen in Figure 2.3, which features the carbon united atom correlations
in benzene, for the benzene-pentane mixture at low benzene content. If one were to
judge from the main panel, it would seem like the uncorrected g(r) (thick black line)
asymptotically goes to unity, just as the corrected g(r) (dashed red line). However,
the inset of Figure 2.3 zooms in on the tails of both g(r), demonstrating that the
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uncorrected correlation function doesn’t go to unity, while the corrected g(r) does.
This will be particularly relevant for the mixtures studied in the following chapters.
The LP corrections for these systems are given in Appendix B.
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Figure 2.3.: An example of the LP shift for the case of carbon united atom correlations
in benzene, for the benzene-pentane mixture at xBEN = 0.2. Main panel: uncorrected
g(r) (black) and corrected g(r) (dashed red). Inset: zoom of the tails of the g(r)s.

Finally, we will mention a quantity closely related to g(r), and that is the coordina-
tion number [30]:

NCN(RM) = ρ

ˆ RM

0
g(r)4πr2dr (2.18)

The coordination number represents the average number of particles in a sphere of
radius RM (the particle at the center is excluded). Depending on the choice of RM ,
one can obtain the coordination numbers for shells of interest.

2.2.2. Structure factors

The pair correlation function g(r) introduces another important quantity in liquid
state physics - the structure factor S(k). The structure factor can be defined in terms
of species-species (Sαβ(k), where α,β are the indices of species) or, for molecular
species, in terms of atom-atom structure factors. In the latter case, the structure
factor is Siαjβ(k), where iα designates the i-th atom of molecule type α and jβ the
j-th atom of molecule type β. The general definition of the structure factor is [11]:

Suv(k) = δuv + ρ
√
xuxv

ˆ
d~r[guv(r)− 1]e−i~k~r (2.19)
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where u,v are the indices of any of the nature above (u = α or u = iα) , ρ is the
total number density and xu the mole fraction of species u.
The importance of the structure factor lies in the fact that it can be obtained from
diffraction experiments [81], thus becoming invaluable for assessing the microstruc-
ture of liquids. However, that is not the only link the structure factor has with
experiments. According to the statistical physics, the fluctuations in the number of
particles contained in a given volume can also be connected to the long wavelength
limit of the structure factor [82]. In that case, the structure factor going to k → 0
can be written as:

Suv(k = 0) = 〈NuNv〉 − 〈Nu〉 〈Nv〉√
〈NuNv〉

= ρkBTκT (2.20)

where ρ is the number density and κT the isothermal compressibility. Equation 2.20
simply shows that the mean square fluctuation in the number of atoms contained in
a given volume is proportional to Suv(k = 0), which is also measured by the isother-
mal compressibility. Thus, the S(k = 0) also contains thermodynamic information,
which can be procured from experiments using thermodynamic or ultracoustic tech-
niques [81]. This is a useful feature for dense liquids, since the results of diffraction
measurements, S(k), have to continuously join with the limit S(k = 0).

2.2.3. Scattering intensity

The intensity of scattered X-rays is calculated as [115]:

I(k) = 〈A(k)A∗(k)〉 (2.21)

where where k is the scattering wave vector and A(k) is the scattering amplitude
for the whole sample.

Figure 2.4.: Schematic of X-ray scat-
tering on a sample.

The scattering wave vector k is defined as
the difference between the initial wave vec-
tor ki and final wave vector kf of a diffrac-
tion probe, and it can be calculated as
k = 4πsin θ

λ
, where λ is the wavelength of

the incident X-ray [81] (Figure 2.4). The
scattering amplitude is defined as A(k) =∑N
i=1 ai(k), where ai is the scattering ampli-

tude of a single atom: ai(k) = fi(k)ei~k~r. In
the latter expression, fi(k) corresponds to

the atomic form factor of the atom in question.
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Inserting the expressions for the scattering amplitude in Equation 2.21, one can
obtain the Debye formula when it’s taken into account that

〈
ei
~k~rij

〉
Ω

= sin(krij)
krij

:

I(k) =
〈∑
i,j

fi(k)fj(k)ei~k(~ri−~rj)
〉

=
∑
i,j

fi(k)fj(k)
〈
ei
~k~rij

〉
Ω

=
∑
i,j

fi(k)fj(k)sin(krij)
krij

(2.22)

while the sum runs over all pairs of atoms i and j in the sample. The latter indicates
that Equation 2.22 can be re-expressed in terms of the various site-site correlation
functions.

2.2.3.1. Scattering intensity of an atomic liquid

If we consider the sample as a mixture of free atoms, with no geometrical constraints
between them, the structure factor is equal to that of a species-species structure
factor from Equation 2.19:

Sαβ(k) = δαβ + ρ
√
xαxβ

ˆ
d~r [gαβ(~r)− 1] ei~k~r (2.23)

where α and β indicate atoms/species. The scattering intensity for that sample will
be:

I(k) = ρ
∑
αβ

√
xαxβfα(k)fβ(k)Sαβ(k) (2.24)

2.2.3.2. Scattering intensity of a molecular liquid

However, in the case of a sample containing molecules, we have to take into account
the fact that certain sites are connected with each other. That’s why we need to
split the contribution to the structure factor into intramolecular (for the sites in one
molecule) and intermolecular (for sites on different molecules):
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Siαjβ(k) =
〈∑
iαjβ

ei
~k(~riα−~rjβ )

〉

=
〈α=β∑
iαjβ

ei
~k(~riα−~rjβ)

〉
intra

+
〈α 6=β∑
iαjβ

ei
~k(~riα−~rjβ)

〉
inter

(2.25)

where α and β indicate molecular species and iα and jβ sites belonging to each type
of molecule. The intramolecular contributions can be rewritten, taking into account
the fixed distances between the sites:

〈α=β∑
iαjβ

ei
~k(~riα−~rjβ)

〉
intra

=
〈∑

α

∑
ij

ei
~k~dij

〉
(2.26)

In a sample of N molecules, the intramolecular contributions will yieldN ∑
ij
sin(kdij)
kdij

,
and we can define wij(k) = sin(kdij)

kdij
. The structure factor will then be:

Siαjβ(k) = wij(k) + ρ
√
xαxβ

ˆ
d~r
[
giαjβ(r)− 1

]
ei
~k~r (2.27)

where xα is the mole fraction of species α. And the scattering intensity will equal
to:

I(k) = ρ
∑
αβ

∑
iαjβ

√
xαxβfiα(k)fjβ(k)Siαjβ(k) (2.28)

Even though Equation 2.24 and Equation 2.28 are basically the same, the idea of
the structure factors contributing to it are significantly different. Neglecting the in-
tramolecular part of the structure factor (i.e. using Equation 2.23) will actually lead
to the Pings-Waser (PW) expression for the scattering intensity [116]. Although fre-
quently used in the literature [117, 118, 119, 120], the PW formula does not provide
the proper result for the calculated scattering intensity of a molecular sample.

2.2.4. Cluster probability distributions

Besides the analyses based on pair correlation functions, we consistently feature
results obtained by another type of structural analysis - cluster probability distri-
butions. This type of calculation is fairly well represented in studies of neat liquids
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[121, 122, 123, 124, 125] and mixtures [18, 20, 36, 41, 126, 127, 128, 129, 130], making
it a staple in liquid matter studies.
Usually, a cluster is defined as the group of particles where each particle has at
least one connection with the neighboring particles. This connection can be defined
through energetic or geometric criteria. An example of the former is the Hill’s
energetic criteria where particles are considered to be connected if their attractive
interaction energy is higher than their relative kinetic energy [131]. However, for
the calculations in the subsequent chapters, the latter criterion is employed, in the
form of Stillinger’s distance criterion [132]. In that approach, sites are considered to
be a part of the cluster if they are positioned within a certain cut-off distance from
one another. The cut-off distance is defined by the first minimum of the site-site
radial distribution function. The idea is to count how many particles are connected
in a cluster of a given size n for each configuration k. This way, the interactions
between bonded particles are indirectly related to their interactions through the pair
correlation function. The cluster size distributions are calculated for the clustering
of the like–like sites, using several different statistical approaches. We show the
results for the cluster size probability functions:

Pn =
∑
k s (n, k)∑

k

∑
n s (n, k) (2.29)

where Pn is the probability for the cluster formed of n sites, s (n, k) represents the
number of clusters of the size n in the configuration k. Pn is obtained by averaging
the number s (n, k) of clusters of size n over several such configurations.
As mentioned above, the choice of the cut-off distance (rc) for a calculation de-
pends on the first minimum in the pair correlation function of the site in ques-
tion. Throughout the thesis, several molecules were used frequently, which means
that certain sites from those molecules frequently underwent cluster calculations. If
not stated otherwise, the rc defined for sites were: 3.5 Å for the oxygens in water
molecules; 3.7 Å for the oxygens in alcohol molecules; 4.5 Å between the carbon
united atom sites in alcohol molecules and 6 Å between the carbon united atom
sites in various non-polar solvents (e.g. benzene). However, it has been shown in
previous group publications [124, 125] that varying the rc around the first minimum
won’t change the resulting cluster distributions significantly.

2.3. Kirkwood-Buff integrals

The Kirkwood–Buff (KB) theory of solutions defines the relationship between ther-
modynamic quantities and molecular distribution functions for multicomponent sys-
tems in the grand canonical ensemble [31]. Although first derived in 1951., it laid
dormant for decades, until Ben-Naim postulated the inverse procedure [27].
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In the original paper, the main idea is to connect the derivatives of the components’
chemical potentials with the integrals of the species’ radial distribution functions via
concentration fluctuations, which are then eliminated from the respective relations,
thus providing a direct link between macroscopic and microscopic quantities [31].

The KB integrals (KBI) are defined as:

GijµV T =
ˆ ∞

0
[gij(r)− 1] 4πr2dr (2.30)

where gij(r) is the pair correlation function defined in the µ, V, T system for the
two species i and j. Thus, the theory may be used to compute the thermodynamic
quantities based on our knowledge of the pair correlation function [31]. Although
KBI is a property of the grand canonical ensemble, it can be applied to the N -
constant ensembles under a couple of approximations. First, the simulation data
can represent an open system; second, the KBI at infinity is equal to the running
KBI (rKBI) up to certain range r, beyond which there are no correlations due to
intermolecular forces diminishing [30]:

GijNpT =
ˆ r

0
[g(r)− 1] 4πr2dr (2.31)

Using relation Equation 2.31, it’s possible to calculate the values for the rKBI from
the data collected during the simulation. However, as mentioned in subsection 2.2.1,
the fact that the g(r) doesn’t asymptotically go to unity for N -constant ensembles
will cause problems for the calculation of volume integrals of the g(r), such as
the KBIs. In that case, we use the LP correction to shift the tail of the g(r) to
oscillate around unity, which results in the rKBI oscillating around the proper value
(Figure 2.5).

Technically, the two rKBIs depicted in Figure 2.5 are not the same. Using the
LP shift, we empirically corrected the g(r), transforming it from that of the NpT
ensemble to that of a pseudo-µV T ensemble. We consider the pseudo-µV T ensemble
to be close to the real µV T ensemble.

As mentioned above, the beauty of the KB theory of solutions lies in the fact that
it defines the relationship between molecular distribution functions and thermody-
namic quantities [31, 30], which means that the KBIs can be calculated using the
thermodynamic approach [26, 31, 30]. In the case of a two-component system, the
KBIs would correspond to:

Gij =
[
kBTκT −

V̄iV̄j
V D

]
(1− δij) +

[
G12 + 1

xi

(
V̄j
D
− V

)]
δij (2.32)
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Figure 2.5.: rKBIs results for the carbon united atom correlation function of benzene,
from the benzene-pentane mixture at xBEN = 0.2. Main panel: rKBIs calculated from
the corrected (red line) and uncorrected (black line) g(r), which were presented in
Figure 2.3. Inset: the same as in Figure 2.3, showing the zoomed-in tails of the g(r)s
for the sake of completeness.

where κT represents the isothermal compressibility (kB is Boltzmann constant and
T the temperature), V̄i the partial molar volume of species i, V the total volume and
xi the mole fraction of species i. The D is related to the concentration fluctuations
through the expression[31, 30, 26]:

D = xi

(
∂βµi
∂xi

)
TP

(2.33)

where µi is the chemical potential of species i (β = 1/kT is the Boltzmann factor).

When several approximations are considered, Equation 2.32 can be reduced. The
isothermal compressibility can be neglected since it’s smaller in magnitude in com-
parison with the other terms. Then, the partial molar volumes of the components
can be replaced by the molar volumes of the neat components, because the varia-
tions of excess volume with concentration can be ignored. (Also, the excess volume
is at least one order of magnitude smaller than the volumes.) Finally, the KBI from
Equation 2.32 can be connected to the components’ mole fractions and volumes. The
D term depends on the chemical potential, which can be split into three different
contributions: (reference, ideal and excess parts): µi = µ

(0)
i + kBT ln(ρxi) + µexcessi ,

and can be written as [26, 27]:

D = 1 + xi

(
∂βµexcessi

∂xi

)
TP

(2.34)

If we consider only the ideal part of the chemical potential and neglect the excess

27



Chapter 2 Theory and methodology

contribution and, that would correspond to D = 1. When D = 1 is inserted into
Equation 2.32, one obtains the ideal KBIs, which is characteristic of weakly inter-
acting species. As the interactions of at least one species become more pronounced,
the expression for D becomes more sophisticated. This notion will be fleshed out
in subsequent chapters with examples of different systems and their correspond-
ing D(x). However, for complex systems, it’s difficult to determine this function
from both experiments and simulations, which has been discussed in the literature
[26, 30, 133, 134]. This problem is either non-existant or not so pronounced for
simple systems, as we shall see further on.
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3. Simple and complex disorder

As we described in the Introduction, concentration fluctuations differ widely from
simple to associated liquids. In this chapter, we study in detail how this happens by
analyzing the principal structural descriptors, namely the pair correlation function,
or site-site correlation function, as well the associated structure factors.

In the textbook sense, atomic liquids such as argon, nitrogen and oxygen are con-
sidered to be simple liquids [1]. Liquids with multiple atoms, such as CH4, belong
to the complex liquids, since orientational degrees of freedom need to be described.
However, in this chapter we will reevaluate this definition, making a basic distinction
between liquids which have charged atomic sites and those which have chargeless
ones. Charged liquids, such as molten salts of NaCl, exhibit a very particular type
of disorder, named charge order, where various atoms sit in charge alternated order,
almost like in a disordered crystal [135, 136, 137, 138]. When such charged atoms
are inside a molecule, the charge order they would impose is influenced by the molec-
ular constraints. This way, atoms of opposite charge across different molecules tend
to be next to each other in a dense liquid, which leads to weak or strong charge
association. Molecular association is mostly based on charge association, and this
is particularly true for classical force field models [139, 140, 141, 142, 143].

In this and all subsequent studies, we will consider liquids without atomic charges
as simple liquids and those with atomic charges will exhibit complex disorder. That
being said, we still need to confirm that the molecular shapes do not play an impor-
tant role by enforcing shape order. For example this is the case in liquid crystalline
order, where it is the elongated shape of the molecules which impose this type of
order [144]. We will not consider such order here.

Instead, we shall turn to binary mixtures with different types of constituents and
study the relationship between the local order generated by different types of molec-
ular interactions and the nature of the global disorder. In the past, the group focused
heavily on aqueous mixtures [37, 38, 114, 145, 134, 146, 147, 148, 149], which re-
vealed considerable microheterogeneity, accompanied by the problems it posed in
statistical analysis [35]. In order to obtain a clearer picture of the structuring in a
mixture, we are bypassing water, an associating liquid, and using a much simpler
solvent - benzene.

Benzene is the simplest and most widely known aromatic compound. It contains a
six-membered ring and three double bonds. The molecular formula for benzene is
C6H6 - every carbon has only one hydrogen atom. It’s a planar molecule [32]. The
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physical properties of aromatic hydrocarbons are similar to other hydrocarbons -
they have low melting points and boiling points, on top of being miscible with water
in very small proportions [32]. Even though benzene has its share of complexities
on the submolecular level, it can be modelled in different ways as a molecular liquid.
The questions of modeling benzene and choosing the appropriate benzene model
are covered in Appendix A, but suffice to say, we chose the chargeless, united-atom
model.

Figure 3.1.: The model of the benzene
molecule.

Solvents of similar nature, like carbon
tetrachloride, can be used as a replace-
ment for benzene. The key is to have the
solvent inert, so that it can essentially
act as a backdrop against which we can
observe the structuring (or lack thereof)
the other component exhibits. For that
reason, benzene has been mixed with
substances of different physico-chemical
makeup: an alkane (pentane), a ke-
tone (acetone) and an alcohol (ethanol),

shown in Figure 3.2. The simulation protocol and modeling details for the neat liq-
uids and binary mixtures are covered in Appendices A and B, respectively.

In the following chapter, we present the results yielded by the mixtures with ben-
zene as a common solvent and analyze the relationship between the concentration
fluctuations and the correlation functions with their associated structure factors. It
will be shown that systems with benzene contain much less of the problems encoun-
tered when studying aqueous mixtures and allow better insights into the nature of
the disorder in liquids.

Figure 3.2.: Models of molecules: pentane (left), acetone (center) and ethanol (right).
Atom colors: blue - carbon; red - oxygen; white - hydrogen. The sizes of the molecules
are not properly proportioned in relation to one another, but are here solely for illus-
trative purposes. The molar volumes of the molecules are actually:VPENT = 115.3 cm3

mol

, VACE = 74.1 cm3

mol and VETL = 58.4 cm3

mol .

The majority of the content of this chapter, which concerns mixtures with benzene, is
taken from our PCCP paper [72]. The same part of the study has been presented as a
poster at the 14th International summer school of Biophysics “Greta Pifat Mrzljak”
(October 2014), and as a talk at the 9th meeting of the Croatian physical society
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(October 2015). The remainder of the chapter, which discusses solvent shapes, is
the subject of a pending publication.

3.1. Mixtures with benzene as a common solvent

3.1.1. Benzene-alkane mixture

The first mixture considered was the benzene-alkane system. Alkanes are hydrocar-
bons which have only C-C and C-H single bonds, and which can be joined together
to form chains or rings of atoms [32]. The alkane in our case denotes two linear
hydrocarbon chains which only differ in length: pentane (consisting of five methyl
or methylene groups) and heptane (consisting of seven groups).

Figure 3.3.: Snapshots of the benzene-pentane mixture at three different mole fractions:
xBEN = 0.2 (left panel), xBEN = 0.5 (middle) and xBEN = 0.8 (right panel). Benzene is
shown in transparent gray, while pentane is in cyan.

Both components are hydrocarbons which were modeled the same way in terms of
van der Waals and electrostatic interactions (more on model details in the Appendix
A). Therefore, the nature of the interactions between the components is the same
and the only differences stem from the molecules’ shapes (as seen in Figure 3.1 and
the left panel of Figure 3.2).
In Figure 3.3, we can see the representative snapshots of the system, taken for three
different mole fractions of benzene. Though it may be difficult to tell from a static
image, the pentane and benzene molecules are evenly mixed, betraying no particular
global order.
Figure 3.4 displays the the site–site correlations of the carbon united atoms of ben-
zene gBB(r) (upper panel) and the end methyl groups of pentane gMM(r) (lower
panel) for xB = 0.2, 0.5 and 0.8 mole fractions of benzene in the benzene–pentane
mixtures. The correlation functions of both species look similar, which is due to
the site–site Lennard-Jones interactions being also similar. The subtle differences
in the shape of the first neighbour peak are caused by the different geometries of
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Chapter 3 Simple and complex disorder

Figure 3.4.: Site–site correlations between the carbon atoms of benzene (upper panel)
and between the end methyl groups of heptane (lower panel), and for 3 benzene mole
fractions of xBEN = 0.2 (magenta), xBEN = 0.5 (green) and xBEN = 0.8 (blue).

the species. However, the most striking feature is that there is little to no difference
between correlation functions for all three concentrations. Hence, there are very few
structural changes when the concentrations are varied, implying that the species see
a similar environment despite the change in concentration.

The KBIs for the benzene-pentane (upper panel) and benzene-heptane systems
(lower panel) are shown in Figure 3.5. The points represent data obtained from
the simulation, while curves are a product of equations from Chapter 2. We set
D = 1, which corresponds to the hypothetical ‘‘ideal’’ mixtures. The KBIs for the
benzene-alkane systems are rather small and they follow the trend of the calculated
theoretical curves. However, the agreement is not perfect, which may originate
from: (a) the fact that the volume of neat benzene is not exactly that of the real
system and (b) the neglected compressibility κT in Equation 2.32 may play a more
important role, since both types of liquids are rather volatile.

The rKBIs and site-site structure factors are presented in Figure 3.6 for the equimo-
lar concentration of the benzene-pentane mixture. The rKBIs (upper panel of
Figure 3.6) reveal the oscillatory behavior typical of the carbon groups. As for
the S(k)s (lower panel of Figure 3.6), we see that all three curves are characterized
by only one feature - the main peak, which falls roughly at the same position for
all three correlation functions. Since the main peak reflects the oscillations in the
correlation functions, brought on by the size of the object, this result is expected, as
in this case the carbon united atoms have a similar size. The concentration fluctua-
tions, as noticed in the KBI Figure 3.5 are small and similar for all species. We also
note the presence of a weak shoulder in SPP(k), which shows the dual short range
ordering of the pentane molecules: parallel and cross, which is typical of small rods.
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3.1 Mixtures with benzene as a common solvent

Figure 3.5.: Kirkwood–Buff integrals GAB for the benzene–pentane system (upper panel)
and benzene heptane system (lower panel), with the following color conventions: blue
dots for GSS (S for solute), magenta triangles for benzene GBB and cross functions GBS
in green squares. The lines are the theoretical results assuming ideal mixtures.

Figure 3.6.: Upper panel: running Kirkwood–Buff integrals GAB(r) for the benzene-
pentane system. Lower panel: site-site structure factors corresponding to the rKBIs in
the upper panel. Inset: Zoomed-in depiction of the site-site structure factors featured
in the lower panel. The color code is: gBB(r) in blue, gPP(r) in magenta and gBP(r) in
green. For all panels, the full lines denote data after the LP correction and the dashed
lines uncorrected data.
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3.1.2. Benzene-acetone mixture

Unlike benzene and alkanes, the acetone molecule has different chemical makeup
[150]. Acetone (IUPAC name: propanone) is a ketone - a compound with bivalent
carbonyl group bonded to two carbon substituents [151].

The acetone molecule force field has partial charges on both the oxygen and the
central carbon atoms, which cancel each other out to achieve total electro–neutrality.
Therefore, the oxygen atom of one acetone molecule will be attracted by the opposite
charge of another molecule’s carbon atom. The Coulomb interaction, being about
a factor of 6·102 larger than the Lennard-Jones interaction between the sites, will
dominate and the two acetone molecules will tend to form a dimer in an antiparallel
configuration. That kind of the near neighbour dipolar interaction is a characteristic
of the real acetone molecule [152]. So, in the benzene-acetone mixture, acetone’s
propensity for dimer association will promote the segregation of acetone molecules
into pockets. This is something we can observe from the snapshots of the system,
especially for low acetone content in Figure 3.7.

Since the association of acetones is energy driven, their pockets will have an internal
energy that is, on average, more negative than in a random, entropically driven
mixture. That is hinted with the KBI values in Figure 3.8. When considering
the change of KBIs over mole fraction of benzene, it’s apparent that this type of
behavior differs from the benzene-alkane mixture in Figure 3.5. Not only do the
KBI values differ in magnitude, but the benzene-acetone mixture shows a small
non-ideality, as shown by the behaviour of the fitted D in the inset. The D behaves
as D(x) = 1 − αx(1 − x), where α = 2. This type of function, and the resulting
KBI behavior, is in line with a weak non-ideality. It also confirms enthalpic nature
of acetone associations that are formed in the mixture.

Figure 3.7.: Snapshots of the benzene-acetone mixture, for three different benzene mole
fractions: xBEN = 0.2 (left), xBEN = 0.5 (middle) and xBEN = 0.8 (right panel). Acetone
is represented in red (oxygen) and cyan (carbon), while benzene is shown in transparent
gray.
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3.1 Mixtures with benzene as a common solvent

Figure 3.8.: Kirkwood–Buff integrals for the benzene–acetone system with same color
conventions as Figure 3.5. Dashed lines represent the ideal behaviour and full lines the
KBIs obtained through the expression for the regular mixture given in the text and
shown in the inset.

However, solely from looking at the KBIs, which correspond to fluctuations at k = 0
[82], we cannot tell what is happening at small k values. That is, we cannot say if
these acetone associations are merely concentration fluctuations or pseudo-particles.
To answer that, we look into the correlations shown in Figure 3.9 for the equimolar
mixture case.

Figure 3.9.: Site–site correlations (top) for the equimolar benzene–acetone mixtures; blue
lines for gOO(r) correlations between oxygen molecules on acetone, magenta lines for
gCC(r) carbon–carbon correlations in benzene and green for cross correlations gOC(r).
Corresponding structure factors in the lower panel. The inset in the upper panel shows
the RKBI and the corresponding asymptotical values for the KBIs.
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The upper panel displays the acetone oxygen–oxygen correlations gOO(r), the ben-
zene carbon–carbon gCC(r) and the cross correlations gOC(r). The analysis of first
neighbor correlations reveals the significant difference in height between acetone and
benzene, implying the existence of acetone associations. That notion is furthered
by the corresponding running KBIs, which are shown in the inset of the upper
panel. The OO correlations are higher in magnitude than all others, confirming the
enthalpic association picture.

The lower panel shows the structure factors for the g(r)s shown in the upper panel.
We notice that the acetone SOO(k) has a strong k = 0 raise, indicating large con-
centration fluctuations. The only other feature in SOO(k) is the main peak at k =
1.4 Å-1, so we can conclude that the raise is due to concentration fluctuations. We
note that benzene has less fluctuations than acetone, which again confirms that it
is acetone that drives the self-segregation.

Finally, we observe from the KBIs in Figure 3.8 that the simulation results for GOO
for large acetone concentrations are somewhat higher than that predicted by the
analytical expression. This is due to an overestimation of GOO from the simulations
due to the fact that the tail of gOO(r) is not stabilized at a perfectly horizontal value.
It is likely that a simulation of a larger system will provide a smaller value of the
KBIs, more compatible with the theoretical prediction.

3.1.3. Benzene-ethanol mixture

Then there comes ethanol, a primary alcohol. Alcohols contain a hydroxyl group
(OH group) bonded to a tetrahedral carbon atom, while the primary denotes to
which carbon atom is the OH group attached [32]. The oxygen atom is more elec-
tronegative than carbon or hydrogen, rendering the the C-O and O-H bonds polar.
With two polar bonds and a bent shape, an alcohol has a net dipole [151]. Since
they possess a hydrogen atom bonded to an oxygen, alcohols have the ability of
intermolecular hydrogen bonding. Therefore, alcohols are associating liquids and
they have much stronger intermolecular forces than the hydrocarbons [32].

Ethanol is modeled in such a way that the hydrogen bond effect is reproduced. The
partial charged are distributed between the oxygen and the hydrogen atom. Unlike
in the case of acetone, the distribution of the charges allows for a favorable direct
pairing between the oxygen and hydrogen atoms of two different ethanol molecules.
This way, the Coulomb ordering of the ethanol molecules is not induced by dipolar
ordering, as in the case of acetone, but by a classical equivalent of hydrogen bonding:
ethanol molecules can form chains of the form O–H–O–H–O–, with the methyl
groups randomly distributed outside the Hbonded chain.

In pure ethanol, this ordering is decreased by both thermal agitation and the mul-
titude of binding possibilities [153]. In a benzene mixture, however, the presence of
surrounding benzene diminishes the binding choices, and previously bonded clusters
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3.1 Mixtures with benzene as a common solvent

are stabilized. Benzene as such offsets ethanol’s structuring, which can be observed
through all the properties analysed as in the previous two mixtures.

Figure 3.10 shows several features of the correlation functions for 3 different ben-
zene concentrations, xBEN = 0.2, 0.5 and 0.8, as well as for neat ethanol. The main
panel, top and middle inset show the properties of gOO(r) for the ethanol molecules.
It can be seen in the top inset and main panel that the OO correlations increase
significantly as the concentration of ethanol is diminished, which points to the for-
mation of Hbonded specific clusters when ethanol becomes isolated. The second
inset shows the tail of the gOO(r). We see that, as the concentration of ethanol is
decreased, long range oscillations become more and more pronounced. This long
range modulation is difficult to observe in systems of 2000 particles, solely because
the box side length is not enough to capture these oscillations. For that reason, it’s
necessary to simulate systems of ∼16000 particles (which take up double the box
side as the 2000 particle system) for cases of complex disorder.

The third inset in Figure 3.10 shows the gCC(r) benzene correlations for the con-
centrations xBEN = 0.2, 0.5, 0.8 and pure benzene. The benzene correlations retain
the first neighbor structure as in the pure liquid and they change very little with
concentration variations, which is radically different than the behavior of ethanol.

Figure 3.10.: (Main panel) Ethanol oxygen–oxygen correlations gOO(r) in ben-
zene–ethanol mixtures, for benzene concentration x = 0 (gray curve), x = 0.2 (green),
x = 0.5 (magenta) and x = 0.8 (dotted blue N = 2048, thick blue N = 16 384). Insets:
(top inset) zoom on the first peak of gOO(r); (middle inset) zoom on the large separa-
tion behaviour of gOO(r) of the main panel: (lower inset) gCC(r) for benzene–benzene
correlations for the same concentrations x as the main panel and the same color code.
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Figure 3.11.: Kirkwood–Buff integrals for the benzene–ethanol system with same color
conventions as in Figure 3.5. Dashed lines for the ideal behaviour and full lines for
the expression for D given in the text and shown in the inset. The open symbols are
experimental KBIs for the benzene–methanol system given in [154].

Figure 3.11 shows the dramatic difference between the KBIs’ behavior for benzene-
ethanol and the two other examples. Not only is the behavioral trend of all species
different, but the values are larger by almost 2 orders of magnitude. The dashed
lines in Figure 3.11 show the ideal KBIs, and they are very small compared to the
actual values.
Also, there is a noticeable contrast between the high ethanol KBIs and the compar-
atively small benzene KBIs for this mixture. However, one would expect that the
benzene KBIs would be similar to the ideal KBIs, since benzene is not affected by
ethanol’s charge-induced clustering. It turns out that one cannot have inhomogene-
ity in the distribution of ethanol without influencing that of the benzene. Hence the
fluctuations in the distribution of benzene are forced to follow those of ethanol, even
though they are not concerned by the Coulomb induced clustering. These finding
indicate that, besides information about concentration fluctuations, KBIs can hint
at the nature of the components’ interactions in the system.
Figure 3.12 shows the structure factors SOO(k) (top panel) and SCC(k) (lower panel)
for various benzene concentrations. SOO(k) shows a remarkable evolution as the
ethanol concentration diminishes. Pure ethanol (the gray line) shows the existence
of a pre-peak at kP ≈ 0.8 Å-1, which corresponds to an ethanol domain of the size d =
2π/ kP ≈ 7.5 Å - an elementary ring structure present in ethanol [155, 153]. However,
as ethanol become the minority, that cluster peak at kP ≈ 0.8 Å-1is absorbed by
another pre-peak, positioned at kP ≈ 0.1 Å-1. The latter pre-peak corresponds to a
domain size of d = 2π/ kP ≈ 60 Å, which would contain approximately 10 ethanol
molecules. Interestingly, this pre-peak position does not shift so much between xBEN
= 0.5 and xBEN = 0.8. The reason for this behavior can be gleaned by looking at
the snapshots of particular concentrations (Figure 3.13).
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3.1 Mixtures with benzene as a common solvent

Figure 3.12.: Structure factors for the benzene–ethanol system: (top) oxygen– oxygen
SOO(k) for the benzene mole fractions x = 0, 0.2, 0.5 and 0.8 with same color code as
in Figure 3.10; (bottom) benzene carbon–carbon SCC(k) with same color codes as for
above, except for x = 1 (pure benzene) in thin grey line.

Figure 3.13.: Snapshots of the benzene-ethanol system for the following benzene mole
fractions: xBEN = 0.2 (left), 0.5 (middle) and 0.8 (right panel). Benzene is shown in
transparent gray, while ethanol is shown by elements: oxygen in red, hydrogen in white
and the carbon united atoms is transparent blue.

At xBEN = 0.2, we observe ethanol chains which resemble the structures seen in neat
ethanol [124, 125]. As ethanol is rarified, one can notice the occurrence of Hbonded
rings which are especially visible for isolated aggregates. Besides the occasional
lone ring, there are larger aggregates made out of piles of such smaller elementary
aggregates, which is visible for both xBEN = 0.5 and xBEN = 0.8. This ties in
with evolution of SOO(k), where the cluster peak of pure ethanol is being gradually
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absorbed into the domain pre-peak, a feature present for xBEN = 0.5 and xBEN =
0.8.
The SCC(k) of benzene shows large concentration fluctuations at k = 0 when benzene
is in the minority. However, SCC(k) does not show a pre-peak. This is clearly related
to the absence of specific benzene clusters, which indicates that there is a significant
difference between concentration fluctuations and micro-heterogeneity.

3.2. The influence of solvent shape on disorder

So far we’ve established the importance of molecular interactions in generating dif-
ferent types of disorder. But what happens when we have non-polar solvents which
are characterized by different molecular shapes? For that reason, we’re looking into
binary mixtures of acetone or ethanol with pentane and carbon tetrachloride (CCl4).
Unlike benzene, which is a planar, plate-shaped molecule, pentane is linear while
CCl4 is globular (Figure 3.14).

Figure 3.14.: Models of solvent molecules: benzene (left), pentane (center) and CCl4
(right). The models are shown for illustrative purposes only, for their sizes are not
depicted in proper proportions. The molar volumes of the molecules are: VBEN =
89.2 cm3

mol , VPENT = 115.3 cm3

mol and VCCL = 96.7 cm3

mol .

The chemical properties of the three non-polar molecules are very similar, as is the
way that they are modeled (more details are in Appendix 1). That way we can
monitor the steric effects different shapes may have in mixtures with species such
as alcohols and ketones.

3.2.1. Mixtures with acetone

Just like in the case of the benzene mixture, acetone was mixed with both pentane
and CCl4 following the same protocol. We expect that acetone, having dipolar
interactions, will tend to behave as it did in benzene - it will prefer to aggregate in
small pockets in order to form dimers. The only question is if, and how much, will
the other solvent hinder that?
The answer to that is partially answered by Figure 3.15. This image contains KBIs
over molar fraction of solvent for both acetone-pentane (left panel) and acetone-CCl4
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(right panel). As expected, both mixtures exhibit a weak non-ideality in terms of
KBI, confirming that acetone interactions are enthalpic in nature. The fitted D,
used for obtaining the GAB, is the same as in the case of benzene-acetone: D(x) =
1−αx(1−x), where α = 2. That function, shown in the inset of Figure 3.15, yields
GABwhich match the trend of the simulated KBIs. Furthermore, when comparing
the KBIs from Figure 3.15 to those in Figure 3.8, we see the similarity between all
three acetone binary mixtures. Despite the difference between the solvents in terms
of geometry, the concentration fluctuations in the systems are strikingly similar,
not only for acetone, but also for the non-polar solvent. This finding implies that
acetone’s interactions are the driving force behind this behavior.
The discrepancies present (especially in the case of CCl4 in the right panel) result
from the fact that the simulated pure liquids (acetone and CCl4) don’t have the
exact volume of the real systems. Also, system size may play a role in the slightly
exaggerated value of the KBIs.
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Figure 3.15.: Kirkwood–Buff integrals for the acetone-pentane (left) and acetone-CCl4
system (right) with same color conventions as Figure 3.16. Dashed lines represent the
ideal behaviour and full lines the KBIs obtained through the expression for the regular
mixture given in the text and shown in the inset.

More information can be gathered from Figure 3.16, where the correlation functions
and corresponding site-site structure factors are shown for acetone-CCl4 (upper part)
and acetone-pentane (lower part). This figure mimics Figure 3.8 and from the first
glance it can be noticed that the behavior of acetone is almost identical in all three
mixtures. Not only do acetone’s correlations functions nearly overlap, but its struc-
ture factors show the same position and height of the main peak, and an almost
identical raise at k = 0. This confirms that acetone’s structuring, whether in terms
of first neighbors or long range, is a result of acetone’s interactions and the charac-
teristics of the non-polar environment will have negligible influence upon it.
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mixture.

The non-polar solvents show the same trends of behavior, but there are subtle differ-
ences among them, witnessed principally by their correlation functions. Even though
all solvents have the first neighbour peak positioned at r = 6 Å, benzene’s and pen-
tane’s gCC(r) have similar height and shape. The gCC(r) in CCl4, on the other hand,
shows that the carbon atoms are more correlated than benzene’s or pentane’s. In
fact, the correlation function of CCl4 resembles more the model Lennard-Jones sys-
tem than benzene or pentane, which is due to close packing enabled by the molecular
shape. These findings are mirrored by the SCC(k) functions. All three solvents have
the characteristic main peak, positioned at k = 1.25 Å-1, which corresponds to the
particle size. That main peak in the S(k) is of the same height for benzene and pen-
tane, and somewhat higher for CCl4. The structure factors for all three solvents also
show a raise at k = 0, with CCl4 having a slightly higher raise, which was expected
from the KBI results in Figure 3.15.

3.3. Conclusions

In this chapter, we have shown how different types of interactions control local
ordering, and in turn control the nature of the fluctuations that occur in the middle
of the corresponding systems. We ellucidated the difference between different types
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of disorder.
Simple disorder systems, i.e. simple mixtures, have components with similar in-
teractions which are essentially dominated by excluded volume effects. They are
characterized by near ideal concentration fluctuations and no noticeable local or
global ordering.
If one component of a mixture has more pronounced interactions, such as dipolar
interactions (e.g. acetone), then the concentration fluctuations will deviate from
the ideal case. However, such a system will have some short range ordering and
will lack large and more permanent structures, placing itself between simple and
complex disorder. These are so called regular mixtures.
But if the system has one species with stronger interactions, such as the Hbond
interaction, that will result in extensive clustering and domain formation. Such
mixtures are termed complex disorder. Their signatures include large concentra-
tion fluctuations (especially for the associating species) and the occurrence of peaks
at small k values of the site-site structure factors. These two characteristics are
closely bound, but it’s imporant to make a difference between them. Concentration
fluctuations are macroscopic observables measured through the KBIs [31, 27], the
latter corresponding to the k = 0 part of the structure factor. On the other hand,
the small k region of the structure factor gives information about the microscopic
structure of the mixture. A pre-peak in the structure factor at small k, as well as
high KBIs, indicate the existence of domains.
The domains occuring in complex mixtures have their own share of intricacies. The
temporal evolution of domains and fluctuations in domain number and size are issues
which may cause statistical problems in computer simulations. Those problems
are known, and have been reported before, especially for cases of water mixtures
[114, 148]. However, it’s shown that even mixtures with one associating species and
the other inert, can have typical complex mixture behavior and to this associated
statistical problems. The issues pertaining to correct system size and simulation
time are addressed in Appendix B.
We have also shown that, in cases of complex disorder, the interaction is the key
player. The interactions between one species generates complex disorder, while the
influence of the molecular shape of the inert solvent is almost negligible.
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4. The ethanol-methanol mixture

The concept of ideal mixtures is important in physical chemistry as they set the
reference frame for analyzing mixtures with departures from ideal behavior [156].
Ideal mixtures are detected through the quasi linear dependence of a given mixing
property:

Aideal(x) = A0(1− x) + A1(x) (4.1)

where A0 = A(x = 0) and A1 = A(x = 1) are the properties of the respective neat
liquids “0” and “1”. This simple equation states that the excess property ∆A(x) = 0
in the general relation:

A(x) = Aideal(x) + ∆A(x) (4.2)

What constituates ideal mixtures? It is not enough to suppress the van der Waals
interactions to obtain an ideal mixture, since the hard core effect remain strongly
non-ideal. This is seen in the case of hard sphere mixtures [157, 158], which show a
non-ideal behavior, exemplified in the non-zero excess volume dependence [1].
For realistic liquids, it’s said that a mixture will be ideal if its species are of similar
shapes, sizes and molecular interactions with one another [156, 159]. A frequent
textbook example of that is the benzene-toluene mixture, because the two molecules
are very similar in size, shape, and chemical properties [156]. However, a mixture
much more complex in terms of interactions, that of two alcohols, is considered an
ideal mixture [160], because it obeys the relation above.
In the current chapter, we zoom in on the ethanol-methanol mixture and illustrate
how ideality appears in correlations and thermodynamic properties, while the inter-
actions are very strongly non-ideal. The signatures of ideality, particularly in the
KBI results, will help us reevaluate the role of interactions and concentration fluc-
tuations while defining an ideal mixture. Since we wish to mix two compounds with
near similar properties, we capitalize on the fact that the alcohols’ hydroxyl groups
are modelled in the same way. This renders the interactions between all the func-
tional groups in the system identical. However, there is a mismatch in the length of
the alcohols’ alkyl tails, which will compete with the hydroxyl group interactions.
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As we don’t expect this effect to be very pronounced in the ethanol-methanol mix-
ture, we’re also examining the methanol-1-propanol mixture, where there’s a bigger
difference in the alkyl tail lengths. Furthermore, we will be comparing the realistic
ethanol-methanol system with a binary Lennard-Jones mixture, which is an exam-
ple of an ideal mixture. The components of this LJ mixture are tailored to have
volumes corresponding to those of the ethanol and methanol molecules, respectively.
That way we can contrast a binary mixture of two alcohols with a true ideal mixture
and put it into perspective considering the concepts of simple and complex disorder
introduced in the previous chapter. The interest of this chapter is to revisit ideal
mixtures with the same tools we use to investigate concentration fluctuations and
micro-heterogeneity.
The results of this work are the subject of one publication [73]. The simulation
protocol, models and other details can be found in Appendix A (for neat liquids)
and Appendix B (for binary mixtures).

4.1. Structural analysis

4.1.1. Snapshots

Figure 4.1.: Snapshots for the ethanol-methanol mixture for the following ethanol mole
fractions: xE = 0.2 (left), xE = 0.5 (middle) and xE = 0.8 (right). The methyl sites of
both species are shown in transparent cyan, while the hydroxyl groups are represented
in full. Ethanol’s oxygen and hydrogen are featured in red and white, while methanol’s
are in olive and white.

Figure 4.1 shows the typical configurations for three typical mole fractions of the
ethanol-methanol mixture. Only the bonding sites were represented in full (oxygen
and hydrogen, with the oxygen shown in red for ethanol and olive for methanol),
while the methyl sites are in transparent cyan. We can observe chain-like clustering
for all mole fractions, with the hydroxyl groups of the alcohols intermingling into one
uniform network which spans the whole box. This is most visible when rotating the
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box when only the hydroxyl groups are shown. Since the hydroxyl groups of both
molecules have the same partial charges, the hydroxyl groups are interchangeable.
Hence, there is no micro-segregation of the two types of groups.
In Figure 4.2 we can see the global behavior of the ethanol-methanol mixture, but
also for the two-component Lennard-Jones mixture. Neither one of the mixtures
shows any form of local heterogeneity. That is to be expected of the LJ mixture, and
is very telling for the alcohol mixture. The hydrogen bonding present in the latter
system concerns only the hydroxyl groups, while the methyl groups are randomly
arranged around the existing Hbond clusters. Micro-heterogeneity, on the other
hand, affects the whole molecule.

Figure 4.2.: Snapshots for the ethanol-methanol mixture (upper row) and Lennard-Jones
mixture (lower row), for the same concentrations as in Figure 4.1. Methanol in shown
in yellow and ethanol in gray. Their analogues in the LJ mixture are also shown in
yellow and gray, respectively.

The upper panel illustrates the global heterogeneity (ethanol in grey and methanol
in yellow, with similar conventions for the LJ system shown in the bottom panel).
The global observation is that the hydrogen bonding does not bring out any specific
form of local heterogeneity. In other words, both the alcohol and the LJ mixture
look very similar. This enforces the impression of ideality of both systems.

4.1.2. Cluster distribution probabilities

The cluster distributions probabilities of different pairs of sites are displayed in
Figure 4.3. In this case, the oxygen atoms of ethanol and methanol are considered
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to be separate species, and are treated accordingly. These results are shown in the
main panel of Figure 4.3 (methanol in dotted-dashed lines and ethanol in full lines),
alongside the cluster distributions of neat ethanol and methanol (dotted black and
brown lines, respectively). The curves representing neat ethanol and methanol are
strongly non-monotonous and have a specific peak at about cluster size 3-5 [124, 125],
which is consistent with the chain and loop clusters found in these alcohols [153,
161, 162]. This specific peak disappears as the solvent molecules are added, yielding
fully monotonous distributions. As the peak present in neat alcohols corresponds
to a specific cluster geometrical shape, its disappearance in mixing conditions does
not mean that these chain structures have disappeared. In fact, the chains are
now made of mixed methanol-ethanol hydroxyl groups, so this disappearance of the
specific peak is an indication of the perfect mixing of methanol and ethanol.
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(inset), for different ethanol mole fractions. Dot-dashed lines for methanol (labelled M)
and full lines for ethanol (labelled E). Pure ethanol and methanol are shown in dotted
lines, in black and grey, respectively.

However, we can consider another case, where all of the oxygen atoms in the system
are taken to be of the same species. The results from this calculation are presented
in Figure 4.4, with the curves assigned to the mole fraction of ethanol for the sake of
reference. We observe that the cluster peak is present for all three concentrations,
with the height and shape of the peak being close to identical in all three cases. As
expected, this peak is located just like in its neat constituents, around the cluster size
of 3-5. Since this peak is detectable via cluster calculation only when the entirety of
oxygen atoms is considered, that proves that the clusters in the mixture are made
out of the hydroxyl groups of both alcohols in equal measure. Mass spectrometry
experiments done on the ethanol-methanol mixture indicate that tetramers are the
preferential size of “mixed” clusters [163], which corresponds well with our results.
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Figure 4.4.: Cluster probability distributions calculated for all oxygen atoms in the
system, regardless of the molecule. For a point of reference, each curve is assigned the
mole fraction of ethanol (color code is in the legend). Cluster distributions for neat
ethanol and methanol are shown in black and brown.

As for the behavior of carbon united atoms, their cluster distributions are featured in
the inset of Figure 4.3. The distributions in question are decaying functions typical
of simple liquids. This result is expected since these atoms are randomly distributed
in the mixture, just as they are in neat alcohols [124, 125].

4.1.3. Pair correlation functions

The correlation functions for the most important atom pairs are shown in Figure 4.5
for the same three molar fractions as in the previous sections. The main panel
contains the oxygen-oxygen correlation functions, while the inset has the carbon-
carbon correlation in alcohols (full lines) and those in the LJ mixtures (dashed
lines).

All OO correlations have a high and narrow first peak characteristic for hydrogen
bonding. Regardless of which species is in question, the first peaks of OO correlations
look very much alike and independent of the concentration. That is due to the fact
that the partial charges on the oxygen and hydrogen atoms are the same for both
alcohols. This finding enforces the interpretation of perfect mixing between the
two alcohols. However, the difference in the alcohols’ non-polar parts clearly affects
the second neighbors. Methanol has only one carbon united atom which doesn’t
hinder the arrangement of the oxygens’ second neighbors. As a result, methanol’s
OO correlations are not depleted in the region of the second neighbors. On the
other hand, ethanol’s additional carbon group will lead to depletion of the second
neighbors, for both ethanol and, to a lesser extent, cross OO correlations.
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Chapter 4 The ethanol-methanol mixture

Figure 4.5.: Selected site-site correlation functions. Main panel: oxygen-oxygen corre-
lations; inset: carbon-carbon correlations as well as the LJ correlations (dashes). The
two top panels show the ethanol-ethanol oxygen correlations, the two middle show the
ethanol-methanol oxygen correlations, and the two lower the methanol-methanol oxy-
gen correlations. Each data set is shown for 3 solute concentrations xE = 0.2 (blue),
0.5 (green), and 0.8 (magenta). The TraPPE model correlations are shown only for xE
= 0.5 in dotted purple lines (only on main panels).

As for the carbon group correlations in the inset, their shapes and positions re-
semble very much those between the Lennard-Jonesium. This demonstates that
hydrogen bonding between the hydroxyl groups can create strong local order, but
which doesn’t affect the whole molecule, hence the unfettered non-polar groups.

In closing, we note that the OO correlations for the TraPPE model, shown in dotted
purple the main panels, are indistinguishable from the OPLS data.

4.1.4. Structure factors

Figure 4.6 shows the site-site structure factors corresponding to the correlation func-
tions from Figure 4.5. In the left panels of Figure 4.6 the OO structure factors are
presented for all three species, for all three typical mole fractions. These curves
have two distinct peaks. The main peak is located at kMP ≈ 3 Å−1for all three
species, and it represents the hydrogen bonding distance between the oxygen atoms,
rHB ≈ 2 Å. The main peak varies with concentration in the cases of OEOE and
OMOM structure factors simply because of the increase or decrease of the number of
like molecules. The OEOM structure factors stay the same, indicating the constancy
of cross bonding in the system. In this sense, the main peak witnesses the site-site
interactions.
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4.1 Structural analysis

Figure 4.6.: Selected site-site structure factors for the correlations shown in Figure 4.5,
with same line and color conventions. Left panels: OO structure factors. Right panels:
methyl-methyl structure factors (full lines) and LJ structure factors (dashes).

Apart from the main peak, there is also a pre-peak for all three OO structure factors.
This pre-peak is positioned at around kPP ≈ 0.8 Å−1for ethanol and cross structure
factors and kPP ≈ 1 − 1.5 Å−1for methanol. The pre-peak hints at much larger
objects - clusters formed by the hydrogen bond. Since this pre-peak indicates cluster-
cluster interactions, we have named it the cluster peak. The shape and location of
the cluster peak in the OEOE and OMOM structure factors is very similar to that
in neat ethanol and methanol (shown in Figure A.5), indicating that ethanol and
methanol preserve their neat liquid clustering in the mixture, once again indirectly
confirming the perfect mixing of the components.
In contrast, the site-site structure factors of the carbon groups (right panels of
Figure 4.6) don’t have this cluster pre-peak. Their main feature is the main peak,
which corresponds to the size of the carbon united atom (kMP = 2π

σ
≈ 1.7 Å−1 for

σC ≈ 3.4 Å). Once again, this demonstrates that the non-polar groups are randomly
arranged in the system, much like LJ particles are, and that they do not participate
in the building of Hbonded clusters.
However, the sole existence of clusters in this system indicates an an inherent com-
plexity which is absent from the simple Lennard-Jonesium mixture. The fact that
this complexity is hidden behind several apparent signatures of simplicity is worth
further examination through thermodynamic properties.
It’s also important to notice the k = 0 behavior in the site-site structure factors.
The only species with structure factors that show somewhat of a raise at k = 0 is
methanol (especially at xE = 0.8), which is at variance with the trends of the other
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Chapter 4 The ethanol-methanol mixture

species. However, the data globally indicates very small concentration fluctuations,
which is reminiscent of simple systems. This seems to be a signature of clustered
systems - the structure factor curve decaying in in the k = 0 limit, while having
a cluster peak at a small k value. This can also imply that clustering means the
“transfer” of the fluctuations at k = 0 to small k.

On a sidenote, the TraPPE model structure factors (dotted purple lines) in the left
panels of Figure 4.6 and are seen to be very similar to the OPLS data.

4.2. Thermodynamical analysis

4.2.1. Volumes and energies

Figure 4.7 presents the intermolecular energies (upper panel), molar volumes (lower
panel), as well as associated excess quantities (as insets) for the ethanol-methanol
mixture (OPLS and TraPPE models), as a function of ethanol mole fraction. The
results for the LJ mixture are also added, alongside the experimental volumetric
data [164] in the lower panel.

In terms of molar volumes, both the OPLS and the TraPPE models perform fairly
well in comparison with the experimental results. Since the LJ mixture’s spheres
are tailored according to the molar volumes of ethanol and methanol, the molar
volumes of that mixture closely follow the experimental results and are comparable
to those of the simulated systems. However, the real test of forcefield accuracy
comes when excess properties are calculated. In that sense, neither the OPLS nor
the TraPPE forcefield are accurate enough to reproduce the realistic behavior of the
excess volume. While the OPLS data shows a positive excess volume, it significantly
overestimates the values obtained by experiment. The TraPPE data is closer to the
experimental values, but only in the ethanol rich region. In the ethanol poor region
it completely changes trend and becomes negative. A negative excess volume is the
hallmark of hard sphere mixtures [1], and the LJ mixture shows exactly that.

This discrepancy between experiment and models could be the consequence of sev-
eral issues, such as the neglect of polarisability. One can search after models that can
reproduce better experimental data. However, in a past work, the group has studied
several models of ethanol and found that none of them reproduced accurately the
experimental enthalpies and volumes of water-ethanol mixtures [149]. Despite those
inaccuracies, the global microscopic structure of the mixture is reproduced well.
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4.2 Thermodynamical analysis

Figure 4.7.: Intermolecular energies (upper panel), molar volumes (lower panel) and
corresponding excess quantities (insets) for the studied systems. Green for the OPLS
model, magenta for the TraPPE model, and blue for the LJ model. The experimental
data for the volumes and excess volumes [164] are equally shown in dashed grey lines.

The upper panel of Figure 4.7 reveals that the intermolecular energies of the ethanol-
methanol mixtures are (about -40 kJ/mol) far below that of the LJ mixtures (about
-10 kJ/mol). A LJ system cannot achieve such negative energy and stay liquid;
increasing the well depth ε would likely lead to crystallization. These large negative
energies of the alcohol mixtures are therefore a signature of a hidden complexity.

As for the excess energies, they are positive for all types of mixtures, indicating that
the mixing is slightly less favourable than the neat states. Interestingly enough, the
TraPPE force field overestimates the value on the methanol rich side, while OPLS
does the same thing on the ethanol rich side. This indicates the low performance of
force fields as far as excess thermo-physical properties go.

4.2.2. Kirkwood-Buff integrals

Ideality in mixtures can be considered through concentration fluctuations. If molecules
from different species interact very similarly, their relative distributions will be sim-
ilar to the respective pure liquid, rendering the concentrations fluctuations small.
Ideal mixtures have been investigated through the Kirkwood-Buff theory in the lit-
erature [165, 166, 167]. Ploetz et al. [167] have studied ideal and non-ideal mixtures
in comparison with the associated pair correlations. They noted that ideal mixtures
tends to have very little variation of their correlations in mixing condition with re-
spect to that of their respective pure states, which is what one would expect if all
the interactions would be very similar.
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Chapter 4 The ethanol-methanol mixture

Through the section on structural analysis, we’ve seen that pair correlation functions
of the ethanol-methanol mixture indeed conform to this trend. Now we turn to the
KBI results to see whether or not they are in accord with the trend in ideal mixtures.
The calculated KBIs for the ideal case (lines) and the KBIs obtained from simulation
(symbols) are reported in Figure 4.8. The ideal KBIs are calculated by setting the
D(x) from Equation 2.32 to 1.

Figure 4.8.: Kirkwood-Buff integrals for the alcohol (OPLS in open dots, TraPPE in
open squares), LJ (open triangles and ideal KBI in lines) mixtures. The solvent-solvent
(methanol) KBI are in magenta, the solute-solute (ethanol) in blue, and the cross in
green.

Both the alcohol mixture and LJ mixture exhibit similar behavior in terms of KBI.
All of the data sets fall quite close to the calculated ideal KBI values. This finding
indicates that these mixtures are ideal from thermodynamic point of view, with very
little concentration fluctuations. The near absence of concentration fluctuations in
the ethanol-methanol mixture was pointed out in studies of the diffusion constants
in the mixture [66, 168].
In the case of the LJ mixture, these low concentration fluctuations go hand in hand
with a uniform distribution of the molecular species, and this is the scenario seen in
simple liquids [1]. The ethanol-methanol mixture displays strong clustering at every
mole fraction, accompanied by much more negative energies, yet it also seems to be
thermodynamically ideal.
However, the presence of clusters in the system is not opposed to the concept of
thermodynamic ideality. The fact that ethanol and methanol share the same hy-
droxyl group and, by consequence, the same Hbonding interactions and preferences,
will lead to them mixing almost perfectly. Since alcohols have a tendency to form
clusters, simultaneously reducing the concentration fluctuations, the final result is
a mixture which is ideal on the surface, but hides complex structuring beneath it.
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4.3 The methanol-1-propanol mixture

4.3. The methanol-1-propanol mixture

So far, we’ve seen that the hydroxyl group interactions play an important role in
the ethanol-methanol mixture, both in the structural and thermodynamic sense.
However, the difference in alkyl tail length between ethanol and methanol is not
great, so it naturally poses the question what would happen if alcohols with longer
carbon chains were used. If we were to mix methanol with 1-propanol, there would
be a bigger asymmetry of the non-polar tails, and it would be interesting to see
how this effect would compete with the identical interaction between the hydroxyl
groups.

Figure 4.9.: (a) Plot of the methanol oxygen-oxygen correlation functions gOO(r) (blue)
from the equimolar methanol-1-propanol mixture, compared with the methanol gOO(r)
in the methanol-ethanol equimolar mixture (magenta). The inset shows gOO(r) for 1-
propanol (green) compared with ethanol’s gOO(r) in equimolar methanol-ethanol mix-
ture (orange). (b) The structure factors corresponding to gOO(r) data in (a). (c) The
KBI for the methanol-1-propanol mixture: methanol in blue, 1-propanol in green, and
cross in magenta (lines for the calculated ideal curves and symbols for simulations). (d)
Snapshot of the equimolar methanol-1propanol mixture. Methanol oxygens shown in
red, hydrogens in white, 1-propanol oxygens in blue, and hydrogens in cyan. All methyl
united atom groups show as semi-transparent cyan spheres.

Figure 4.9 summarizes the main results for the methanol-1-propanol mixture. Only
the data for the equimolar mixture was featured, as other concentrations show an
overall similar trend to ethanol-methanol. Figure 4.9a) shows the OO correlation
functions of methanol in methanol-1-propanol (blue) and methanol-ethanol mixtures
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(magenta curve) in the main panel and the OO correlation functions 1propanol
(green) and ethanol (orange curve) in the inset. One can immediately notice the
same main features as in Figure 4.5, in the form of tall and sharp first neighbor
peaks, characteristic of Hbonding. The second neighbor peak shows some differences,
which are expected because of the difference between the molecules. As for the
structure factors (presented in Figure 4.9b) with the same color code as in panel
a)), they all have cluster peaks which are very similar for these two systems. The
only differences are at very small k-values, or in long range correlations. These two
panels in Figure 4.9 confirm that the hydroxyl group correlations are the same for
both mixtures.

The clustering in the methanol-1-propanol system is also visually observable. In
Figure 4.9d) we have one snapshot of the mixture, with the hydroxyl groups of
methanol shown in red (oxygen) and white (hydrogen), while those of 1propanol
are shown in blue (oxygen) and cyan (hydrogen). The methyl groups are shown in
transparent cyan. Similar to the middle panel of Figure 4.1, we notice the extensive
and indiscriminate chain-like clustering of hydroxyl groups.

Figure 4.9c) contains the KBIs from the simulation (symbols), alongside the calcu-
lated ideal KBI (lines). The KBIs obtained from the simulation agree with the ideal
KBIs, indicating that the concentration fluctuations are close to ideal. However, it
must be noted that there are small but systematic deviations from pure ideality,
more noticeable than in the ethanol-methanol mixture. This quantity implies that
mixing closely related alcohols will result in a quasi-ideal mixture, with the ideal-
ity stemming from the dominating hydroxyl group energies. As soon as alcohols’
non-polar tails start to diverge, there is a shift from ideality.

4.4. Conclusions

In this chapter we have studied mixtures between methanol and either ethanol or
1-propanol, with a particular accent on the ethanol-methanol mixture. Through
the structural analysis, we have shown that this mixture has a rich organization,
stemming from its hydroxyl groups and their tendency to form Hbonded clusters.
With the hydroxyl groups being identical, both alcohols participate in the building
of clusters equally, resulting in a system which is interspersed with such “mixed”
clusters. This is proven through the results of the cluster probability distributions,
but also through the site-site structure factors. The site-site structure factors for
all combinations of oxygen sites bear the characteristic signature of clustering - a
pre-peak which we dubbed the cluster peak.

However, it’s important to note that clustering in this sense involves only the func-
tional groups of the alcohols, while the non-polar parts of the molecules are organized
randomly, similar to spheres in a Lennard-Jones mixture. The site-site structure fac-
tors of the carbon united atoms are devoid of the cluster peak.
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4.4 Conclusions

In context of the previous chapter on simple and complex disorder, we need to make a
few distinctions. Complex disorder was exemplified through the mixture of ethanol-
benzene, where we had the microsegregation of the associating species - ethanol -
in relation to the non-polar component. In that case, the whole ethanol molecule
participated in the building of much larger objects: domains. These domains had a
signature in the site-site structure factors of ethanol in the form of a pre-peak, but
it’s not the same pre-peak as the one studied in this chapter. The pre-peaks from
the previous chapter were positioned at a much smaller k value, hinting at bigger
objects, and were more intense.
In the case of ethanol-methanol, the pre-peak in the partial structure factors is solely
due to the presence of specific clusters, which do not involve the micro-segregation
of the entire species. These specific clusters can also be observed via scattering
experiments, which were done on neat alcohols [153, 155, 169, 170]. Our calculated
scattering intensities also show the signature of clusters [73].
With such structural features, the ethanol-methanol mixture differs considerably
from the example of simple disorder, also described in the previous chapter. But,
this richness in structure is hidden behind the apparent thermodynamical ideality
of the mixture. Even though thermodynamical ideality is primarily linked to simple
systems [1], it’s possible to attain it in mixtures such as ethanol-methanol. Its
constituents have identical interactions which govern the system and dictate cluster
formation, which seems to be a mechanism for lowering concentration fluctuations
and rendering the system close to ideality.
Indeed, the key to identifying an ideal mixture is the lack of concentration fluc-
tuations, as demonstrated by the KBI results. Textbook examples of ideality will
inevitably include systems with non-interacting or weakly interacting constituents,
giving the impression that the absence of interactions is necessary for a mixture to
be ideal. However, throughout this chapter we’ve seen that strong interactions in a
system can coexist with ideality, and that the absence of concentration fluctuations
is what makes the mixture ideal. This notion promotes concentration fluctuations,
and not interactions, as the indicator of ideality, opening the road to understanding
micro-heterogeneity as an enhanced form of concentration fluctuations.
As we increase the difference between the alkyl tails of the alcohols in the mixture,
like in the methanol-1-propanol case, there is a more pronounced competition be-
tween the asymmetry of the non-polar parts and the strong and identical interaction
between the hydroxyl groups. The results indicate that there is a shift from pure
ideality, hinting that the shift will be more pronounced as the gap between the
alcohols’ non-polar parts widens.
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5. Microheterogeneity versus
clustering

Through the Introduction and previous chapters, we’ve seen that concentration fluc-
tuations, observable at Sab(k) = 0, are not to be confused with micro-heterogeneity,
which manifest at Sab(k) 6= 0, but close to k = 0. In a way, micro-heterogeneity
is a concentration fluctuation. This perhaps subtle distinction becomes very clear
when considering the mathematical definition of the pair correlation, as related to
fluctuations of the local microscopic density ρa(~r) for species a. One writes this local
density in terms of a fluctuation δρa(~r) with respect to the macroscopic density ρa:

ρa(~r) = ρa + δρa(~r) (5.1)

Then, the two-body density function between species a and b is defined as the
correlation between the respective two microscopic variables considered as random
variables, and evaluated as a statistical ensemble average [11]:

ρ
(2)
ab (~r, ~r′) = 〈ρa(~r)ρb(~r′)〉 (5.2)

For a macroscopically homogeneous system, this definition leads to [11]:

ρ
(2)
ab (~r, ~r′) = ρaρbgab (|~r − ~r′|) + αδ (~r − ~r′) δab (5.3)

The structure factor expresses the same fluctuation, but in the k-space. The last
term in the equation comes from the fact that, for same species, the self-correlation
term must be excluded by definition.

In this chapter, which draws upon the content from our PCCP paper [74], we delve
deeper into the concept of micro-heterogeneity and confront it with the more com-
monly spread concept of cluster. Clustering happens naturally in any interact-
ing molecular system, when some particles are grouped together through attrac-
tive interaction forces. This term is connected to the structuring in associated
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liquids, in particular to neat alcohols. Clustering in neat alcohols leaves a dis-
tinct signature in the form of the pre-peak in the experimental X-ray and neu-
tron scattering intensity, a fact that has been well known throughout the years
[153, 155, 161, 162, 169, 170, 171, 172, 173].

What happens when we mix a clustering liquid, such as ethanol, with solvents
of different nature? How does this clustering differ from micro-heterogeneity or
concentration fluctuations?

For that reason, we will be probing in depth the properties of ethanol-hydrocarbon
mixtures and ethanol-water mixtures. Even though Chapter 3 has given us much
insight into the ethanol-benzene mixture, we will show that the general characteris-
tics of that mixture apply to other mixtures of ethanol with non-polar solvents, such
as pentane and hexane. When mixed with hydrocarbons, ethanol’s hydroxyl groups
form energetically favorable hydrogen bonded structures [174, 175]. Since ethanol
is immersed in a non-polar environment, the only bonding possibilities are between
the ethanol molecules themselves, and the resulting structures are well-defined. A
typical ethanol cluster found in the ethanol-benzene mixture, where xBEN = 0.8, can
be seen in the left panel of Figure 5.1.

Figure 5.1.: Ethanol structuring present in: 80% mole fraction of benzene (left panel)
and 80% mole fraction of water (right panel). The color code for element is the same
as in Figure 3.2.

However, when mixed with water, ethanol molecules can bond not only among
themselves, but with water molecules as well. In all classical force fields, the values
of partial charges located on the water molecule are larger than those of the ethanol
hydroxyl group [176, 177, 178]. For that reason, water molecules will prefer to Hbond
with themselves, rather than with ethanol [38, 149, 148]. The wealth of bonding
choices will destroy ethanol’s chain-like clusters, relegating them to fuzzy aggregated
structures - an example of which is shown in the right panel of Figure 5.1.

Thoughout this chapter, we will connect the ideas behind the visual findings from
Figure 5.1 to the signatures of their structuring in the site-site structure factors. Dif-
ferent features of the structure factor are associated to concentration fluctuations,
clustering and micro-heterogeneity, as we will show. In addition, cluster probabil-
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ity distributions of these systems will be evaluated, and this method of structural
analysis will be compared to the structure factor one.

5.1. Snapshot analysis

Snapshots shown here are for illustrative purposes only. Since a snapshot corre-
sponds to one configuration at a given point in time, it cannot be used to draw con-
clusions about the general behavior of a mixture. However, for micro-heterogeneous
systems (such as the ones investigated in this chapter) snapshots can be quite use-
ful. MH is a constant property of a system. In a simulation, it may realize itself
somewhat differently from configuration to configuration, but the overall segregation
pattern stays the same. For that reason, a single microstate in our MH mixtures
can provide ideas about the structuring in the mixture.

Figure 5.2.: Selected snapshots of aqueous-ethanol (top figures) and hydrocarbon-ethanol
(lower figures) mixtures. Figures on the right correspond to 20% mole fraction of
ethanol, in the middle for 50% ethanol and on the right for 80% ethanol. See the
text for details on color conventions for different molecules.

Figure 5.2 expands the statement in the introduction about typical ethanol struc-
turing in two different types of environment. It shows the the morphology of the
ethanol-water (upper row) and ethanol-hydrocarbon mixtures (lower row), each for
3 mole fractions of ethanol, namely xETH = 0.2 (left column), 0.5 (middle column)
and 0.8 (right column).
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For the case of aqueous ethanol mixtures, the xETH = 0.2 mole fraction reveals that
ethanol molecules (depicted in red (oxygen), white (hydrogen) and semi-transparent
cyan (methyl groups)) form loose domains in water (shown as semi-transparent dark
blue environment). Moreover, the ethanol hydroxyl groups are not so bonded among
themselves - they also bond with the surrounding water molecules. As a result,
despite segregation, the ethanol domains are rather fuzzy. The other two mole
fractions, xETH = 0.5 and 0.8, show explicitly the water molecules, while ethanol
is in semi- transparent representation. We notice that water is segregated in loose
domains, despite the apparent hydrogen bonding amongst itself. The general picture
that emerges from these 3 snapshots is that both water and ethanol form fuzzy micro-
segregated domains, with the fuzziness originating from the incomplete self-hydrogen
bonding of each species with its own kind. From this observation, we expect that
the cluster distributions will not show any peak at some particular cluster size.

The lower panel of Figure 5.2 with the ethanol-hydrocarbon mixtures tells a different
tale. The left figure shows ethanol molecules (same respresentation as in the upper
panel) at xETH = 0.2 in hexane (semi-transparent gray representation). Although it’s
immediately apparent that ethanol molecules are segregated from hexane, we can see
another important detail - ethanol’s hydroxyl groups are oriented towards each other
and from chains and loops. In fact, almost all hydroxyl groups are bound into such
a shape. The middle picture shows xETH = 0.5 in benzene, with a representation of
the molecules analogous to the previous snapshot. This figure follows the trend seen
in the previous one - there is a segregation in species domains, as well as chain/loop
clusters of the hydroxyl groups inside the ethanol domains. The lower right picture
shows xETH = 0.8 in pentane, where the ethanol molecules are shown entirely. Again
we observe a domain segregation by species, and geometric clusters of the hydroxyl
groups. Moreover, the clustering of ethanol in a non-polar environment strongly
resembles that in pure ethanol.

5.2. Correlation function analysis

Figure 5.3 shows the correlation functions in aqueous ethanol. The main panel
contains the ethanol OO correlations, for 3 different concentrations of ethanol, while
the inset shows the correlations between the oxygen sites of water. The pure liquid
correlations are also shown in black. All cases are characterized by a sharp and
narrow first peak, a feature tied to underlying hydrogen bonding between hydroxyl
groups. Although these findings suggest strong associations of the species, that is
more easily confirmed by considering the long-range correlations, which will be done
in the next section.

It’s imporant to observe that water OWOW correlations increase with the decrease of
water content, which was observed for other aqueous mixtures before [33, 38, 114].
That trend is opposite for ethanol, as its correlations at contact tend to decrease with
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decreasing ethanol concentration. This interesting feature is not limited to water.
In fact, it’s observed for any associating molecule mixed with a less associating one.
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Figure 5.3.: Oxygen–oxygen correlation function in ethanol–water mixtures. Main panel
for ethanol, the inset for water. Blue curves for 20% mole fraction of ethanol, green for
50% ethanol and red for 80% ethanol. The pure component is shown in black. These
color conventions are preserved in all subsequent figures.
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Figure 5.4.: Site–site correlations in ethanol–alkane mixtures. Main panel: ethanol
oxygen–oxygen correlation function. Inset: Carbon united atom correlations (blue for
pentane, green for benzene and red for hexane). Color convention according to ethanol
mole fraction as in Figure 5.3.

That is demonstrated in Figure 5.4, which shows the correlations between the oxygen
sites of ethanol in non-polar solvents. In the latter case, ethanol takes the role of
the associating species, which is directly mirrored in the correlation functions. The
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ethanol oxygen g(r)s, presented in the main panel, have a first peak which increases
with decreasing ethanol content. The various alkane correlations – shown in the
inset – show the opposite trend, although these correlations concern very different
alkanes. Moreover, the sharp first peak in the ethanol OO g(r) is much higher and
stronger than the peaks in Figure 5.3, indicating the stronger hydrogen bonding of
the hydroxyl groups of ethanol when mixed with non-polar solutes. Their association
is energetically favorable, giving rise to the “hair-out” micelle analogy mentioned in
the introduction of this chapter.

5.3. Structure factor analysis

Figure 5.5 presents the structure factors corresponding to the g(r)s in Figure 5.3,
with the same color code. The black lines denote the oxygen–oxygen structure
factors of the neat components, which help us to evaluate the changes in the micro-
structure compared to the pure liquid.
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Figure 5.5.: Structure factors for the correlation functions shown in Figure 5.3, with the
same color conventions. Structure factors of neat liquids shown in black. Main panel:
ethanol; inset: water.

In the case of water (the inset of Figure 5.5), we notice the characteristic double
peak of neat water [179] decreasing as the ethanol concentration is increased. The
Hbond peak at k≈ 3 Å-1decreases progressively with the addition of ethanol, while
the main peak at k≈ 2 Å-1 doesn’t change much until xETL = 0.8, when it is almost
decimated. Both of those facts reveal that water molecules are less and less hydrogen
bonded when the ethanol concentration is increased. However, there is one more
important feature in Figure 5.5- a pre-peak located at k≈ 0.2 − 0.4 Å-1, which
corresponds to domain sizes of d≈ 12 − 30 Å. This pre-peak occurs for all ethanol
mole fractions, although the pre-peaks at xETL = 0.2 and 0.5 are much stronger
than for xETL = 0.8. That is in line with the large water domains one observes
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Figure 5.6.: Site-site structure factors of ethanol methyl groups in water. The color code
is the same as in Figure 5.3.

in the snapshots (Figure 5.2) for the two former concentrations, and smaller water
domains for the latter ethanol fraction. The small water segregated domains (at
large ethanol concentrations) have less hydrogen bonded water molecules than in
pure water, implying that bonding with ethanol is occurring, which confirms the
idea of fuzzy water clusters introduced above.
As for the ethanol structure factors (the main panel of Figure 5.5), there are several
peaks to take note of. The OO structure factor of neat ethanol has a main peak
k≈ 2.8 Å-1, which corresponds to the hydrogen bonding distance, and a pre-peak
located at k≈ 0.8 Å-1, which corresponds to the chain and ring clusters [149]. Under
mixing conditions, the Hbonding peak of ethanol decreases strongly with the increase
of water content. The cluster peak recedes as more water is added, turning non-
existant at xETL = 0.5, while a domain pre-peak at k≈ 0.1 − 0.2 Å-1emerges for
mole fractions xETL = 0.5 and 0.2. Even though these two peaks seem similar,
the mechanisms behind them are very different. The cluster peak, as its name
says, detects cluster formations brought on by the oxygens in ethanol, which are
characteristic of the neat liquid and mixtures where ethanol is prevalent. The origin
of the domain pre-peak is different - when ethanol becomes the minority, its hydroxyl
groups bond more with water, rather than among themselves, which in turn prompts
the hydrophobic methyl sites to group together. This is a direct manifestation of
the so-called hydrophobic effect [180, 181], which can be seen even more clearly
through the structure factors of the methyl groups in ethanol. In Figure 5.6, there
is a domain peak for the two lowest ethanol concentrations, yet no cluster peak for
the high ethanol content. That confirms the picture of different origins of the two
pre-peaks.
Figure 5.7 shows the structure factors calculated from the g(r)s from Figure 5.4.
The OO structure factors of ethanol, presented in the main panel, retain the main
peak at k≈ 2.8 Å-1, which has the same intensity regardless of the alkane concen-
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same conventions.

tration. Clearly, the ethanols’ Hbond is the dominant interaction in this case and
is not affected by mixing with alkanes. The cluster peak of neat ethanol, however,
gradually gets absorbed into a domain pre-peak at small k-values k≈ 0.1 − 0.15
Å-1as more hydrocarbons are added. This result indicates that ethanol domains in
alkanes are made up of hydroxyl group clusters (similar to the left example shown
in Figure 5.1), which ties in with the visual information from Figure 5.2.
All hydrocarbon structure factors, in the inset of Figure 5.7, have one characteristic
feature - the main peak placed at k≈ 1.4 Å-1, which translates to the diameter of
the united atom methyl sites in various force field models (σC ≈ 4 Å). Although
the hydrocarbon molecules are different, their structure factors look nearly the same
around this value of k. Furthermore, the increase in domain segregation of ethanol
causes an increase of these structure factors but only at k = 0. Contrary to associ-
ating species, these non-polar liquids witness solely concentration fluctuations.

5.4. Cluster distribution analysis

Figure 5.8 shows the cluster distribution of water oxygen atoms in aqueous-ethanol,
for different concentrations of ethanol. Knowing that aqueous mixtures of alcohols
are microheterogeneous, one expects to notice that in the cluster distribution. How-
ever, the curves in the main panel show that the probability of a small size cluster
occuring is always greater than that of a larger size cluster. That type of behavior
is characteristic of simple liquids [121, 123], as seen in the upper inset of Figure 5.8,
where the cluster distribution of a Lennard-Jones mixture is shown. The LJ mix-
ture taken in account is actually a model for carbon tetrachloride ([182]), which
is treated as a mixture by changing the names of the molecules. The lower inset
of Figure 5.8 depicts the probability distribution of clusters of the pentane carbon
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5.4 Cluster distribution analysis

atom in ethanol–pentane mixtures, for different ethanol concentrations, which are
again trivial cluster distributions.
Judging from the data in Figure 5.8, it turns out that there are almost no differences
in these various distributions, which is very counter-intuitive in light of the strong
micro-segregation in aqueous-ethanol mixtures.
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Figure 5.8.: Cluster distribution functions. Main panel, for water oxygen atoms in
aqueous ethanol mixtures (color conventions according to the ethanol mole fraction as
in Figure 5.3). Top inset: Cluster distributions in a binary Lennard-Jones type mixture
(see the text). Lower inset: Cluster distribution for the pentane central carbon atom in
ethanol–pentane mixtures.

Figure 5.9 presents a comparison of the cluster distribution of ethanol oxygen atoms
in pentane (main panel) and water (inset), for different concentrations of ethanol,
including pure ethanol (shown in black). Pure ethanol has a peak in its cluster prob-
ability distribution, witnessing the preferential cluster size of 4-6 ethanol molecules.
When ethanol is mixed with pentane, that pure ethanol cluster peak increases with
decreasing ethanol concentrations, confirming the clustering trend observed through
visual inspection of the system and also the pre-peak analysis of the structure fac-
tors in Figure 5.7. The inset, on the contrary, shows only the trivial clustering akin
to that in Figure 5.8, despite the micro-segregation present in aqueous-ethanol.
From the difference of ethanol clustering, we see that the cluster distribution cal-
culation is only able to detect sharp, well-defined clusters such as those present
in ethanol-alkane mixtures, while fuzzy clusters in aqueous ethanol cannot be ob-
served. To use the analogy mentioned in the introduction of this chapter, we could
say that cluster analysis is more performing for the surfactant in oil, rather than the
surfactant in water.
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Figure 5.9.: Cluster distribution functions. Main panel, for ethanol oxygen atoms in
ethanol–pentane mixtures. Inset, for ethanol oxygens in aqueous mixtures (color con-
ventions according to the ethanol mole fraction as in Figure 5.3).
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Figure 5.10.: Cluster distribution functions for the ethanol methyl group. Main panel,
for ethanol–pentane mixtures. Inset, for aqueous-ethanol mixtures (color conventions
according to the ethanol mole fraction as in Figure 5.3).

Figure 5.10 shows a comparison of the clustering of the methyl group in ethanol-
pentane mixtures, and aqueous-ethanol (inset). These methyl groups are randomly
distributed in pure ethanol, as shown by the black curve. This random distribution
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5.5 Conclusions

is present in both aqueous ethanol and alkane-ethanol. The cluster probability
distributions for both mixtures look very similar, even though they differ among
themselves.

5.5. Conclusions

In this chapter, we have compared the difference in structuring between two complex
mixtures - one with both associating species (aqueous ethanol) and one with a single
associating species (ethanol-hydrocarbon).
Figure 5.3 and Figure 5.4 show two universal features in mixtures of associating
liquids. When there is only one associating species in the mixture, it will exhibit
the typical behavior i.e. it will bind with itself more and more as its concentration
decreases. But, when we have two associating species in the mixture, the strength
of their binding affinity strongly influences the structuring. The less associating
species bonds less and less with itself with the increase of concentration of the more
associating species, while the more associating species bond more and more with
itself when its concentration decreases.
Another important issue is the comparison between the correlation function formal-
ism and the direct cluster analysis. We have seen that the study of structure factors
reveals rich structuring for both types of mixtures; cluster calculation, on the other
hand, has success with the ethanol-hydrocarbon mixture, while it has no remarkable
results for aqueous ethanol.
The crux of the matter lies in the intrinsic differences between the mixtures. Cluster
calculation is able to detect ethanol clusters driven by Hbonding. In the neat liquid,
clusters of ethanol are the only structure there is; in the mixture with hydrocarbons,
clusters are the building blocks of ethanol domains. Because of that, cluster analysis
can hint to the presence of ethanol domains through the existence of ethanol clusters.
In aqueous ethanol, however, microsegregated domains are not reducible to the
Hbond clusters of which they are made. That’s why the fuzzy domains present in
that mixture cannot be detected via cluster calculation.
The different origins of microsegregation make cluster analysis a less suitable tool
for exploring MH in all its cases. The correlation function analysis, and particularly
the structure factor analysis, can pick up the signatures of clustering and microseg-
regation unerringly. On top of that, the structure factor analysis can differentiate
between concentration fluctuations (which manifest at k = 0 and can be connected
to thermodynamic observables through the KBI formalism) and segregated domain
structures (which manifest as a pre-peak at small k) - something cluster analysis
cannot do.
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6. Aqueous alcohol mixtures in cold
conditions

In this chapter, we shift our attention towards mixtures with water. Up to this
point, two different types of water structuring were observed in aqueous mixtures,
depending on the type of co-solvent it is added to. The first one is when water
forms two-dimensional, chain-like clusters, which occur in aqueous DMSO mixtures
[34]. The second one is when water forms globular domains, which is a hallmark
of aqueous alcohol systems, for example tert-butanol-water [39, 41, 183, 184]. The
strong MH displayed in these systems is often accompanied by considerable CF, as
shown by the KBI experiments [26, 185]. We’ve seen that the difference between
MH and CF is the most visible in the structure factor, with the former manifesting
as a pre-peak in the small k region of the structure factor, and the latter being the
k = 0 part of the structure factor.

What happens to these manifestations with the change in temperature? This ques-
tion is especially pertinent in the case of lowering the temperature. Decreasing
temperature increases in interaction forces through the Boltzmann factor in classsi-
cal statistical mechanics. However, this increase might affect the different types of
interaction, namely the Lennard-Jones interactions and the Coulomb interactions,
in a different manner. Is there such a change, and how would it affect the structure
of the mixture?

To answer those questions, we start with the aqueous methanol mixture. This is the
first mixture which was reported to have MH [186, 187] and which continues to garner
attention to this date, as evidenced by the considerable body of literature, both in
terms of simulations and experiments [16, 21, 36, 58, 61, 62, 66, 65, 64, 188]. This
mixture could be considered a good starting point for studying micro-heterogeneity,
for we have shown that it is not so much pronounced under ambient conditions [189].
Also, there is another point of interest in investigating the temperature dependence
of this mixture in particular.

Mixtures with an upper critical solution temperature (UCST) demix when the tem-
perature is lowered below this critical temperature. This is the case for a few aque-
ous mixtures, like aqueous acetonitrile [190] or aqueous 2-butoxyethanol [191]. The
water-methanol mixture does not undergo demixing at any temperatures for which
they are liquid. However, there have been speculation about the existence of a hid-
den UCST at temperatures lower than ambient [126]. In that light, it would be
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Chapter 6 Aqueous alcohol mixtures in cold conditions

interesting to study the behavior of concentration fluctuations. Also, that would
help to clarify how does MH evolve with decreasing temperatures.

To get a broader picture, we will also look into the water-ethanol and water-tert-
butanol mixture.

Simulating systems at low temperatures has its own set of challenges. The discussion
concerning that can be found in Appendix B.

The work given in this chapter has been the subject of two publications [75, 76]. The
aqueous methanol results were presented as a poster on the conference “WaterX -
exotic properties of water under extreme conditions” (July 2016.) and as a talk on
the 13th International school of biophysics "Greta Pifat Mrzljak" (September 2016.).
The results on aqueous ethanol and aqueous TBA were featured on a poster for the
“Joint EMLG/JMLG Annual Meeting” (September 2017).

6.1. Aqueous methanol mixture

6.1.1. Correlation functions

Figure 6.1 shows the evolution of oxygen-oxygen atom correlations with decreasing
temperature. We notice that the correlations increase with decreasing temperatures,
both for water and methanol, and for every concentration.

That is expected because of the drop in the kinetic energy, which has the effect of the
Coulomb interactions being more dominant than at room temperature. This results
in a tightening of the H-bonds in our classical description [135]. This is consistent
with the results of Bako et al. [129], who reported for the high water mole fractions.
Also, the two species behave differently. Water oxygen correlations increase with
decreasing water concentrations, while that of methanol decrease with decreasing
methanol concentrations (noticed before for aqueous alcohol mixtures [40, 114, 149],
and also discussed in chapter 5). Furthermore, water displays a larger relative in-
crease of correlations of the first neighbours than methanol. Also, second neighbor
correlations behave peculiarly - they go through a maximum at 200 K for water
(green curves)-for all methanol concentrations, while for methanol, this happens at
150 K (red curves). At low water concentration, water-water correlations at sec-
ond and higher neighbours tend to oscillate sightly below unity, which indicates a
decrease of the number of neighbours and is in line with Soper’s previous report
[126]. That can be acertained from the coordination number of water in Figure 6.2.
One sees clearly that the H-bonding coordination of water decreases below that of
methanol at the highest methanol content (right panel), which is especially pro-
nounced for T = 200 K (lower row). On top of that, there is a flattening of the
water coordination, which implies the existence of the chain-like clusters. On the
other hand, methanol coordinations at the two lower concentrations are quite low,
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6.1 Aqueous methanol mixture

while at xM = 0.8 they resemble those of neat methanol, suggesting the existence of
methanol chains.
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Figure 6.1.: Temperature dependence of the oxygen-oxygen correlation functions for
water (upper row) and methanol (lower row). Left, middle, and right panels correspond
to methanol mole fractions of 0.2, 0.5 and 0.8, respectively. The color code is contained
in the legend.
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Chapter 6 Aqueous alcohol mixtures in cold conditions

6.1.2. Cluster probability distributions

Figure 6.3 shows the temperature evolution of the cluster distribution probabilities
for the oxygens in methanol (upper row) and in water (lower row). The cluster dis-
tributions fall monotonously with the increasing cluster size, displaying the trivial
behavior characteristic of simple systems [121, 123]. With the decrease in tempera-
ture, the changes to the probability distributions in methanol are negligible. Water
undergoes more changes, especially at xM = 0.2 mole fraction, but overall, there is no
specificity in the distribution. The result shown for water probability distributions
at xM = 0.5 (lower row, middle panel) agrees with the data in [126].
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Figure 6.3.: Cluster probability distributions for methanol (upper row) and water (lower
row). The mole fractions of methanol are 0.2 (left panel), 0.5 (middle panel) and 0.8
(right panel). The color code for the temperatures is contained in the legend of the
image.

The cluster analysis of aqueous methanol at ambient temperature yielded results
similar to those of aqueous-ethanol (presented in the previous chapter).

6.1.3. Structure factors

The structure factors, presented in Figure 6.4, are organized in the same way as
in Figure 6.1. In the upper panel, we observe that, at T = 300 K, water oxygen-
oxygen structure factors show mostly concentration fluctuations, as seen from the
large k = 0 raise. With the decrease in temperature, the CF decrease and an
intermediate broad pre-peak structure emerges, in the range k = 0.2 - 1 Å-1. This
range corresponds to domains of size 6 - 30 Å. This pre-peak feature has small
oscillatory sub-structures. For small methanol mole fractions (xM = 0.2, left panel),
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Figure 6.4.: Temperature dependence of the oxygen-oxygen structure factors correspond-
ing to the correlation functions in Figure 6.1. The organization of panels and color code
are the same as in Figure 6.1. The dashed brown lines respresent the structure factors
of the neat liquids at T = 300K.

the pre-peak resembles more a plateau, while for the two other concentrations it
looks more like a bump, hinting at better defined water domains.
The other interesting feature is the main peak of water. At T = 300 K, water
structure factor shows the characteristic double peak [179], with one peak at k =
2 Å−1 and the other at k = 3 Å−1. At xM = 0.5 and xM = 0.8, this double-
peak structure changes little with temperature, but at xM = 0.2, this structure is
enhanced, indicating that water tightens its H-bond structure.
These small peaks found at lower temperatures contrast the large pre-peak we ob-
serve for aqueous mixtures of higher alcohols [33, 40, 192]. This may be linked to
the linear water clusters we note here, rather than the bulky globular domains seen
at room temperature aqueous alcohol mixtures. There are some cases where water
shows this tendency to form linear structures, notably in aqueous-DMSO [34] and
aqueous propylamine [77], where the pre-peak resembles the one in cold aqueous
methanol.
The structure factors of methanol (lower panel of Figure 6.4) show a different be-
havior. Neat methanol at T = 300 K (dashed brown line) has a main peak at k = 3
Å−1and a flat, broad cluster peak at k = 1 − 1.5 Å−1[124, 125], which corresponds
to H-bonded clusters of 4 – 6 Å. As the temperature goes down, both the main peak
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Chapter 6 Aqueous alcohol mixtures in cold conditions

and cluster peak become more prominent, especially for xM = 0.8 and to a degree
xM = 0.5. For those two concentrations, the peaks are closer together in cold con-
ditions than in ambient ones. Contrary to water, methanol structure factors don’t
show a domain pre-peak, hinting only at consistent cluster structuring. The CF are
rather small in those two cases. As for xM = 0.2, the structure factor shows less
accentuated evolution of these 2 peaks, as well as a broad raise at k = 0, all of this
suggesting indeed loose cluster structure between mere concentration fluctuations
and chain structures.

6.1.4. Kirkwood-Buff integrals

So far, the structure factors presented in Figure 6.4 have indicated that the con-
centration fluctuations are rather small. To confirm that, we turn to the KBIs.
Figure 6.5 shows the temperature dependence of the KBI of the aqueous methanol
mixtures for T = 300 K (left), T = 200 K (middle), and T = 100 K (right). The
room temperature KBIs (reported previously [189]), show a sizeable deviation from
ideal behavior, especially water. But, as the temperature is gradually lowered, the
calculated KBIs start following ideal behavior trends.

Figure 6.5.: Kirkwood-Buff integrals of the aqueous methanol mixtures for T = 300
K (left), T = 200 K (middle), and T = 100 K (right panel). Symbols are the KBI
computed from computer simulations, full lines are experimental data [26], and dashed
lines are ideal KBI. The color code is contained in the legend.

Interestingly, ideal or quasi-ideal KBI behavior is also found in aqueous-DMSO [34]
and aqueous propylamine [77], especially in the the low water content region. Those
findings hint at the possible link between low CF and the occurence of linear water
clusters.

Finally, we can conclude that concentration fluctuations decrease with temperature,
which does not agree with the predicted UCST behaviour and the associated increase
of critical concentration fluctuations [126].
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6.2 Aqueous ethanol and aqueous tert-butanol mixture

6.2. Aqueous ethanol and aqueous tert-butanol
mixture

6.2.1. Correlation functions

0
2
4
6
8

g O
O

 (
r)

150K
200K
250K

2 4 6 8

2 4 6 80

10

20

g O
W

O
W
 (

r)

r [Å]
2 4 6 8

0

4

8

12

g O
O

W
 (

r)

xE = 0.2 x
E
 = 0.5 xE = 0.8

Figure 6.6.: Site-site correlation functions between the oxygen atoms of aqueous ethanol
mixtures. Ethanol oxygens (upper row) and water oxygens (lower row) and cross corre-
lations (middle row). The corresponding temperatures are shown in the figure legend.
Three typical alcohol mole fractions are represented: 0.2 (left panel), 0.5 (middle panel)
and 0.8 (right panel).

Figure 6.6 and Figure 6.7 show the site-site correlation functions between oxygens
for ethanol-water and TBA-water, respectively. Just like in many examples before,
the first peak of the water-water correlations increases as water becomes scarce,
while the opposite is true for the solute species. The cross oxygen atom correlations
of both mixtures (middle rows) share the same trend with alcohols, but it’s impor-
tant to note that the height of the first RDF peak is between those of water and
alcohol (depending on the concentration). That indicates that: a) there is significant
cross binding between the different species, b) water may preserve tetrahedrality by
binding with the oxygens of the alcohol molecules, while chain-binding with itself.
Another general characteristic of these correlation functions is a high and narrow
first peak, followed by comparatively small second and higher neighbor shells. That
behavior is typical for Hbond associations, which seem to be the principal mechanism
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Figure 6.7.: Site-site correlation functions between the oxygen atoms of aqueous TBA
mixtures, organized as in Figure 6.6.

at low temperatures. This trend was also noted by Ghosh and Bagchi [193], who
presented results for the ethanol-water mixture at low temperatures and for low
ethanol mole fractions.

Taken into account the behavior of methanol-water as well, we can conclude that the
first peaks are always higher for water-water correlations than alcohol-alcohol. Also,
the peaks are higher for the higher alcohol. Since all alcohols have the same partial
charges on the hydroxyl sites, it’s evident that the increase in the carbon united
atom “cargo” the hydroxyl groups carry plays an important role in the organization
of alcohols. In TBA, the neutral groups are the bulkiest and therefore introduce
constraints which promote more Hbonding between the closest oxygen atoms.

The significance of the neutral groups can also be appreciated indirectly through the
second neighbors correlations. Out of the three alcohols, the higher order neighbour
correlations of TBA appear depleted, being lower than 1 for a large spatial range.
The depletion of correlations beyond the first neighbors points to the lower oxygen
Hbonding [74]. TBA’s bulky non-polar part takes up more space in the mixture and
hampers the organization of the second oxygen neighbors.

Water, due to bigger partial charges and hence stronger Coulomb interactions, will
enforce its own bonding pattern first, leaving the alcohol to adjust. If, as in the case
of TBA, the alcohol has a large neutral group, the hydroxyl group has an additional
constraint which dictates the bonding.
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6.2 Aqueous ethanol and aqueous tert-butanol mixture

6.2.2. Cluster probability distributions

The figures containing the cluster distribution probabilities are in Appendix B,
Figure B.7, since the general trend of the results is the same as in Figure 6.3. As
in the case of methanol-water, the alcohol cluster probabilities show very little tem-
perature dependence. On the whole, water cluster probabilities show more change
as the temperature decreases, which is, again, in line with the behavior water has
in methanol-water. It also demonstrates indirectly the sensitivity to temperature of
the water clustering. However, this present analysis confirms that cluster analysis
is not the most adequate tool to study micro-segregation [74].

6.2.3. Structure factors
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Figure 6.8.: Site-site structure factors of aqueous ethanol, calculated from the correlation
functions in Figure 6.6 (cross structure factors not shown), with the same organization
of rows, panels and temperature color codes. The thinner lines in the upper panel are
oxygen-oxygen structure factors of neat ethanol, for same 3 temperatures. The thinner
black line in the lower panel is for pure water at T = 300K.

The structure factors for aqueous ethanol and aqueous TBA are depicted in Figure 6.8
and Figure 6.9. The two important features seen in aqueous methanol (Figure 6.4)
are present in these systems as well.
Firstly, there is a significant diminishing of concentration fluctuations. As the tem-
perature decreases from T = 250 K to T = 200 K, the k = 0 part of the structure
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Figure 6.9.: Site-site structure factors of aqueous TBA, calculated from the correlation
functions in Figure 6.7. The figure is organized as Figure 6.8.

factors is lowered for both water and ethanol oxygen atoms. That is especially visible
for alcohol molar fraction of 0.2, but is also present for the other two concentrations.
Secondly, pre-peaks at small k values appear in the structure factors for both mix-
tures. The water structure factors (lower rows of Figure 6.8 and Figure 6.9) develop
pre-peaks positioned at around kP ≈ 0.5 - 0.9 Å−1, which implies smaller domains
than those present at ambient conditions (kD ≈ 0.05 − 0.1Å−1). The height of these
pre-peaks varies substantially with the mole fraction of alcohol.
As for alcohol structure factors, the trends observed here are similar to those seen
in Figure 6.4 for methanol. At low alcohol content (left panels of Figure 6.8 and
Figure 6.9), the structure factors are flat and nearly structureless in comparison with
the neat alcohol. As the alcohol content is increased, the structure factors acquire a
structure similar to that of the neat alcohol. At xALC = 0.8, TBA structure factors
are almost identical as the neat TBA (thin black line in Figure 6.9). On a sidenote,
the neat alcohol S(k) practically don’t vary with temperature, as demonstrated for
neat ethanol (plotted in thin lines in the upper panels of Figure 6.8).
However, there is one significant trend happening to both species with the drop in
temperature: the transfer of fluctuations from k = 0 to kP. This occurs naturally
in neat alcohols, which are known to form specific clusters [153, 161, 170]. Another
example where this happens are mixtures of two similar monools, which are consid-
ered to be close to thermodynamic ideality [159]. While a mixture of methanol and
ethanol will have small CF, it will also have a rich cluster structure hidden beneath
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6.2 Aqueous ethanol and aqueous tert-butanol mixture

thermodynamic ideality [73], thus illustrating perfectly the storing of fluctuations
into supra-molecular entities.

Unlike alcohols, neat water at room temperature will have a diverse bonding pattern,
since it’s not inhibited by the neutral groups. Water’s larger degrees of freedom of
bonding will enable the molecules to form domains when a solute is added, thus
increasing the k = 0 part of the structure factor. However, in the case of cold
aqueous mixtures, water molecules seem to be forming linear clusters which lock
the fluctuations, just like in alcohols. This explains the lower S(k = 0) for water
oxygens for x = 0.5 and x = 0.8. For those concentrations, water displays a pre-peak
similar to that in neat alcohols. The likeness is glaring for TBA-water at xALC =
0.8, where the pre-peak located at kP ≈ 0.8 − 1 Å−1(Figure 6.9, lower right panel).

6.2.4. Kirkwood-Buff integrals

Figure 6.10 and Figure 6.11 show the KBIs for two temperatures: 200 K (left panel)
and 150 K (right panel). It is obvious that for both cases the KBI obtained in
simulations (symbols) fall onto the calculated ideal KBI (dashed lines), similar as
in aqueous methanol. This behavior is in stark contrast with the KBI of room
temperature ethanol-water [26, 134] and TBA-water [134]. It may seem strange
that mixtures with such strong directional interactions and consequential structuring
display very little concentration fluctuations, but that just shows that concentration
fluctuations should be analysed through their entire k-vector dependence.
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Figure 6.10.: Kirkwood-Buff integrals of the aqueous-ethanol mixture, depicted for two
temperatures: 200 K (left panel) and 150 K (right panel). Color code is as follows:
red for ethanol-ethanol, blue for water- water and green for the cross KBI. Symbols
correspond to KBIs from present simulations, while dashed lines represent ideal KBI.
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Figure 6.11.: Kirkwood-Buff integrals of the aqueous TBA mixture, depicted for two
temperatures: 200 K (left panel) and 150 K (right panel). The figure is organized
identically as Figure 6.10.

6.3. Conclusions

Three alcohols, differing only in their neutral groups, were mixed with water and
simulated well below room temperature. All three mixtures have shown an appre-
ciable decrease in CF with the lowering of temperature, apparent from the ideal
behavior of the calculated KBIs.
The low temperature has decreased the thermal agitation in the mixtures, thus
facilitating certain bonding choices. The fuzzy domains present in aqueous alcohol
mixtures at T = 300 K have gradually transformed into sharper, more defined
objects. That is especially evident in mixtures at high alcohol content, where we
clearly see alcohol clusters interspersed with linear water clusters (most notably for
TBA-water). While structuring in the form of chains is a hallmark of alcohols, it
is quite unusual for water, due to its molecular topology and abundance of binding
possibilities. However, the drop in the temperature has spurred water into forming
linear clusters, resulting in a transfer of fluctuations from k = 0 to small k. That is
in line with the calculated ideality of the KBIs. These mixtures demonstrate that
it’s possible to have both strong interactions in the system and ideal KBIs, simply
because the entropic and enthalpic contributions cancel each other out.
These systems show, yet again, that fluctuations have to be analysed over the entire
k range, and not only at k = 0.
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7. The case of the aqueous
propylamine mixture

Throughout the previous chapters, the spotlight was put on alcohols and their bi-
nary mixtures. The amphiphilic nature of alcohol enables it to mix with both water
and non-polar solvents, displaying different types of structuring depending on the
environment. However, alcohols are not the only group of amphiphilic molecules
relevant in biological processes. Amines, organic compounds that contain nitrogen
atoms, are a part of proteins and many vitamins and hormones [32]. This diverse
group of compounds plays an important role in industrial [194, 195, 196] and phar-
macological [197, 198] applications, yet the studies of structuring in neat amines and
their binary mixtures are rather scarce. Unlike their alcohol counterparts, amine in-
vestigations are few and far in between. Kusalik et al. [199] have reported on
methylamine and aqueous methylamine, while Lachet et al. [200] have studied a
large variety of alkanolamines and their aqueous mixtures, proposing a new force
field as well.
Monoalkylamines (primary amines connected to one alkyl chain) quite resemble
mono-ols, albeit with one caveat. Their functional group is NH2, which has two
donors and one acceptor, instead of the one donor - one acceptor structure of OH
hydroxyl group of linear alcohols. So far, we’re acquainted with the behavior of
neat mono-ols and their aqueous mixtures. However, we don’t know if amines will
behave according to the same blueprint. How will the difference in the amine func-
tional group affect the Hbonding properties and therefore the micro-structure of
neat amines and aqueous amine mixtures? What will be the behavior of the aque-
ous amine mixture in terms of concentration fluctuations and micro-heterogeneity?
Does a small change in the functional group lead to small or significant changes in
structuring in comparison with aqueous alcohol mixtures?
In the following chapter we focus on propylamine, a liquid monoalkylamine which
is fully miscible with water [201]. Also, it is the first amine in the sequence which is
liquid at ambient conditions, unlike methylamine and ethylamine which are gaseous
(and not miscible with water in every proportion). Through the study of neat
propylamine and its aqueous mixture we will shed light on the importance of the
functional group in the shaping of the structural and thermodynamic features of the
mixture.
Details about the modelling of neat propylamine, simulations performed and ther-
modynamic results can be found in Appendix A, while details about the aqueous
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propylamine mixture are listed in Appendix B.

The work presented in this chapter has been the subject of one publication [77].

7.1. Neat propylamine

The left panel of Figure 7.1 shows a snapshot of the neat propylamine system,
where the functional groups are shown in full color, while the carbon united atoms
are transparent. One can observe chain-like structures built by the amino group in
propylamine. However, the bonding pattern of propylamine is somewhat different
than that of alcohols, as evidenced by the example of 1-propanol in the right panel
of Figure 7.1. In the case of 1-propanol, the hydroxyl group forms distinct chain-like
clusters; the amino group, on the other hand, allows for considerable branching and
polydispersity, due to the double hydrogens on the nitrogen site.

Figure 7.1.: Snapshots of neat propylamine (left panel) and 1-propanol (right panel).
The functional groups are shown in full, with nitrogen being blue, hydrogen white and
oxygen red. The carbon tails are transparent cyan.

This notion can be followed through quantifiable means, such as the cluster dis-
tribution probabilities (Figure 7.2). Once again, we look at the comparison of
propylamine and its alcohol counterpart, 1-propanol. The cluster distributions of
1-propanol show a clear peak around cluster size of 4–6, which is a typical signature
of alcohols that was discussed in previous chapters. In contrast, the cluster distri-
bution of the nitrogen sites of propylamine have a rather weak shoulder about the
same cluster size. Also, the occurrence of monomers is higher for propylamine than
1-propanol. Although these results may seem startling, they are just confirming
the observation from Figure 7.1. Simple, linear chains will produce a characteristic
mark in the cluster probability distribution. As soon as a functional group allows
for choice of bonding, the end result will be branched chains, which tend to blur
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Figure 7.2.: Cluster distribution probabillities for the nitrogen atoms of propylamine
(blue line) and the oxygen atoms of 1-propanol (red line).

the distribution of aggregated atoms and produce a weak broadened feature instead.
This finding also leans onto the discussion in the previous chapter regarding cluster
probability calculations. It seems like cluster distributions are not the best tools for
cases with extensive branching in the system.
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Figure 7.3.: Main panel: pair correlation functions of selected site-site combinations in
neat propylamine, with the color code contained in the legend. Inset: Site-site structure
factors calculated from the g(r)s from the main panel, with the same color code.

For that reason, we turn to the analysis of correlation functions and site-site struc-
ture factors. The side-by-side comparison with 1-propanol is not directly included
here, as the 1-propanol data is shown in Appendix A. Figure 7.3 shows the various
pair correlation functions of neat propylamine in the main panel. The correlations
stemming from the functional group are depicted in thick lines; the ones from car-
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bon united atoms are dashed. The NN correlation function has a high and narrow
first peak, characteristic of hydrogen bonding liquids, which is in line with the be-
havior of neat alcohols [124, 125]. The HH correlations, however, are smaller and
broader than in neat alcohols, with the first peak positioned at roughly r = 2.5 Å
and a shoulder at r = 4 Å. Both features are a consequence of having two hydrogen
atoms attached to the nitrogen. Furtermore, the NH correlations are significantly
lower than NN correlations and are split into two peaks. The first peak corresponds
to direct NH bonding while the second one is due to the existence of the second
hydrogen on a fixed distance from the first hydrogen. As expected, the correlation
functions of carbon sites are similar to those seen in alcohols (Figure A.4, and also
[124, 125]).

The inset of Figure 7.3 contains the site-site structure factors of corresponding cor-
relation functions. It’s immediately evident that the Hbonding site combinations -
NN, NH and HH - all possess cluster peaks located at k ≈ 0.65 Å-1 and of a similar
intensity. This would correspond to a structure of approximately 10 Å, confirming
the existence of Hbonded clusters observed in the snapshot. Apart from the cluster
peak, these structure factors have a main peak, centered about k ≈ 2.5 Å-1, which
corresponds to the Hbonding distance of rHB = 2 Å. In contrast, the carbon sites’
structure factors display main peaks at k≈1.4 Å-1, which correspond to the mean
diameter of the site.

As for 1-propanol, the OO structure factor (Figure A.7) has a higher pre-peak than
the NN in propylamine. This indicates that for the same number and same topology
of the methyl sites, the hydrogen bonding difference between straight and branched
chains tends to weaken the pre-peak of branched chains.

This analysis shows that correlations, both in direct and reciprocal space, can de-
scribe an Hbonding cluster structure which may be elusive to other types of calcu-
lations. Despite the same origin of the cluster structures in alcohols and amines,
differences arise from the two donor hydrogen sites the amino group possesses.

7.2. Aqueous propylamine

After the study of neat propylamine, we tackle its mixture with water. For the sake
of simplicity, the snapshots that will be presented are of the 2k system, while all the
other data in subsequent images is calculated from the 16k system.

7.2.1. Snapshots

Figure 7.4 shows three configurations of propylamine water mixtures, for three dif-
ferent amine mole fractions: xP = 0.2 (left panel), 0.5 (middle panel) and 0.8 (right
panel). The structural evolution of the mixture with concentration is very graphic.

88



7.2 Aqueous propylamine

Figure 7.4.: Snapshots of three typical mole fractions of propylamine: xP = 0.2 (left
panel), 0.5 (middle panel) and 0.8 (right panel). Water molecules are depicted in red
and white (for oxygen and hydrogen sites, respectively), propylamine’s amino group in
blue and white (for nitrogen and hydrogen), while propylamine’s non-polar tail is in
transparent cyan.

At low amine content, the propylamine molecules have formed domains in which the
hydophobic tails are grouped together in the core of the domain, while the amine
functional groups act as a sort of interface with the surrounding water molecules.
Amine domains, albeit smaller, are also present at xP = 0.5, and at this concentra-
tion, the water domains appear like rows of chains. At xP =0.8, branched chains
formed by the amine groups dominate the mixture, with a number of water molecules
integrated in their chains. Also, water molecules among themselves form linear clus-
ters. The latter is a significant departure from what was observed in the case of
aqueous alcohol mixtures, hinting at the importance of the chemical makeup of the
functional group of the molecule.

7.2.2. Cluster probability distributions

Figure 7.5 shows the cluster probability distribution for propylamine sites (left
panel) and oxygens of water (right panel). The general trends resemble those in
aqueous ethanol, shown in the previous chapter. As soon as water is added to
propylamine, the nitrogen cluster distribution loses its weak shoulder and becomes
a decaying function similar to that of ethanol’s oxygen in aqueous ethanol. As the
mole fraction of propylamine decreases, the probability of monomers increases, while
the cluster size lessens.
The cluster distribution of the carbon united atom (calculated for the last methyl
group in the chain, the farthest away from the functional group) for neat propylamine
shows a Lennard-Jones type of behavior. As propylamine is rarified, the cluster
distributions show a decrease in the cluster size, as well as a lessened probability of
those clusters occuring. At xP = 0.2, there is a small, yet observable probability of
larger clusters formation, which is more than what was seen in the cluster probability
distribution of ethanol’s methyl group (previous chapter).
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Figure 7.5.: Cluster probability distributions for: a) propylamine NN sites (main panel)
and CC sites (inset), b) water OO sites. The color code is the following: xP = 0.2
(red), xP = 0.5 (green) and xP = 0.8 (blue). Black lines represent the data for the neat
compound (dashed for propylamine and dotted for water).

The cluster probability distributions for the water oxygens show functions char-
acteristic for simple mixtures. At first glance, the behavior of water oxygens in
aqueous propylamine is similar to that in aqueous ethanol. However, there is a
subtle difference for the equimolar mixture. In aqueous ethanol, there is a consider-
able probability for the occurance of large water clusters (cluster size around 1000
sites), while in aqueous propylamine the same distribution has the lowest probability
of larger clusters (cluster size considerably less than 100 sites). This finding may
indicate the lack of globular water domains seen in the snapshots.

7.2.3. Pair correlation functions

Figure 7.6 shows the most representative correlation functions of the aqueous propy-
lamine mixture, for the typical amine mole fractions xP = 0.1, 0.2, 0.5 and 0.8. The
left panel shows the NN correlations, where the first peak decreases as the amine
mole fraction decreases. This is the same behavior pattern shown by alcohols when
mixed with water. However, there are differences between alcohol OO and amine
NN correlations, for we see that NN correlation functions are very small and de-
pleted at contact for xP = 0.1 and 0.2. This hints at the fact that, at small amine
concentrations, propylamine molecules tend to Hbond with water rather than with
themselves. Indeed, this is confirmed when assessing the middle panel of Figure 7.6,
where the cross correlations between propylamine and water are presented. For all
amine mole fractions, NOw correlations are significantly higher than NN correlations.
Also, the first peak decreases as the amine concentration decreases. However, these
correlations are depleted beyond second neighbours, hinting at the short ranged
correlations between opposite species. The evolution of the cross correlation func-
tions indicates that, when amines are in the majority, water has a high likelihood

90



7.2 Aqueous propylamine

0 3 6 9 120

5

10

15

g A
B
 (

r)

Neat
xP = 0.8
xP = 0.5
xP = 0.2
xP = 0.1

0 3 6 9 12

r [Å] 0 3 6 9 12

NN NOW OWOW

Figure 7.6.: Pair correlation function for aqueous propylamine. Propylamine’s NN cor-
relations are featured in the left panel, the cross NOw correlations in the middle panel,
and water’s OwOw correlations are in the right panel. The color code is contained in
the legend of the Figure.

of forming hydrogen bonds with the surrounding amines, which aligns well with the
snapshots in Figure 7.4.

The OwOw correlation functions, shown in the right panel of Figure 7.6, display
the typical water behavior seen in many aqueous mixtures. The first and second
neighbour correlations increase with decreasing water content, and they are much
higher than cross or NN correlations, revealing once again the preference water has
for bonding with itself, even when it’s in the minority. Yet, there is an interesting
feature not observed in other aqueous systems - a shallow minimum beyond the
third neighbour correlations. This feature makes sense given that water doesn’t
seem to form bulky, globular domains when mixed with propylamine. Instead, it
forms chains with appreciable cross binding, as seen for xP = 0.8 in Figure 7.4, which
result in such a noticeable depletion in the correlation function, especially visible
for xP = 0.8.

7.2.4. Structure factors

Site-site structure factors, calculated from the pair correlation functions in Figure 7.6,
are displayed in Figure 7.7. The left panel shows the NN structure factors and their
evolution with the change in molar fraction of propylamine. It’s seen that the main
peak gradually decreases as the propylamine content decreases, almost flattening for
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xP = 0.2 and 0.1, which is to be expected from the information given by the pair
correlation functions. The behavior of the features at small k values is much more in-
teresting. The cluster peak of neat propylamine starts diminishing as soon as water
is added. While the cluster peak still persists at xP = 0.8, it wanes at xP = 0.5 - the
same concentration where a kernel of a domain pre-peak is observed. This domain
pre-peak is prominent for xP = 0.2 and especially xP = 0.1. This pattern of different
pre-peaks is indicative of the inner structural changes going on in the mixture. At
high amine content, the predominant structural organization are branched chains
formed by the amine group, while at low amine content, the propylamine molecules
gather in domains. In these domains, the alkyl tails are grouped together towards
the center of the domain, while the amino functional groups form a kind of interface
with water (a pictorial representation is in Figure 7.4). This type of behavior was
already observed in the case of ethanol-water, described in the previous chapter.
The right panel of Figure 7.7 contains the OwOw structure factors. For all concen-
trations, the site-site structure factors show a pre-peak feature, which is absent for
neat water (black line in Figure 7.7). At xP = 0.1 and 0.2, the domain pre-peak is
located at k ≈ 0.25 Å-1, corresponding to domains of roughly 25 Å. As more propy-
lamine is added, the domain pre-peak of water shifts to the right, falling at k ≈ 0.5
Å-1 for both xP = 0.5 and 0.8. The evolution of the pre-peak aligns well with the
more bulky water domains observed for low amine content (Figure 7.4, left panel)
and the linear water clusters when propylamine is in the majority (Figure 7.4, right
panel). It’s interesting to notice that the domain pre-peaks in water structure factors
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7.2 Aqueous propylamine

are more intense than those of propylamine. Also, the trend in pre-peak intensity
varies with concentration, with the pre-peak at xP = 0.2 being the most intense.

As for the main peak, which in neat water has the split peak feature [179], we note
that the outer peak disappears for every amine mole fraction. Only the inner Hbond
peak at k ≈ 3 Å-1 (corresponding to rHB ≈ 2 Å) survives, although it decreases with
amine content increase.

Finally, the inset in Figure 7.7 shows the NOwstructure factors, which are seen to
have both positive and negative pre-peaks, depending on the concentration. At high
and intermedate amine content there are positive pre-peaks, which is not surprising
considering the type of structuring the same species exhibit and the number cross
correlations between the species. At xP = 0.2 and 0.1 we have anti-pre-peaks. This
negative pre-peak has been reported before for cases of room temperature ionic
liquids [202, 203], where it’s typical of domain segregation. In the context of aqueous
propylamine, it’s clear that water and propylamine form same-species domains with
comparably less cross-species contact at long range, which produces this negative
pre-peak feature.

7.2.5. Kirkwood-Buff integrals

So far, the aqueous propylamine mixture has shown interesting structural features
which have lots of commonalities with the aqueous ethanol mixture. Therefore, one
might expect high KBI values that vary strongly with concentration, a hallmark
of aqueous alcohol mixtures [26]. However, Figure 7.8, which contains the KBIs
calculated from the simulations, tells a different tale. The KBI values are quite small
in magnitude and, when compared to the computed ideal KBIs (dashed lines), nearly
ideal in the range 0.3 < x < 1. This implies that the concentration fluctuations are
small in this range of concentrations, which makes sense considering the chain-like
structuring observed for both propylamine and water. This behavior of KBIs is also
reminiscent of another water mixture: aqueous dimethylsulfoxide (DMSO), which
also has close to ideal KBIs [26]. Looking into the microstructure of water-DMSO
one finds chain-like water clusters at high DMSO content [34], hinting at the ability
of linear clusters to lower the concentration fluctuations.

Water specific interactions are strongest in the range 0 < x < 0.3, as seen from
the non-ideal KBI. As for propylamine KBIs, they are also non-ideal in that mole
fraction range. When the D(x) is calculated to fit that KBI trend, one obtains the
function in the inset of Figure 7.8. This D(x) has a maximum at xP ≈ 0.15, which
is flanked by two concentrations, xP = 0.1 and 0.2, which have signatures of bulky
domains in the site-site structure factors.
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Figure 7.8.: Kirkwood-Buff integrals for aqueous propylamine, with respect to the mole
fraction of propylamine. The species are colored as follows: blue for water-water, ma-
genta for propylamine-propylamine and green for the cross KBI. Open squares are the
KBI calculated from the present simulations, dashed lines represent the ideal KBIs,
while full lines correspond to the KBIs calculated with the D-coefficient shown in the
inset.

7.3. Conclusions

The study of neat and aqueous propylamine has introduced interesting new findings
in the puzzle of microheterogeneity. Since propylamine is an amphiphilic compound,
one has expected it to share common structuring traits with mono-ols. However, the
introduction of a different functional group, with two donors and one acceptor, has
increased the binding possibilites of the NH2 group. In neat propylamine, this results
in branched chains, as opposed to linear chains in alcohols. These branched chains
are difficult to observe via cluster calculations. However, the site-site structure
factors of the amine functional group reveal cluster pre-peaks, albeit of a lesser
intensity than those of the hydroxyl group in 1-propanol, pointing to the existence
of branched chains.
The propylamine-water mixture has several features in common with aqueous al-
cohols. The trends in short-range behavior are similar, with water pair correlation
functions increasing as the water content decreases, while it’s the opposite for propy-
lamine. This is typical of aqueous mixtures and occurs in aqueous alcohols as well.
In terms of long range behavior, the evolution of propylamine’s structure factors
with concentration mirrors that of ethanol’s structure factors. Both compounds
transition from a chain-like cluster structuring at high concentrations to domain
formation at low concentrations. Their respective site-site structure factors witness
the decrease of the cluster pre-peak as more water is added, and the emergence of a
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domain pre-peak when water is in the majority.
However, the behavior of water in the amine mixture breaks the mold. Up to xP
= 0.3, water forms bulky domains, similar to those we have observed in aqueous
alcohols, which are marked by a prominent domain pre-peak in the oxygen-oxygen
structure factor. After xP = 0.3, water forms linear clusters, similar to those in
aqueous DMSO [34], and leading to smaller structure factor pre-peaks and near ideal
KBI. The lowering of the concentration fluctuations brought on by the formation of
linear chains is an interesting feature that illustrates the plasticity of water.
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8. The microstructure of neat
1,n-diols and their mixtures

Up to this point, a good portion of the research in our group was focused on small
alcohols which are fully miscible in water and alkanes. The alcohols in question
were mono-ols, alcohol compounds containing one hydroxyl group [32]. However,
these are not the only alcohols occurring in nature. Alcohols have diversified into
sub-categories depending on the number of attached functional groups. Compounds
with two hydroxyl groups are called diols, while those with three hydroxyl groups
are called triols [32]. These two families have a wide range of application purposes.
For example, 1,2-ethanediol or ethylene glycol is the major component of antifreeze
[204] and the precursor for synthetizing PET fibers [205]. 1,2,3- propanetriol or
glycerol is a staple of the cosmetic industry and is used as an additive in the food
industry [206]. Glycerol is also the basis for the synthesis of triacylglycerols and
phospholipids, thus having biological importance.
In comparison with mono-ols, additional hydroxyl groups in diols and triols should
complexify the structural landscape of aqueous mixtures, as is hinted by experi-
ments. In a series of experimental papers, Teixeira and D’Arrigo have investigated
aqueous mixtures of such complex co-solvent surfactant, with the use of neutron
scattering techniques, in order to interpret the various presence and absence of do-
main pre-peaks as a function of the complexification of the alcohols [207, 208, 209].
However, the alcohols studied by D’Arrigo et al. would represent a big leap in the
level of complexity when considering the compounds we have dealt with in the pre-
vious chapters. In computer simulations, the main problem is to find reliable force
fields for such complex alcohols. Transferability works only for small molecules and
it’s usually necessary to improve the force field parameters when modelling more
complex compounds [200].
For that reason, we will explore a model which is rather well confirmed before we
tackle something similar to the work of D’Arrigo et al., staying in the realm of short
diols. That way, one is able to make points of reference with the previous work on
small mono-ols and their mixtures.
However, this now poses another question, and that is the placement of the second
hydroxyl group in diols. This position can vary from close to the first hydroxyl
group, leading to 1,2-diols, all the way to positioning it at the other end, leading
to 1,n-diols (Figure 8.1). A point can be made that 1,2-diols will share similar
behaviors with mono-ols, as the hydroxyl groups are concentrated on one side of the
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molecule and the alykl tail is somewhat free. On the other hand, 1,n-diols present a
particular interest, since the two hydroxyl groups are attached to an alkyl chain in
between. What is the role of the alkyl chain, and how does it affect the clustering
properties of the neat 1,n-diols?
This question is addressed in the first part of this chapter, which describes the
underlining micro-structure of 1,n-diols, particularly in comparison to neat mono-
ols. The present work has revealed an important finding: the calculated scattering
intensities, obtained from simulation results, show no no pronounced pre-peak. This
is in variance with mono-ols, which are known to exhibit pre-peaks in scattering
intensities [153, 155, 161, 162, 169, 170, 171, 172]. A subsequent experimental paper
from Tomšič et al. [210] has confirmed our prediction.

Figure 8.1.: Graphic depiction of 1,n-diol models: 1,2-ethanediol (left), 1,3-propanediol
(center) and 1,4-butanediol (right panel). The atom colors correspond to the following
elements: cyan - carbon, red - oxygen and white - hydrogen. The molecules are shown
for demonstrative purposes only, for they are not in the exact proportions with one
another.

In the second part of this chapter we study mixtures of 1,n-diols. Once again, the
principal idea is to ascertain how does the constraint in the form of an alkyl tail
influence the organization in these mixtures. For that reason, we mix 1,n-diols with
water and ethanol, respectively. Since we’re already acquainted with the ordering
present in water-ethanol mixtures and its signatures, we can observe the differences
in mixtures with diols and draw parallels.
Without much surprise, we find that 1,n-diols mix rather well with either water or
ethanol and do not form segregated domains. However, this apparent structural
homogeneity contains a twist, which is visible through the shape of the structure
factors near k = 0. These mixtures have neither high CF nor domain pre-peaks
in their site-site structure factors, and generally appear as to be borderline to a
clustering system. This represents a new form of disorder which we call the Lifshitz
state. Its name is inspired by the Lifshitz point in field theory [211], which separates
a disordered phase from two types of ordered phases. This point represents the
continuous transition between the disordered and the ordered phase [211]. However,
the Lifshitz point is not permanent, for it can be reached by moving through the
phase diagram. In contrast, the Lifshitz state is a permanent physical state, where
the system is stuck in a disorder without clustering.
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It may be worth mentioning that the Lifshitz points can take on a more elaborate
interpretation in micro-emulsion studies from a theoretical point of view, with the
Lifshitz points being analogous to spinodal points at k 6= 0.
The work presented in this chapter has been the subject of two separate publications
[78, 79]. The study of neat 1,n-diols has also been featured on a poster for the
Liquid Matter Conference (July 2017), while the results for the 1,n-diol mixtures
were presented as a poster for the Joint EMLG/JMLG Annual Meeting (September
2017).

8.1. Neat 1,n-diols

As mentioned in the introduction, this section will deal with the structural properties
of 1,2-ethanediol (ethylene glycol) and 1,4-butanediol, in comparison with methanol
and ethanol, respectively. Not only are methanol and ethanol the first two alcohols
in the series, but “combining” two methanols (or ethanols) would yield ethanediol
(or butanediol).
Results for 1,3-propanediol and 1,5-pentanediol are not shown in their entirety. The
most notable result - the calculated scattering intensity - is reported for all four
diols. The simulation details for the neat species can be found in Appendix A.

Figure 8.2.: Snapshots: (a) ethanediol, (b) methanol, (c) butanediol, (d) ethanol. Oxygen
atom is shown in red, hydrogen in white and methyl and methylene united atoms as
semi- transparent tan.

Figure 8.2 shows snapshots of the ethanediol and methanol (upper row) and bu-
tanediol and ethanol (lower row). The characteristic pattern of chains formed by
hydroxyl groups is present in all alcohols and is especially prominent for ethanol
and butanediol. However, ethanediol seems to have less chains and these tend to be
shorter than in methanol. Also, ethanediol has a new feature, previously unseen in
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Chapter 8 The microstructure of neat 1,n-diols and their mixtures

alcohols: there are a few chains aligned next to each other. That feature is already
a sign of the important role the alkyl chain plays in diols, and is visible precisely
because of ethanediol’s short, two-methylene group chain.
Although not shown here, propanediol and pentanediol show chain behaviour similar
to butandiol, with a more pronounced chaining for pentanediol.

8.1.1. Cluster distribution probabilities

To quantify the visual findings in Figure Figure 8.2, we performed the the clus-
ter probability distribution analysis for neat 1,n-diols. The main panel of Fig-
ure Figure 8.3 displays the cluster probability distributions of the hydroxyl oxy-
gen atoms, for 1,2-ethanediol, 1,4-butanediol and their mono-ol counterparts. It’s
known that methanol and ethanol oxygen distributions have a cluster peak which
corresponds to cluster sizes from 4-6 [124, 125], and we notice that the cluster dis-
tribution in butanediol is similar to that of the mono-ols. But, the probability of
monomer occurence is smaller in butanediol than in the mono-ols, which infers that
hydroxyl groups are less free in butandiol than in the mono-ols. This is somewhat
counter-intuitive, since we expect that the constraint imposed by the alkyl chain
would leave more hydroxyl groups free. Yet, we observe that there are more bound
hydroxyl groups in diols than in the mono-ols. This is also true for propanediol and
pentanediol (inset), which both show the cluster peak corresponding to the observed
chaining of the hydroxyl groups.
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Figure 8.3.: Cluster probability P(s) versus cluster size s. The cutoff parameter is taken
to be r = 3.6 Å, except for ethanediol for which r = 3 Å and r = 2.9 Å are reported
in dashed and full red lines. Main panel shows a comparison between mono-ols and
diols. The inset shows higher diol oxygen distrubutions (full lines) and distribution of
the methylene sites (M1 and M2) for butanediol.

The results for ethanediol contrast those of the other alcohols. Instead of a distinct
peak, there is a shoulder in the cluster distribution. This can be rationalized in
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8.1 Neat 1,n-diols

terms of the constraint imposed by the alkyl chain: the number of free hydroxyl
monomers is indeed larger than for the other alcohols.

As for the methyl/methylene groups of diols, they have a monotonously decaying
cluster distribution (dashed lines in the inset of Figure Figure 8.3), the same as in
mono-ols. Since these groups go in pairs in each molecules, the monomer distribu-
tion is slightly lower than the dimers. This overall monotonous cluster distribution
implies that, despite the constraint of being tied to the clustered hydroxyl groups,
these non-polar groups are essentially randomly distributed.

8.1.2. Pair correlation functions

Figure 8.4 shows the pair correlation functions for ethanediol (left panel) and methanol
(right panel). As expected, the oxygen and hydrogen pair correlations of ethanediol
have the typical sharp and narrow first peak, followed by depleted pair correlations
of the nearest next neighbours. This depletion has been observed in neat mono-ols
before [124, 125], and it’s connected to the charge distribution and topological setup
of the whole molecule. The hydroxyl group in alcohols contains point charges of
positive and negative sign, whose preference in structuring would be somewhat re-
semblant of charge ordering. Charge ordering refers to distributions of alternating
positive and negative charges, most characteristic for ionic liquids [212]. However,
alcohols also contain a neutral group attached to the hydroxyl group, which ob-
structs the otherwise isotropic distribution of plus and minus charges. Due to the
constraint of the neutral “cargo”, the plus and minus charges in the OH group as-
sociate into chains, producing the characteristic increase in the first neighbors and
depletion in the second neighbors. This type of correlation function will produce a
pre-peak in its corresponding structure factor [34].
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Figure 8.4.: Site-site pair correlation functions for ethanediol (left panel) and methanol
(right panel). The species are described in the legend. The dashed lines in the right
panel represent methanol modeled with another forcefield (OPLS-UA).
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Chapter 8 The microstructure of neat 1,n-diols and their mixtures

The main difference between these two alcohols is the height of the first peaks,
and perhaps a more marked depletion in the case of second neighbors. Both are a
signature of the constraint ethanediol’s alkyl chain imposes. As expected, for both
alcohols, the carbon group pair correlations behave in an LJ-like fashion.

Figure 8.5 presents the pair correlation for butanediol (left panel) and ethanol (right
panel). The main features of the correlation functions follow the trends of those in
Figure 8.4. However, the first peaks of the Hbonding species are higher than in
the respective previous cases and the depletion is quite similar, hinting at the more
pronounced chaining action. Also, the correlations of the mono-ol are higher than
that of the diol. Another interesting observation concerns the alcohols’ neutral
groups. The correlation functions of ethanol’s carbon groups are aligned, with their
first peaks located at ~5 Å. In the case of butanediol, the corresponding correlation
functions are out of phase - their first peaks are separated by roughly 1 Å. This is
another indicator of the importance of the carbon chain in diols, and it will have
interesting implications when considering the following data.
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Figure 8.5.: Site-site pair correlation functions for butanediol (left panel) and ethanol
(right panel).

8.1.3. Structure factors

Figure 8.6 shows the site-site structure factors obtained from the pair correlation
functions from Figure 8.4. Both alcohols have a pre-peak at kP ≈ 1 Å-1 occuring
in their Hbonding species’ structure factors, while their carbon structure factors
only have a main peak located at kM ≈ 1.8 Å-1. So far, we’ve shown that diols
have the characteristic features observed in mono-ols. However, the pre-peak is
more pronounced for methanol than for ethanediol, and both alcohols share the
particular double-peak shape of the SOO(k), which stems from the contributions of
SOH(k) and SMM(k). The SOO(k) of ethanediol, obtained from neutron scattering,
shows the same position of the pre-peak and a similar function shape [213].
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8.1 Neat 1,n-diols

The structure factors of butanediol and ethanol in Figure 8.7 correspond to their
correlation functions from Figure 8.5. The pre-peak is much more prominent than
in the case of ethanediol and methanol, indicating more pronounced clusters and
and confirming general trends deduced from previous analysis. Once again, it’s im-
portant to notice the trends in the carbon-carbon structure factors - for butanediol,
they are out of phase, while for ethanol they are in phase.
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Figure 8.6.: Site-site structure factors corresponding to the pair correlations shown in
Figure 8.4 for ethanediol (left panel) and methanol (right panel).
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Figure 8.7.: Site-site structure factors corresponding to the pair correlations shown in
Figure 8.5 for butanediol (left panel) and ethanol (right panel).
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Chapter 8 The microstructure of neat 1,n-diols and their mixtures

8.1.4. Scattering intensity

Figure 8.8.: Calculated X-ray scattering intensity I(k) for diols (in blue). The green
curve is the ideal contribution (see text). The scattering curves for mono-ols (methanol
and ethanol) are shown in dashed lines under those of ethanediol and butanediol. The
experimental X-ray data for ethanol [170] is shown in black line. The insets show
typical atom-atom structure factors (see text) with a scaled I(k) (in thick black line),
with vertical lines indicating the position of the pre-peak and main peak.

The X-ray scattering intensities in Figure 8.8 were obtained from the atom-atom
structure factors (part of them shown in the previous section) via the methodology
explained in subsection 2.2.3. The data in Figure 8.8 shows the results for all four
diols, together with those calculated for the mono-ols, and experimental SAXS data
[170] for ethanol. In each panels, the main intensity I(k) is reported in blue lines,
and the ideal intensity Iideal(k) in green lines (dashed lines for the mono-ols).
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It can be noticed that, even though the pre-peak in the structure factor is more
pronounced for butanediol than for ethanediol, the scattering intensity doesn’t have
a marked contribution of the pre-peak. This trend becomes more apparent for
propanediol and pentanediol, for which only the main peak is apparent, and the
pre-peak is just a shoulder. In linear mono-ols it’s experimentally known that the
pre-peak and main peak become more defined the higher we go in the series [170],
which seems not to be the case in 1,n-diols.
The reason for such behavior is hidden in the carbon chain which binds the two
hydroxyl groups. The higher we go in the diol series, the more carbon sites contribute
to the scattering intensity, and those sites produce structure factors which are out
of phase for the longer diols and distributed between kP and kM . This essentially
causes an enhancement of the contributions at kM , while smearing that at kP .
This finding has interesting implications in regards to what can and cannot be
detected in scattering experiments. Microemulsions are notorious for exhibiting a
peak at very small k values [214], which is linked to the objects (domains/droplets)
formed in such systems. Pre-peaks are found in certains neat liquids, such as mono-
ols [153, 155, 170] and room temperature ionic liquids [202], and can be connected
to the existence of clusters in such liquids. As one might expect, pre-peaks are
absent in the cases of simple liquids [11], but also for pure water [215] and aqueous
mono-ol mixtures [21, 216]. Since the constraint in diols causes the pre-peak and
main peak to basically merge into a single peak, scattering experiments may be
rendered unable to show a clear signature of the underlying chain-like organization.
This provokes the question whether there is a similar effect present in water and its
alcohol mixtures.

8.2. Mixtures with 1,n-diols

In the following sections, the results for mixtures with 1,2-ethanediol and 1,3-
propanediol with either water or ethanol are presented and discussed. A portion
of the data, concerning cluster distribution probabilities and basic thermodynamic
results, can be found in Appendix B for all mixtures.

8.2.1. Mixtures with water

8.2.1.1. Structural features

Through snapshots in Figure 8.9 we can visually appraise the organization in ethanediol-
water. The snapshots show three typical mole fractions of ethanediol, demonstrated
for the N = 2k system. In the upper row of Figure 8.9 we show each of the species
with different colors, which helps visualise species segregation. The snapshot shows
that the species are somewhat segregated into small chain-like clusters, but that the
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Chapter 8 The microstructure of neat 1,n-diols and their mixtures

overall distribution is quite homogeneous. This is particularly striking for water,
since it tends to self- segregate into very large pockets when mixed with mono-ols
[33, 38, 41, 39, 189]. The same snapshots can be observed with a different coloring
convention - by emphasizing the water molecules and hydroxyl groups, while muting
the non-polar sites of the diol (lower row of Figure 8.9). This way, we can see that
hydrogen bonding is abundant in the mixture, indiscriminately of the species.

Figure 8.9.: Snapshots of the 1,2-ethanediol-water system, at the following diol mole
fractions: xDIOL = 0.2 (left panel), xDIOL = 0.5 (middle panel) and xDIOL = 0.8 (right
panel). The upper row contains the full molecule representation, with water being in
cyan and the diol in gray. The lower panel has the identical snapshots, but with only
the water molecules (red-white) and hydroxyl groups (cyan-white) fully represented.
The diol’s non-polar chain is in transparent gray.

Figure 8.10 shows the characteristic oxygen–oxygen pair correlations (left panel) and
their corresponding structure factors (right panel), for three diol mole fractions in
the ethanediol-water system. In terms of pair correlation functions, it’s noticeable
that water oxygen–oxygen correlations are the strongest, followed by the cross cor-
relations and then the diol correlations. Also, water’s correlations become stronger
with decreasing water content. The opposite is true for diol correlations, i.e. the
first peak decreases with decreasing diol content. This is not surprising, as it fits
into the mold of aqueous mixtures, which has been reported previously in various
contexts [21, 23, 38, 189].
However, the results for the oxygen-oxygen structure factors (left panel of Figure 8.10)
give an interesting new twist in comparison with aqueous mono-ol mixtures. The
diol and cross structure factors possess a cluster pre-peak (or plateau), yet there is
no domain pre-peak for small diol concentrations (which would be present in aqueous
mono-ol mixtures). Conversely, the water structure factor shows a rather enhanced
k = 0 raise, with no clear sign of a domain pre-peak. It seems that the water cor-
relations ‘‘waver’’ between a pre-peak and a concentration fluctuation k = 0 peak.
This is one of the signatures of the Lifshitz state.
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8.2 Mixtures with 1,n-diols

It’s interesting to note that the increase of the k = 0 peak is coupled to the behaviour
at larger k-values. The oxygen structure factors of the diol show an increase of both
the k = 0 and the cluster pre-peak when the diol content decreases (xDIOL = 0.2),
which is also accompanied by a decrease of the main peak at kM ≈ 2.7 Å-1. A
similar effect is also observed for the water oxygen correlations.
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Figure 8.10.: Oxygen–oxygen correlation functions (left panel) and structure factors
(right panel) for the aqueous–ethanediol mixtures. The diol concentrations are shown
in blue for x = 0.2, green for x = 0.5 and red for x = 0.8. Pure solvent data are shown
in black. The left panel for the oxygen atoms of the diol, the middle panel for the
cross-correlations and the right panel for the oxygen atoms of water.
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0.2.

As for aqueous–propanediol mixtures, Figure 8.11 displays the data analogous to
those in Figure 8.10, with the same arrangement of panels and color code. The
overall trend in that Figure is very similar to that in Figure 8.10. The pair corre-
lation functions (left panel of Figure 8.11), show a higher first peak for aqueous-
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Chapter 8 The microstructure of neat 1,n-diols and their mixtures

propanediol than for aqueous–ethanediol. Since the charges on the oxygen atoms
are the same between the 2 models, the increase in the oxygen correlations comes
from the presence of an additional methylene group for the propanediol. In terms
of structure factors (right panel of Figure 8.11), propanediol’s oxygen atoms show a
more pronounced cluster peak than ethanediol. This is also true for the neat liquids
(Figure 8.8), and is a consequence of the surplus methylene group, which enforces
oxygen atom correlations through hydrophobic effects. Once again, water oxygen
atom structure factors show no sign of a clear pre-peak, but rather an increase in
the k = 0 region. This confirms the findings in the case of aqueous ethanediol.

Aqueous 1,n-diol mixtures display significant hydrogen bonding in the short range,
both between the same species and cross species, which shows that they are not
simple disorder. However, this short-range bonding does not produce sufficient local
order, i.e. domains, which would then give rise to a domain pre-peak in the structure
factor. Due to the absence of domain–domain correlations, and the analogy to the
disappearance of the pre-peak in the micro-emulsion when approaching the Lifshitz
point from the side of the layer ordered phase, this new type of disorder is named
the Lifshitz state.

To close this section, we compare the structure factors calculated from a system
with N = 16 000 particles (Figure 8.11, orange dashed curve) with that from a
2k system, for the xDIOL = 0.2 molae fraction. It’s apprent that the domain pre-
peak type feature vanishes for the larger system, indicating that such a feature is a
numerical artifact.

8.2.1.2. Kirkwood-Buff integrals

The Kirkwood-Buff integrals for both aqueous diol mixtures are displayed in Figure 8.12.
The KBIs calculated from simulations (symbols) are in good agreement with the
ideal KBIs obtained from the equation Equation 2.32, where D(x) = 1 (full lines).
In the case of ethanediol (Figure 8.12, left panel), the results are well-aligned with
the experimental data (dotted lines) reported by Marcus [217]. The latter data
is the only experimental KBI data on binary mixtures with diols in literature. A
simulation study by Geerke and van Gusteren [218] has included KBI results for
ethanediol-water in the small concentration regime, which is also in good agreement
with Marcus’ experimental data.

The ideality which we perceive in the KBIs shows that these mixtures have low
concentration fluctuations, in addition to being very homogeneous. There is more
uncertainty in the data for water than the diol and cross KBIs. This is a direct
consequence of the slowness of the dynamics and the statistics.

108



8.2 Mixtures with 1,n-diols

Figure 8.12.: Kirkwood–Buff integrals, versus the diol mole fractions, of the aqueous
ethanediol (left panel), and aqueous propanediol mixtures (right panel). Blue line is
for solvent–solvent, green for solvent–diol and magenta for diol–diol KBI. The squares
represent the simulation results, the full lines correspond to D = 1. The dots in the left
panel are experimental KBI results [217].

8.2.2. Mixtures with mono-ols

8.2.2.1. Structural features

Figure 8.13 contains the snapshots of the ethanediol-ethanol system, organized sim-
ilarly to Figure 8.9. The upper row of Figure 8.13 has both compounds shown
explicitely, while in the lower row only the hydroxyl groups are shown in full. Just
like in Figure 8.13, one can observe the abundant Hbonding present in the system,
regardless of the species. There also seems to be visual evidence of Hbonded chains,
which also means there is no self-segregation of the species and no domains.

The oxygen–oxygen correlations and structure factors of the ethanol–ethanediol mix-
tures are shown in Figure 8.14, left and right panel, respectively. Looking at the pair
correlation functions, we notice that the main peak of the diol correlations increases
with decreasing concentrations of the diol, while it is the opposite for ethanol corre-
lations. It seems like the diol is taking the role of water, while ethanol is behaving
as if it’s in an aqueous mixture in terms of short range structuring. Up to this
point, we know the trademarks of short range features for both aqueous mono-ol
mixtures and mixtures of mono-ols with non-polar solutes. This situation, where
two associating species (none of them water) are being mixed is a novel one in terms
of investigating the microstructure.

We know that both pure ethanol and ethanediol have pre-peaks in their oxygen-
oxygen structure factors, so we expect a similar feature in the case of their mixture.
Indeed, in Figure 8.14 (right panel), we observe pre-peaks at kP ≈ 1 Å-1, which
confirm that clusters characteristic for alcohols are present in the mixtures. However,
at even smaller k-values there are also pre-peaks. Granted, these pre-peaks are of
smaller magnitude than those observed in micro-heterogeneous systems like ethanol-
benzene. In the latter system, the pre-peaks were due to long range oscillations in
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Figure 8.13.: Snapshots of the 1,2-ethanediol-ethanol system, at the following diol mole
fractions: xDIOL = 0.2 (left panel), xDIOL = 0.5 (middle panel) and xDIOL = 0.8 (right
panel). The upper row contains the full molecule representation, with the diol in purple
and ethanol in silver. The lower panel has the identical snapshots, but with only
the hydroxyl groups fully represented (silver-white for ethanol and purple-white for
ethanediol). The non-polar sites of both compounds are in transparent cyan.

the correlation functions, caused by the formation of domains. But in the case of
ethanol-ethanediol, there are no observed medium-to-long-range correlations which
would correspond to these small pre-peaks. In all likelihood, these pre-peaks are
artifacts of the Fourier transforms, which stem from small irregularities in the flat
asymptotic region of gab(r). These are probably caused by small system size in
conjunction with the general sluggishness of these mixtures. The orange curves in
the right panel of Figure 8.14, which respresent the structure factors calculated from
the 16k system at xEDO = 0.8, show that these artifacts tend to disappear.

The ethanol-propanediol mixture follows the trends set out by ethanol–ethanediol.
As evidenced in the left panel of Figure 8.15, the correlation functions for all species
behave similarly to those observed in Figure 8.14. Once again, the diol correlations
behave like those of water, but with a smaller magnitude. This is likely caused by
the length of the alkyl chain linking the two hydroxyl groups. The non-polar chain
is longer for 1,3-propanediol than 1,2-ethanediol, so it’s to be expected that the
compound with the shorter chain will exhibit features closer to those of water.

The site-site structure factors for this mixture, shown in the right panel of Figure 8.15,
highly resemble those found in ethanol-ethanediol. There are cluster peak at kP ≈ 1
Å-1 seen in the structure factors of all three species, once again indicating the ex-
istence of clusters typical for alcohols and appreciable cross binding between the
species. A small pre-peak for small k values is noticeable, especially in the case of
ethanol structure factors. Just like in the case of ethanol-ethanediol, the problem is
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Figure 8.14.: Oxygen–oxygen correlation functions (left panel) and structure factors
(right panel) for the ethanol–ethanediol mixtures, with the same color conventions as
in Figure 8.10. The dashed orange curves in the structure factor plots correspond to
data calculated from 16k systems, for molar fractions of xEDO = 0.8.

chalked up to the system’s slowness and resulting statistical problems in the asymp-
totes of gab(r), accompanied by the small system size. The orange dashed curves,
calculated from 16k systems for two mole diol fractions, 0.2 and 0.8, indicate that
these small pre-peaks will vanish.
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Figure 8.15.: Oxygen–oxygen correlation functions (left panel) and structure factors
(right panel) for the ethanol–propanediol mixtures, with the same color conventions as
in Figure 8.10. The dashed orange curve is for N = 16 000 particles in the case of x =
0.2.

8.2.2.2. Kirkwood-Buff integrals

Figure 8.16 presents the KBI results for ethanol-ethanediol (left panel) and ethanol-
propanediol (right panel). Unlike aqueous mixtures of diols, featured in Figure 8.12,
mono-ol-diol mixtures show a weak non-ideality. The results calculated from the
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simulations (symbols) somewhat contrast the calculated ideal KBIs with D(x) = 1
(dashed lines). This is more apparent for the case of ethanol-ethanediol, since its
ideal KBIs are grouped close together, due to the similar molar volumes of neat
ethanol and ethanediol.

Generally speaking, the functions D(x), shown in the respective insets of Figure 8.16,
show small deviations from D(x) = 1, the latter of which is the ideal value corre-
sponding to ideal chemical potential. Also, the KBI values these mixtures yield
are at variance with the KBIs from micro-heterogeneous systems. Aqueous alcohol
mixtures, for example, usually have a maximum in the water–water KBIs which can
reach from 400 to 10000 cm3/mol, depending on the alcohol [26, 29]. Monool-diol
mixtures, on the other hand, lack these high KBIs, pointing to small concentra-
tion fluctuations. This is consistent with the visual homogeneity observed in the
snapshots.

Figure 8.16.: Kirkwood–Buff integrals versus the diol mole fractions, of the
ethanol–ethanediol (left panel), and ethanol- propanediol mixtures (right panel). Blue
line is for solvent–solvent, green for solvent–diol and magenta for diol–diol KBI. The
squares represent the simulation results, the full lines correspond to D(x), which are
shown in the inset.

However, aqueous diol mixtures appear to be more ideal than ethanol–diol mixtures.
This is rather counter-intuitive, as one would expect that the presence of non-polar
groups in ethanol would help randomize these mixtures much more than in the case
of water. In fact, the alkyl groups of the ethanol molecules hinder the structuring
which would be produced if only the hydroxyl groups were present. This hinderance
produces an apparent fluctuation and non-ideality, which is seen in the KBIs, but
also in the sluggishness of the dynamics of these ethanol–diol mixtures. Aqueous
diol mixtures, on the other hand, have a strong short-range order, produced by the
abundance of hydrogen bonding choices. Despite the constraint that the alkyl chain
in 1,n-diols pose, the hydroxyl groups are able to disperse themselves in water. This
results in no domain segregation and the decrease of concentration fluctuations.
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8.3. Conclusions

The study of neat 1,n-diols has yielded several interesting results and clarified notions
about the role of the alkyl chain in these compounds.
The existence of a carbon chain of varying length, which binds two hydroxyl groups,
leads one to assume that the clustering of the hydroxyl groups in diols would be
hindered. Indeed, that seems to be true to a degree, especially in comparison with
mono-ols, where the chaining of hydroxyl groups is a trademark of their microstruc-
ture. However, the hydroxyl groups still manage to associate into chains, albeit less
prominently than mono-ols. This is shown through several structural features, such
as the pair correlation functions and structure factors.
The most interesting findings are those pertaining to the calculated scattering in-
tensity. While mono-ols have the tell-tale signature of hydroxyl group clustering in
their scattering intensities, embodied in a pre-peak located at roughly kP ≈ 1 Å-1,
1,n-diols don’t share the same trait. In fact, these diols possess a shoulder-like fea-
ture at the same position, which may seem puzzling when one recalls the existence
of chains in 1,n-diols. This is where the existence of carbon chains comes into play.
Unlike free carbon tails in mono-ols, the carbon sites in diols are spread between
their respective hydroxyl groups, thus contributing to the scattering intensity at var-
ious k values which lie between the main peak and the pre-peak. This broadening
at the main peak seems to mask the signal of the pre-peak, which is a noteworthy
finding considering the value and widespread usage of scattering experiments. This
was confirmed in the subsequent experimental study of Tomšič et al. [210].
Binary mixtures with 1,n-diols have also given interesting information. In terms of
short-range structuring, diol alcohols exhibit a duality of behaviors, depending on
the nature of the other component in the mixture. When mixed with water, diols
will show the signatures characteristic of monool alcohols in aqueous mixtures, i.e.
the first peak of the pair correlation function will decrease with the decrease of diol
content. But, if 1,n-diols are mixed with monools, they will essentially take over
the role of water, while the monool behaves as in aqueous mixtures. However, other
quantities indicate a difference between the behavior of diol mixtures and typical
complex mixtures like aqueous alcohols.
Unlike aqueous alcohols, mixtures with diols exhibit small concentration fluctua-
tions, as evidenced by the KBIs. Furthermore, there are no signatures of domain
pre-peaks in the site-site structure factors, but more of a flattening of the S(k).
This absence of a pre-peak in S(k) as a signature of the Lifshitz state, where the
system is trapped in a disorder, but which is not a random disorder either, precisely
because of the strong hydrogen bonding tendencies. The Lifshitz state represents a
novel form of disorder, an intermediate state between random disorder and domain
order, in a globally disordered homogeneous liquid. It is one step further to classify
different forms of disorder in liquids, which could be of importance in classifying
different types of disorder, particularly in the context of soft and bio-matter.
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The main aim of this thesis is to connect the chemical properties of molecules to
the statistical description of liquids and mixtures containing them. This connec-
tion links the nature of the atom-atom interactions in the molecular species to the
diversity of the supra-molecular structuring formed inside liquid mixtures. These
interactions are twofold; being the Lennard-Jones interactions and Coulomb inter-
actions. In Chapter 3, we show that LJ interactions alone lead to simple disorder,
which is the usual type of disorder one expects in liquids, random disorder. The
introduction of Coulomb interactions imposes a new form of disorder. This form of
disorder is expressed differently in ionic melts, room temperature ionic liquids or po-
lar molecules, which is based on charge order. The fact that polar molecules can be
modeled as a group of charged atomic sites imposes severe geometrical constraints
to the charge ordering, leading to micro-heterogeneity in mixtures. Different aspects
of MH were explored through various systems in this thesis.

We have suggested that micro-heterogeneity can be considered as a supra-molecular
entity, linked by a non-covalent bond, such as the hydrogen bond, which is classically
represented through Coulomb interactions. Mixtures can be viewed at several levels
of descriptions: the atomic level, the molecular level, the heterogeneous level and
finally the macroscopic liquid level. The unified description of these levels cannot
be encompassed by the usual methods of chemistry or statistical physics approaches
alone. A striking demonstration of this impossibility is the interpretation of the ex-
perimental scattering intensity in these mixtures, as we have seen in subsection 2.2.3
of Chapter 2. This description contains the form factors which represent the atomic
level, but all the other levels appear through the various frequency peaks present
in the spectrum. Since these peaks are the product of atom-atom structure factor
peaks, the entanglement in the final information is complex, and requires a detailed
interpretation through the atom-atom structure factors, which are not experimental
observables by themselves. This is why computer simulations are necessary, along
with reliable force field models.

The representation of real liquids in the classical force fields, based solely on LJ and
Coulomb interactions, is a subject of investigation in and of itself, undertaken since
the very beginning of simulations. It is interesting to note that earlier simulations
of liquid argon through LJ interactions [219] remain valid to this date, while earlier
simulations of water or aqueous mixtures are not [220, 221, 222]. This is already a
hint of what we have discussed in Chapter 3, through the concepts of simple and
complex disorder. While simple disorder requires little modeling and computational
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effort, the exact nature of the effort required to describe complex disorder is not very
clear. It would appear that most researchers in the field study these mixtures solely
from the point of view of simple disorder neglecting the inherent local heterogeneity
of these mixtures.
Yet, it is obvious that water has many anomalies, all of which are scattered in the
phase diagram at many levels of description, thermodynamic, structural or dynamic
[14, 15, 223]. The exact nature of the structure of water is still unknown [224]. It
is interesting that earlier models of water invoked the two-state model, with water
being both in ordered ice-like and disordered dense forms of liquids [225, 226]. These
two forms are quite reminiscent of the idea of simple and complex disorder that we
propose. While a lot of conceptual progress remains to be made, the present work
can be considered as a step in a promising direction. One of the promising directions
where this type of research might have an impact is biophysics.
As mentioned in the Introduction, a significant part of molecular biophysics is about
how various large molecules associate, move and interact in a rich solvent environ-
ment. Such molecules are often macromolecules or polymer molecules, which fold,
separate or assemble to form other types of molecules [227]. The assembling inter-
actions are often of the hydrogen bond type, which is smaller in magnitude than
a covalent bond, but large enough to resist thermal destruction for an amount of
time needed for the molecules to function and accomplish tasks [228]. The physical
background behind the structuring in liquid mixtures and the assembly of biomacro-
molecules is the same, even though the scales and objects themselves are different.
The work presented in thesis could be a stepping stone towards understanding the
assembly of macromolecules and also the role of complex mixtures in the biological
environment.
This thesis discusses only the structural aspect of complex liquids. It seems that
understanding the kinetics and the dynamics in micro-heterogeneous liquids would
be not only useful, but necessary in obtaining a comprehensive approach to bio-
molecular processes. The dynamic part of the micro-heterogeneity is still in its
infancy, and the first steps are being undertaken by the Split and Paris groups. New
and exciting results in that field are expected in the future.
The topic of future research surpasses the limits of this thesis, so we would like to
take this opportunity to look inward and discuss the other side of the medal. The
results’ section is populated by many different mixtures which spawned new ideas,
but these were not the only projects that were tackled throughout the course of this
thesis. There was a number of interesting projects which promised to answer impor-
tant questions, but didn’t fully come to fruition due to modelling or computational
obstacles. A brief account of two such topics is given.

Pyridine, piperidine and their aqueous mixtures The pyridine-water and piperidine-
water mixtures are notable examples of being too complex for the current time
frame. Both pyridine and piperidine are six-membered ring molecules, with the ring
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composed of five carbon atoms and one nitrogen atom. However, they belong to
different species: pyridine is an aromatic compound, while piperidine is a secondary
amine. Both molecules are miscible with water in all proportions [229] and KBI
experiments for both mixtures [26] have similar trends. There are appreciable con-
centration fluctuations and segregation in the concentration range xPIP, PYR= 0 - 0.4
for both mixtures, while beyond that range the KBIs become flat and close to the
ideal values (Figure 9.1).
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Figure 9.1.: The KBI results for aqueous pyridine (left panel) and aqueous piperidine
mixture (right panel). The experimental results were taken from Matteoli and Lepori
[26]. The color code is contained in the figure.

Yet, SANS measurements done on both water mixtures show a remarkable differ-
ence: piperidine-water shows a small-k pre-peak in the scattering intensity for the
piperidine mole fraction interval 0.2 < xPIP < 0.5 [230], while the same feature is
absent in pyridine-water for all pyridine mole fractions [231]. The peculiarity of
this experimental result gave us the motivation to delve deeper into the structure of
these two mixtures at the molecular level and shed light on what kind of structuring
will give rise to a pre-peak in the scattering intensity.

In order to do that, it was necessary to simulate these mixtures. We tested the
majority of available force fields for both molecules; namely OPLS-AA[232], TraPPe-
AA [233] and Gromos-AA [234] for pyridine and OPLS-AA [235] and OPLS-UA [236]
for piperidine. The calculated thermodynamic properties for those systems can be
found in Appendix A, where they are discussed. Suffice to say that, due to their
performance, the TraPPe-AA model for pyridine and OPLS-UA model for piperidine
were chosen for further simulations.

However, the aqueous mixtures of both molecules have proven to be particularly
challenging. Initial simulations of aqueous pyridine and aqueous piperidine showed
either demixing or strong segregation of the solute molecules in water for all pro-
portions, regardless of the water model used (SPC/E [177], TIP4P/2005 [178] or
TIP5P [237]).

So, the first key step in this investigation was to attain the proper mixing of pyridine
and piperidine with water. The specific KBI behavior of these mixtures became one
of the guidelines for force field modification. The idea was to modify the existing
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pyridine and piperidine models in such a way that they mix with water and re-
produce the correct KBIs, all the while maintaining the volumes and enthalpies of
vaporization close to experimental values. The full account of the force field modi-
fication, the rationale behind it and the resulting new force fields is the subject of a
pending paper. Nevertheless, achieving the correct miscilibity of pyridine or piperi-
dine with water was only the beginning. At low solute concentrations, the domains
formed by piperidine or pyridine proved to be too large to be properly sampled in
a 16k system. Both of these systems require an even larger simulation box to fully
capture the domain oscillations in the tale of the g(r). With the current results, we
could not have concluded the study in a satisfactory manner.

The ternary mixture of methanol-1-propanol-benzene Another project foiled by
computational limitations was the ternary mixture of methanol-1-propanol-benzene.
Originally, the work was envisioned as the extension of the research done on ethanol-
non-polar solutes [72, 74], where ethanol is being replaced by a mixture of two
alcohols. Since methanol and 1-propanol form a quasi-ideal mixture [73], it behaves
as a pseudo one-component which micro-segregates from the alkane. However, the
asymmetry in alkyl chain length between methanol and 1-propanol introduces a new
moment in the mixture. By varying not only the total alcohol concentration, but
also the concentration of the respective alcohols, a fine structure of the otherwise
micro-heterogeneous organization was to be brought forth. But, the 16k system
was also proven too small to properly capture the domains formed at low alcohol
content. Like in the cases of aqueous pyridine and piperidine, doubling the existing
box sizes would be necessary to obtain proper results. However, this means going
from 16k molecules to 128k, which increases the computational cost beyond our
current means.
Apart from those two open-ended projects, there was work undertaken in collabora-
tion with other groups, with a thematic related to this thesis, but still going beyond
its scope.

The MB methanol model This is the investigation of the two-dimensional model
of methanol, based on the Mercedes-Benz (MB) model of water [238, 239]. The
research, which yielded one publication [240], proposes a new methanol model, with
the hydroxyl group modelled as a sphere with two hydrogen bonding arms and the
methyl group represented by a non-polar Lennard-Jones disk. A comparison was
done between the new model and an existing one [241], as well as with experimental
results and 3D models of methanol.
Finally, there were projects which came into the picture towards the end of this
thesis, exceeding its temporal limits.

Other alcohol binary mixtures One such subject is the ethanol-heptane mixture,
which possesses an unusual trend in the experimental KBI measurements [242] - two
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distinct maxima, corresponding to two different ethanol concentrations. This was
never observed in other micro-heterogeneous mixtures presented in this thesis. It
poses the question - what microscopic organization gives rise to such macroscopic
features? This will be explored further down the line.
The other topic that merits exploration is the aqueous mixture of 2,2,2-trifluoroethanol
(TFE). This mixture is of high biological relevance, as it’s known to promote the
secondary structuring in peptides and proteins [243], cause beta to alpha transi-
tions [244] and stabilize the secondary structuring of proteins for circular dichroism
(CD) and the liquid NMR structure determinations [245, 246]. For all of these ap-
plications, the mixture with 30% volume fraction of TFE is commonly used. At
this particular fraction, the micro-heterogeneous nature of TFE-water is the most
pronounced, as witnessed by scattering experiments [247, 248, 249, 250]. The main
idea would be to connect the underlying structuring of TFE-water with observ-
able, macroscopic properties and gain some insight into why aqueous TFE affects
biomacromolecules as it does on the molecular level. The latter may prove to be
difficult, as TFE-dependent conformational changes are protein specific [250]. Nev-
ertheless, this investigation is just one step in the direction of connecting assemblies
at the molecular level with those on the cellular level, guiding this type of research
more into the domain of biophysics.
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A. Supplementary simulation results
for neat liquids

A.1. Simulation protocol

Molecular dynamics simulations were performed with the program package Gromacs
[71]. The simulation protocol has been the same for all neat systems. The initial
configurations were generated by random molecular positioning, with the program
Packmol [251]. Initial configurations were first energy minimized, and then equili-
brated in the NpT ensemble from 1 ns to 5 ns, depending on the system. Finally,
production runs from 1 ns to 10 ns were performed, when the data for analysis
was gathered (1000 configurations was the minimum number collected, although on
average, 2500 to 5000 was the usual number of configurations). The length of the
production run depended on the convergence of both termodyamic values and the
long range tail of the atom–atom correlation functions.

Unless specified, all of the simulations were done under ambient conditions, i.e.
with T = 300 K and p = 1 bar. Temperature was maintained constant using
mostly the Berendsen [104] or Nose–Hoover [105, 106] thermostat, while pressure
was maintained with the Parrinello–Rahman barostat [108, 109]. The temperature
algorithms had a time constant of 0.2 ps, while the pressure algorithm was set at 2
ps.

Typically, the integration algorithm of choice was the leap-frog [94] at every time-
step of 2 fs. The short-range interactions were calculated within the 1.5 nm cut-off
radius and the dispersion correction was included in the energy calculations. When
employed, the electrostatics were handled with the PME method [100], and the
constraints with the LINCS algorithm [99].

For pure liquids, the question of system size is not crucial. Systems of N = 1000
particles provide sufficient structural and thermodynamic information.
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A.2. Neat liquids - various results

A.2.1. Benzene

Benzene is a planar, ring-like molecule with a particular electron distribution [151].
From the seventies onward, there have been many efforts to model liquid benzene
and reproduce its thermodynamic, structural and dynamic behavior [142, 233, 252,
253, 254, 255, 256, 257, 258]. Those efforts include different approaches in terms
of number of sites, electrostatic interactions (or lack thereof) and van der Waals
interactions. Comparisons of available forcefields have been done before [259, 260],
with the intentions of finding the most accurate model of liquid benzene.
However, the best benzene model was not necessary for our purposes in investi-
gating simple and complex disorder. We chose to test three models: the all atom
and united atom representations of the OPLS forcefield[256, 142] and the united
atom respresentation of Trappe [257]. The OPLS-AA forcefield explicitely models
the hydrogen atoms on carbons, therefore requring the computation of twelve LJ
centers of force and twelve point charges. On the other hand, the OPLS-UA and
Trappe-UA forcefields use six sites and have no charges, which renders them highly
computationally efficient.
The simulated pure systems were comprised of 2000 molecules (in the case of the
OPLS-UA forcefield) and 1000 molecules (in case of the OPLS-AA and TraPPe
forcefield). All simulations were performed in the NpT ensemble. The pressure
of 1 bar and temperature of 300 K were kept constant thanks to the Parrinello-
Rahman barostat[108, 109] and v-rescale thermostat[261]. In the case of the OPLS-
AA model, which is possesses charges, the long-range electrostatics were handled
with PME [100]. The simulation protocol was the same for all systems. After
energy minimization, 1 ns of equilibration was done. Production runs, from which
the results were calculated, lasted 5 ns.

Model Density [kg/m3] HVAP [kJ/mol]
OPLS-AA 865.0 (+/- 5.2) 33.85 (+/- 0.42)
OPLS-UA 885.7 (+/- 3.0) 34.62 (+/- 0.17)
Trappe-UA 855.5 (+/- 5.3) 29.52 (+/- 0.24)

Experiment[229] 876.5 33.83
Table A.1.: Thermodynamic results for tested benzene models.

Table A.1 gives the average values of densities and energies of the tested pure liquids,
as well as the corresponding experimental values. In terms of energy, the OPLS-AA
model performs the best, reproducing the Hvap to the first decimal. The OPLS-UA
model comes in as a close second with a 3% deviation, while the Trappe-UA is last
with a 13% deviation.
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Figure A.1.: Average densities for the tested pure benzene systems (full lines) and their
fluctuations. The values were calculated for production runs of already equilibrated
systems.
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Figure A.2.: Hydrocarbon united atom radial distribution functions for the tested pure
benzene systems.

As for the densities, all three models show solid agreement. The OPLS models
are within percent deviations of 1%, and the Trappe model is within less than 3%.
Figure A.1 shows the change in density over time for the production runs. The
full lines denote the average values from Table A.1. We notice that the OPLS-UA
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forcefield shows less fluctuations than the other two, but in general, the density
behaves well over time.
Figure A.2 displays the relevant radial distribution functions. The united atom
models have virtually identical RDFs, which are in small variance with the all atom
model. The differences between the AA and UAmodels are seen only in the structure
of the first peak. Although both UA and AAmodels show a split peak structure, with
two small peaks located at 5 Å and 6 Å, the OPLS-AA benzene has a more distinct
peak at 5 Å. However, all three models reproduce the most important features of
the RDF obtained from Narten’s scattering experiments [262].
Since all three models perform reasonably well in modelling liquid benzene, it was
possible to forgo the computationally expensive OPLS-AA model in favor of the UA
models.

A.2.2. Acetone

Acetone is the simplest ketone, i.e. it has a bivalent carbonyl group bonded to two
carbon substituents [151].
We tested several models for pure acetone, once again seeking resonably repro-
duced thermodinamical and structural behavior tempered by computational effi-
ciency. The chosen models were: the classic united atom OPLS[263] and Trappe
[264] forcefields, alongside a modified OPLS forcefield. The latter combined the
partial charges parametrized for the all atom OPLS ketone model [236] with the
united atom representations of the methyl groups[142]. In brief, the major differ-
ence between the classic OPLS-UA model and our modified OPLS-UA model is the
distribution of partial charges on the sites, as can be ascertained from Table A.2.

Model Site q [e] σ [Å] ε [kJ/mol]

OPLS-UA[263]
C 0.300 0.3750 0.439
O -0.424 0.2960 0.879
M 0.062 0.3910 0.670

Trappe-UA[264]
C 0.424 0.3820 0.332
O -0.424 0.3050 0.657
M 0.0 0.3750 0.814

Modified OPLS-UA[236]
C 0.470 0.3750 0.439
O -0.470 0.2960 0.879
M 0.0 0.3775 0.866

Table A.2.: Parameters used for tested acetone models. The sites are: C - central
carbon atom; O - oxygen atom; M - methyl group united atom.

The system sizes of pure acetone were: 1000 molecules for the classic OPLS-UA
forcefield and 2000 molecules for the other two forcefields tested. The simulations
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were done in the NpT ensemble at ambient conditions, utilizing the same thermostat
and barostat as for pure benzene. The long-range electrostatics were handled with
PME [100]. The simulation protocol was the same for all systems. After energy
minimization, 1 ns of equilibration was done, followed by 1 ns of production.

Model Density [kg/m3] HVAP [kJ/mol]
Modified OPLS-UA 818.5 (+/- 3.3) 33.3 (+/- 0.16)

OPLS-UA 738.8 (+/- 5.1) 18.0 (+/- 0.11)
Trappe-UA 761.6 (+/- 4.1) 31.7 (+/- 0.17)

Experiment[229] 784.5 30.99
Table A.3.: Thermodynamic results for tested acetone models.

Table A.3 summarizes the calculated thermodynamic properties for the simulated
acetone models. Density-wise, the Trappe-UA acetone performs the best, slightly
underestimating the density, but being in the 3% deviation. It’s followed closely
by the modified OPLS acetone, which is within 4% deviations, while the classic
OPLS-UA is the last at 6% deviations. In terms of energy, the ranking of forcefields
is the same. The Trappe forcefield is proven is within percent deviations of 2%
for HVAP, while the modified OPLS model is within 7%. The classic OPLS-UA
model significantly underestimates the value of HVAP with a 40% deviation from the
experimental value.
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Figure A.3.: Main panel: C-C (central carbon atom) radial distribution functions for the
tested acetone models. Inset: Methyl-methyl RDFs.

Figure A.3 contains the relevant pair correlation functions for all three models: the
RDFs of acetone’s central carbon atom in the main panel, and the RDFs of the

125



Chapter A Supplementary simulation results for neat liquids

methyl groups in the inset. The RDFs in the main panel show significant overlap,
with the only difference being the slight shift to the left in the second neighbor
shell for the modified OPLS-UA model. The RDFs of the methyl groups have a
double peak feature in the first neighbor shell, coming from the fact that the acetone
molecule has two methyl groups flanking the central carbon atom. The first small
peak, located at ~4 Å, differs in height from one model to another, but from that
position onward, the RDFs are identical for all the models.

A.2.3. Alcohols

A.2.3.1. Mono-ols

Mono-ols are a subgroup of alcohols which consist of one hydroxyl group (-OH)
connected to a hydrocarbon tail. Their dual nature (having a hydrophyllic part and
a hydrophobic part) enables their rich structuring in binary mixtures, depending on
the solvent.

Since mono-ols play an important role in our inquiries, it was, once again, impor-
tant to find forcefields and models which adequately reproduce their properties while
keeping the computational costs reasonable. The first two mono-ols in the series,
methanol and ethanol, were extensively tested. The objective was twofold: to com-
pare the difference between the united atom models of OPLS [265] and Trappe [266],
and also to compare the performance of the OPLS forcefield’s united atom [265] and
all atom [236] models. The higher alcohols (1-propanol, 2-propanol, 1-butanol and
tert-butanol) were done only in the Trappe-UA forcefield.

The simulated systems contained mostly 1000 or 2000 molecules. All the alcohols
were simulated in ambient conditions, which were kept constant with the thermostat
and barostat designated in the introduction of the Appendix. The simulation times
were in the range mentioned in the introduction. Additional simulations of ethanol
at low temperatures were done as well, with the minimum production runs of 5 ns.

Table A.4 contains the relevant thermodynamic data for the tested models. In the
case of methanol, the densities are within percent deviation of 5% in comparison to
the experiment, while the heats of vaporization are within 8% deviation from the
experimental value.

For ethanol, the density values deviate at most 2% from the experimental value for
all models. However, when it comes to HVAP, the united atom models perform much
better than the all atom model: the united atom values are within 4% deviation
from the experiment, in comparison with the 26% percent deviation of the all atom
model.
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Alcohol Model Density [kg/m3] Exp. Den.
[kg/m3]

HVAP
[kJ/mol]

Exp. HVAP
[kJ/mol]

Methanol
OPLS-UA 756.4 (+/- 7.0)

791.4
38.28 (+/-

0.22) 37.43
Trappe-UA 770.5 (+/- 7.2) 40.34 (+/-

0.21)
OPLS-AA 769.1 (+/- 5.2 ) 36.37 (+/-

0.22)

Ethanol
OPLS-UA 780.0 (+/- 9.1)

789.3
44.10 (+/-

0.66) 42.32
Trappe-UA 774.4 (+/- 6.2) 42.87 (+/-

0.25)
OPLS-AA 795.2 (+/- 7.7) 56.94 (+/-

0.48)
1-propanol Trappe-UA 793.7 (+/- 4.7) 799.7 47.47 (+/-

0.26)
47.45

2-propanol Trappe-UA 760.4 (+/- 4.1) 780.9 45.14 (+/-
0.19)

45.39

1-butanol Trappe-UA 836.0 (+/- 5.0) 809.5 48.81 (+/-
0.36)

52.35

Tert-butanol Trappe-UA 782.2 (+/- 3.5) 788.7 49.24 (+/-
0.19)

46.69

Table A.4.: Thermodinamical properties for tested mono-ol forcefields. The exper-
imental values at 25 °C are taken from [229].

Structure of neat ethanol and methanol The site-site correlation functions,
shown on Figure A.4, demonstrate the structural similarity between the united and
all atom models for both ethanol and methanol. In both cases, the UA and AA
models differ mostly in the height of the first peak in the OO correlations. The OO
structure factors of both models (Figure A.5) reproduce the position of the cluster
pre-peak in both alcohols. However, the UA model of ethanol shows are more in-
tense pre-peak than its AA counterpart. In the case of methanol, the UA model
has a split pre-peak feature, which is missing from the AA model. The correlation
functions and structure factos of the methyl and methylene groups for both alcohols
are extremely similar.

Given the thermodynamic and structural results above, it’s was not necessary to
employ the AA model of the OPLS forcefield over the UA model, since the UA
model reproduces well the traits of the pure liquids. As for the difference between
forcefields, both Table A.4 and Figure A.6 show that the differences between the
forcefields are minor.

From those basic results, one can conclude that the united atom models from both
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OPLS and Trappe forcefields work well and it’s not necessary to use the all atom
model to achieve the same results.
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Figure A.4.: Selected site-site RDFs for pure ethanol (left panel) and pure methanol
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Structure of higher mono-ols Figure A.7 shows characteristic site-site correlation
functions and structure factors for three higher monools: 1-propanol, 2-propanol and
tert-butanol.
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Figure A.7.: Selected site-site correlation functions (main panel) and structure factors
(inset) for 1-propanol, isopropanol and tert-butanol. The color code for specific site-site
combinations is contained in the legend.

The site-site combinations were OO and CC, where the carbon groups were the
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second (central) methylene group for the propanols and the central carbon atom
for TBA. The OO correlations for all alcohols feature a high and narrow first peak,
typical for the Hbond, which increases with the size of the alcohol. These three
alcohols have a bigger neutral group cargo attached to the hydroxyl group than
ethanol and methanol; also, apart from the linear 1-propanol, the neutral tail is
differently configured for the other two alcohols. The influence of the neutral tail, its
size and compactness is reflected in the second neighbors (which is glaring for the case
of TBA). The OO structure factors all feature prominent cluster peaks positioned
at around k≈ 0.7 Å−1, indicative of the cluster formations in these alcohols. The
CC structure factors, as expected, have only a main peak, located between k≈
1.3− 1.5 Å−1.

A.2.3.2. Diols

Diols are a subgroup of alcohols which are characterized by two hydroxyl groups and
a hydrocarbon chain. We chose to look into diols whose hydroxyl groups are placed
at the ends of the carbon chains, i.e. 1,2-ethanediol, 1,3-propanediol etc. The chosen
forcefield was Trappe-UA [264]. In comparison with mono-ols, the diol family was
less studied throughout the years. 1,2-ethanediol, also known as ethylene glycol,
was investigated via classical computer simulations by several authors [17, 267, 268,
269], mostly focusing on the thermodynamics and short-range structuring in the
liquid. All of the authors mentioned above used OPLS or OPLS-based forcefields
[236, 265, 270] to model 1,2-ethanediol, which yield the same short-range structural
features as the Trappe forcefield. In terms of the basic thermodynamic values, the
Trappe-UA forcefield performs reasonably well, as evidenced in Table A.5.

Alcohol Model Density [kg/m3] Exp. Den.
[kg/m3]

HVAP
[kJ/mol]

Exp. HVAP
[kJ/mol]

1,2-ethanediol Trappe-UA 1121 (+/- 4.8) 1113.5 81.52 (+/-
0.29 )

63.9

1,3-propanediol Trappe-UA 1031.42 (+/- 4.1) 1053.8 63.65 (+/-
0.32)

69.8

1,4-butanediol Trappe-UA 998.2 (+/- 4.2) 1017.1 88.57 (+/-
0.39)

77.1

1,5-pentanediol Trappe-UA 986.3 (+/- 3.6) 991.4 84.68 (+/-
0.40)

83.0

Table A.5.: Thermodinamical properties for tested diol forcefields. The experi-
mental values at 25 °C are taken from [229].
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A.2.4. Water

Over the last forty years, there have been many efforts to create explicit water mod-
els which would reproduce water’s exact properties. These models widely differ in
the number of sites, rigidity versus flexibility and the inclusion of polarizability. For
our purposes, we have considered rigid, non-polarizable water models. These mod-
els describe water interactions in an approximate way and therefore can’t reproduce
all of the properties of water. However, the main goal was to repoduce the struc-
tural behavior of water at room temperature while keeping the computational costs
reasonable.

Model Density [kg/m3] Exp. Den.
[kg/m3]

H VAP
[kJ/mol]

Exp. H
VAP

[kJ/mol]
SPC/e [177] 995.30 (+/- 6.2)

997.05
49.21 (+/-

0.16) 43.98
TIP4P2005 [178] 991.97 (+/- 8.2) 50.23 (+/-

0.22)
TIP5P [237] 977.17 (+/- 12.1) 42.84 (+/-

0.38)
Table A.6.: Thermodinamical properties for tested water forcefields. The experi-
mental values at 25 °C are taken from [229].

The tested models are contained in Table A.6, along with the experimental results
for selected thermodynamic values. The results are in line with those presented in
Vega’s work [271]. The results for the correlation functions (not shown here) are
also consistent with those in [271].

A.2.5. Other neat liquids

The thermodynamic properties of miscellaneous neat liquids, along with the chosen
forcefields, are catalogued in Table A.7. This category includes pentane and carbon
tetrachloride, both of which were constituents of mixtures in Chapter 3. Heptane
is another close relative, which has been mentioned in the context of the ethanol-
heptane mixture in the Conclusion. The only associating compound in the bunch is
propylamine, the structure of which is discussed at length in Chapter 7.
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Compound Model Density
[kg/m3]

Exp.
Den.

[kg/m3]

HVAP
[kJ/mol]

Exp.
HVAP
[kJ/mol]

Pentane OPLS-UA [142] 628.3
(+/- 6.7) 626.2 27.78 (+/-

0.37) 26.43

TraPPe-UA [272] 614.5
(+/- 5.1)

29.55 (+/-
0.20)

Heptane TraPPe-UA [272] 682.6
(+/- 4.2)

679.5 43.82 (+/-
0.22)

36.57

CCl4 OPLS-AA [182] 1536.3
(+/- 6.3)

1594.0 32.28 (+/-
0.28)

32.43

Propylamine Gromos 53a6 [234, 273] 737.5
(+/- 3.2)

717.3 37.09 (+/-
0.22)

31.27

Table A.7.: Thermodynamic properties for tested forcefields. The experimental
values at 25 °C are taken from [229].

A.2.6. Pyridine and piperidine

As mentioned in the Conclusion, simulations were performed for neat pyridine and
piperidine, respectively. In the case of pyridine, the following forcefields were tested:
OPLS-AA[232], TraPPe-AA [233] and Gromos-AA [234]. For piperidine, the avail-
able OPLS-AA [235] and OPLS-UA [236] models were tested. The calculated ther-
modynamic properties for those systems - volume and enthalpy of vaporization - are
presented in Table Table A.8. Due to their performance, the TraPPe-AA model for
pyridine and OPLS-UA model for piperidine were chosen for further simulations.

Volume [cm3/mol] HVAP [kJ/mol]
Pyridine

OPLS - AA [232] 79.70 (+/- 0.25) 29.89 (+/- 0.31)
Trappe - AA [233] 81.00 (+/- 0.28) 38.94 (+/- 0.25)
Gromos - AA [234] 80.94 (+/- 0.21) 45.36 (+/- 0.21)
Experiment [229] 80.6 40.17

Piperidine
OPLS - AA [235] 102.76 (+/- 0.36) 34.46 (+/- 0.37)
OPLS - UA [236] 99.72 (+/- 0.30) 38.07 (+/- 0.15)
Experiment [229] 98.78 39.25

Table A.8.: Thermodynamic results for neat compounds, both original and modi-
fied.
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for mixtures

B.1. Simulation protocol, system size and simulation
time

The methodology for simulating neat liquids is applicable for binary mixtures as
well. The program package and simulation protocol are the same. However, the
addition of one more component adds another level of complexity to the mixture.
The question of system size becomes much more imporant than for neat liquids.

For mixtures that fall into the category of simple disorder, system sizes of N ~ 2000
particles are sufficient for obtaining satisfactory results. Simple disorder systems
have little to no interaction, and their are governed purely by entropic contribu-
tions. Thus, they have no discernable structural pattern on the local or global scale,
and their correlation functions have the typical liquid-like behavior, with the first
neighbour shell being the most pronounced, and subsequent shells diminishing until
they reach unity. Naturally, they lack domain oscillations since there are no domains
formed.

Complex disorder systems are more tricky. As the majority of complex mixtures
involve more advanced structuring (either clustering or domain formation), it’s ad-
visable to opt for N ~ 16k systems. That way, the box size length is doubled in
comparison with the corresponding N ~ 2k system, enabling better detection and
sampling of large, globular domains.

The simulation time also an issue to consider. The occurrence and evolution of
complex structuring inevitably imply that the dynamics of these objects has to
be taken into account when simulating. These structures can have slow temporal
fluctuations, so it’s necessary to employ long equilibration times (at least 5 ns) and
long production runs (5-10 ns) in order to better sample the system.

133



Chapter B Supplementary simulation data for mixtures

B.2. Mixtures with benzene as the common solvent

B.2.1. LP shift

The LP correction, described in subsection 2.2.1, is shown visually in the following
Figures for selected binary mixtures. For the sake of convenience, the quantities
presented are the site-site structure factor (main panel) and the rKBIs (inset). The
curves are shown for both species and the cross. The corrected curves are in full
lines, while the uncorrected curves are in dotted lines. This is also the format used
for subsequent Figures demonstrating the LP correction.
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Figure B.1.: The LP correction for the benzene-pentane mixture, xBEN = 0.2. Main
panel: site-site structure factors for selected combinations, with full lines denoting the
corrected curves, and the dottes ones the uncorrected curves. Inset: rKBIs for the same
species combinations as in the main panel. The color code is in the legend of the Figure.
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Figure B.2.: The LP shift demonstrated for the benzene-acetone mixture, xBEN = 0.5.
As in Figure B.1, the main panel contains the corrected (full lines) and uncorrected
(dotted lines) site-site structure factors for selected site-site combinations. The inset
shows the rKBIs for the same site-site combinations as in the main panel.
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B.3 The ethanol-methanol mixture

B.3. The ethanol-methanol mixture

B.3.1. LP shift

Figure B.3.: Structure factors (main panel) and rKBI (inset) for the equimolar ethanol-
methanol mixture, demonstrating the LP correction. Methanol correlation is show in
brown, ethanol in orange, and cross correlations in green. As always, the full lines are
the corrected data, while the dotted ones are uncorrected data.

B.4. Aqueous alcohol mixtures in cold conditions

B.4.1. Simulations at low temperatures

Computer simulations are an excellent tool for investigating the behavior of liquid
mixtures below the freezing point. It’s difficult to obtain a crystalline phase below
the experimental freezing point for aqueous mixtures [274, 275]. The crux lies in
forming hydrogen bonded complexes with the correct crystalline symmetry, so one
would have to use specific sampling techniques [275] or models [178]. Since we do
not use such techniques here, we obtain supercooled and glassy phases for very low
temperatures.
However, simulating liquid mixtures far below room temperature is demanding in
other aspects. With the reduction in temperature comes the reduction in kinetic
energy, so the particles will move sluggishly and it will take more time to properly
sample the phase space. The existence of strong energetic interactions in the system
(the Hbond, for example), will add an additional level of difficulty. When the
particles are in a energetically favorable configuration, they will be less likely to
break free out of it at low temperatures. The tendency to stay in those energetic
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minimums hampers the exploration of the phase space, so a lot of time is necessary
for adequate sampling. However, Figure B.4 and (Figure B.5) clearly show different
configurations at different points in time, confirming that systems don’t stay locked
in the same place and will undergo their evolution with enough time.

Figure B.4.: Snapshots of the equimolar ethanol-water system for T = 200 K, before
and after a 5 ns run, taken under the same angle (as demonstrated by the lab frame
arrows at the left lower corners). Water is highlighted with red and white balls, while
ethanol is in transparent blue.

Figure B.5.: Snapshots of the equimolar ethanol water system at T = 150 K, taken 40
ns apart and at the same angle. As in the previous figure, water is highlighted with red
and white balls, while ethanol is in transparent blue.

Along those notes - one of the potential pitfalls is the question of the starting
configuration. When tackling a system with strong interactions, or a system which
is confirmed to display MH at room temperature, it’s advisable to start simulations
from random configurations. That way, the system can evolve naturally at the
low temperature. If one simulates an MH system at room temperature and then
quenches it to a low temperature of choice, the system will have already formed
domains and/or clusters. Since the system has found itself in an energetic minimum,
it’s questionable whether it will ever break out of it. That being said, in the case of
cold aqueous alcohol mixture, we started simulating from random configurations.
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Figure B.6.: A detailed look at selected site-site structure factors (main panel) and rKBIs
(inset) for the equilmolar ethanol-water mixture, at T = 200K. The color code is shown
in the legend. The rKBIs are particularly interesting, for they show the stabilization of
the curves around an asymptotic value.

B.4.2. Cluster distribution probabilities

Figure B.7 shows the cluster analysis for ethanol-water and TBA-water mixtures,
organized as in Figure 6.3. As in the case of methanol-water, the cluster probabilities
of ethanol-water are monotonous functions of cluster size. For the most part, TBA-
water behaves exactly like that, with one exception - the cluster distribution TBA
at xT = 0.8 (Figure B.7, right image, upper right panel). There is a plateau-like
feature for cluster sizes from 1 to 10 for the two lowest temperatures, which evolves
into a tiny peak for T=250 K. Pure monool alcohols have a peak in their cluster
probability distribution, centered around the size 4-6 [124, 125], which is a signature
of their characteristic chains and rings. It seems like 80% tbutanol retains some
such clusters, which account for the plateau and peak seen in Figure B.7.
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Figure B.7.: Cluster size distribution probabilities versus cluster size for the: aqueous
ethanol (left panel) and aqueous- tert-butanol mixture (right panel). The cluster size
distributions for alcohol sites (upper row) and water oxygen sites (lower row) are de-
picted for various temperatures (color code is in the legend). Three typical alcohol mole
fractions are represented: 0.2 (left panel), 0.5 (middle panel) and 0.8 (right panel).
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B.5. Propylamine-water mixture

B.5.1. LP shift
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Figure B.8.: LP shift shown for aqueous propylamine, xPROP = 0.2, for site-site structure
factors (main panel) and rKBIs (inset). The water-water and cross correlations didn’t
need the LP correction done, but just the NN ones (dotted lines for the uncorrected
data).

B.6. Mixtures with 1,n-diols

B.6.1. LP shift
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Figure B.9.: The LP shift, demonstrated for the equimolar mixture of 1,2-ethanediol-
water. Main panel: site-site structure factors. Inset: rKBIs. The species are represented
by the following color code: ethanediol - magenta; cross - green; water - blue. In the
case of ethanediol’s OO g(r), no correction was necessary. Otherwise, full thick lines
represent the corrected data, while the dotted lines are uncorrected data.
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B.6.2. Cluster distribution probabilities

Figure B.10 and Figure B.11 show the cluster distribution of the oxygen atoms inside
the aqueous diol and ethanol-diol mixtures, respectively. The oxygen atoms of the
diols are presented in the the main panel and the solvent oxygen atoms in the
insets, all of them for 3 different diol mole fractions. Each figure contains curves
with a decaying distribution, similar to what is seen in LJ systems [121, 123]. Unlike
neat alcohols and alcohol-non-polar solvent systems, where the cluster distribution
clearly has a peak denoting the higher probability of finding specific-sized clusters,
the results for these mixtures are devoid of such a feature. Of course, this finding
(or lack thereof) doesn’t exclude MH, since aqueous-mono-ol mixtures are highly
microheterogeneous and yet their structural make-up is not suitable for detection
via cluster calculations.
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Figure B.10.: Clusters distributions of the diol oxygen sites (main panels) and water
oxygen sites (insets), versus the cluster size. Results for ethanediol are shown in the
left panel, and results for 1,3-propanediol in the right panel. The diol concentrations
are shown in red for x = 0.2, green for x = 0.5 and blue for x = 0.8.
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Figure B.11.: Clusters distributions of the diol oxygen sites (main panels) and ethanol
oxygen sites (insets), versus the cluster size. Results for ethanediol are shown in the
left panel, and results for 1,3-propanediol in the right panel. The diol concentrations
are shown in red for x = 0.2, green for x = 0.5 and blue for x = 0.8.
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B.6.3. Thermodynamic results

In Figure B.12 we present the thermodynamic results for 1,n-diol mixtures. The
molar volumes are contained in the upper row, while the enthalpies of vaporiza-
tion are in the lower row. Experimental data for all of these mixtures was scarce.
The only relevant data were the total densities of the mixtures [276, 277, 278, 279],
which are depicted with thick black lines in Figure B.12. As we can see, the sim-
ulated molar volumes agree well with the experimental data, confirming that the
Trappe forcefield is successful in reproducing this property of 1,n-diol mixtures. The
enthalpies of vaporization for water or ethanol mixtures with a given diol are close
together in values and have a similar trend. It’s important to note that the HVAP
of diols is higher than those of water and ethanol (i.e. the potential energy is more
negative). That implies that two bound hydroxyl groups exert a big influence over
the energetics of the system and are most likely responsible for the sluggishness of
these systems.
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Figure B.12.: Thermodynamic properties for mixtures with 1,n-diols. Volumes are con-
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gold squares ethanol–ethanediol, cyan diamonds aqueous–propanediol and red triangles
ethanol–propanediol.
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Summary

The topic of this thesis is to analyze the rich variety of disorder present in liquids.
The majority of the research features binary mixtures involving at least one hydrogen
bonding component. Hydrogen bonding liquids, such as water or alcohols fall into
the category of complex liquids. The mixtures of water and alcohol are notorious
for being micro-heterogeneous (MH), i.e. their components are segregated at the
molecular level [186, 187]. While there is a substantial body of work on the topic
of simple liquids (the typical example being liquid argon) [1, 11], it is not so with
complex liquids and their mixtures. A good number of authors in the field focus
on thermodynamic or transport properties [16, 20, 58, 60, 61, 62, 63, 64], and if
they work on the structural organization in liquids, these investigations are usually
limited to the short range organization [18, 19, 22, 59, 128]. The novelty of the
work in this thesis is that it pays particular attention to the medium to long range
ordering. The main goal is to connect the nature of the atom-atom interactions in the
molecular species to the diversity of the supra-molecular structuring formed inside
various mixtures. The methods of statistical physics are employed in this research,
and it’s shown that the same statistical tools used to study simple liquids can give
new information and perspectives on the complexity present in binary mixtures.
This wealth of information on studied binary systems is accessed via molecular
dynamics (MD) simulations [67], which were performed in the program package
Gromacs [110]. A general theoretical introduction into MD and important results
from statistical physics as well as a description of the methods used are contained
in Chapter 2. An in-depth discussion of relevant simulation details can be found in
Appendices A and B, for neat liquids and liquid mixtures, respectively.

The first important concept of this thesis, that of simple and complex disorder in
mixtures, is presented in Chapter 3 [72]. It is described through binary mixtures
with benzene as the common solvent, where the co-solvents are molecules of different
physico-chemical characteristics (alkanes as inert, neutral molecules; acetone as a
dipolar molecule; ethanol as an Hbonding molecule). Benzene, modeled as a simple
liquid, enabled us to see more clearly the effects produced by the solute molecules,
which was very challenging in the case of aqueous mixtures [148, 149, 189]. Based
on the structural anaysis, as well as the KBI results, the three different mixtures
could be categorized in the following way. The benzene-alkane system is an example
of simple disorder, where the components have similar interactions and the mixture
as a whole has near ideal concentration fluctuations (CF) and no noticeable local or
global ordering. The benzene-acetone system is a regular mixture, as it possesses
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short range ordering and its CF deviate from the ideal case, due to acetone’s dipo-
lar interactions. The benzene-ethanol mixture falls into the category of complex
disorder. Ethanol’s Hbond interactions drive the extensive clustering and domain
formation, which can be detected in site-site structure factors as pre-peaks at small
k values. Also, the CF in this system are large and vary strongly with concentra-
tion. Apart from defining various types of mixtures, these results have shown that
interactions are paramount. In this case, it’s the interactions between one species
that generate complex disorder and subsequently MH, while the influence of the
molecular shape of the inert solvent is almost negligible. This study demonstrates
the importance of observing structuring over the entire k range, and not only at
k = 0.

Chapter 4 deals with the concept of ideal mixtures, studied through the perspective
presented in Chapter 3 [73]. The main focus is placed on the mixture of methanol and
ethanol, which is a textbook example of an ideal mixture. The structural analysis
has shown a rich organization in this mixture, driven by the hydroxyl group and
its tendency to form Hbonded clusters. These clusters are built indiscriminately
by the hydroxyl groups of both alcohols, which is witnessed in the results of the
cluster probability distributions, but also in the site-site structure factors. In the
latter, there is a pre-peak at k ≈ 0.9 Å which we’ve called the cluster peak, due
to its origin. Because of those structural features, the ethanol-methanol mixture
differs considerably from simple disorder, even though it has near ideal CF. Since
the constituents of this mixture have identical interactions which promote cluster
formation, it is possible to attain this apparent thermodynamical ideality.

In Chapter 5 we further the notions of complex disorder by analyzing and compar-
ing two binary mixtures with ethanol: ethanol-water and ethanol-non-polar solvent
[74]. We uncover key differences in the formation and detection of domains in their
structuring. In neat alcohols, the hydroxyl group drives the clustering into chains
and loops [155, 161, 162, 169, 170], which persist even when molecules of non-polar
solvent are added [174, 175]. In the latter case, as more and more non-polar solvent
is added, alcohol clusters will form domains. These domains are detectable through
both structure factor and cluster distribution analysis, as the domains are reducible
to the clusters that build them. On the other hand, in alcohol-water mixtures, do-
mains at low alcohol content are formed by a completely different mechanism (a
variant of the hydrophobic effect), thus being noticeable solely through a pre-peak
in the site-site stucture factors. Cluster probability distributions, which in this case
show results similar to a simple liquid, are not a suitable tool for uncovering domains
which are not reducible to clusters.

Chapter 6 deals with the temperature dependance of the structural properties in
aqueous mono-ol mixtures. Three mixtures: methanol-water, ethanol-water and
tert-butanol-water are studied in cold conditions [75, 76]. These aqueous alcohol
mixtures all share common traits, such as the decrease in CF with the lowering of
temperature, visible from the ideal behavior of the calculated KBIs. With the drop
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in temperature, the fuzzy domains which are characteristic of room temperature
aqueous alcohols have turned into more defined objects. This is the most apparent
for TBA-water, where at high alcohol content linear water clusters can be observed.
There is a transfer of fluctuations from k = 0 to small k, which enforces the notion
of analyzing the structuring over the entire k range.

Chapters 7 and 8 explore mixtures with different types of co-solvents. In Chapter
7, the focus is on propylamine and its aqueous mixture [77]. Propylamine is an
amphiphilic compound, just like alcohols, but it has the amine (NH2) functional
group. The two donors and one acceptor in the functional group mean more bond-
ing choices. Its consequences are visible in neat propylamine as the occurrence of
branched chains, whereas in alcohols we have linear chains. The aqueous propy-
lamine mixture shares some common traits with aqueous alcohol mixtures, such as
the trends in the pair correlation functions. The site-site structure factors of propy-
lamine mirrow the behavior of those of ethanol. However, the main difference comes
from the behavior of water. In aqueous propylamine, water displays a duality of
structuring. It forms bulky domains up to xP = 0.3, which have a signature of a
domain pre-peak in the oxygen-oxygen structure factor. After xP = 0.3, linear clus-
ters of water occur, which lead to smaller structure factor pre-peaks and near ideal
KBI.

Chapter 8 discusses diol alcohols, both as neat liquids [78] and in mixtures [79]. Neat
1,n-diols display clustering similar to neat mono-ols, even though it’s less prominent,
as shown through several structural features. The highlight of the chapter are the
calculated scattering intensities for the four 1,n-diols studied. Mono-ol alcohols have
a pre-peak at about kP≈1 Å-1 in their scattering intensities, which is a signature
of the hydroxyl group clustering [153, 155, 161, 169, 173, 170]. Diols, on the other
hand, have a shoulder-like feature at the same position, which may seem strange in
light of the chains present in 1,n-diols [210]. This peculiar result is due to the carbon
chains in 1,n-diols, which act as a constraint, forcing the carbon sites’ contributions
to the scattering intensity to fall at various k values which lie between the main
peak and the pre-peak. This broadening at the main peak seems to mask the signal
of the pre-peak.
Binary mixtures of 1,n-diols with either water or ethanol were reported as well.
Diol alcohols exhibit a duality of behavior in the short range structuring, depending
on the nature of the other component in the mixture. In mixtures with water,
they behave as a typical mono-ol [17, 59], while in mixtures with mono-ols, the
diol takes over the role of water, which is confirmed by pair correlation functions.
However, mixtures with diols exhibit small concentration fluctuations, as evidenced
by the KBIs, which is a departure from aqueous alcohols. There are no signatures
of domain pre-peaks in the site-site structure factors, but more of a flattening of the
S(k). This absence of a pre-peak in S(k) as a signature of the Lifshitz state, which is
a new form of disorder, an intermediate state between random disorder and domain
order, in a globally disordered homogeneous liquid.
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The conclusion is presented in Chapter 9, where the most salient points of the the-
sis are synthetized. Also, there is a short exposition of other projects, some of
which couldn’t be completed for computational or modeling reasons, while others
went beyond the temporal limits of this thesis. Finally, further perspectives are dis-
cussed, especially those pertaining to biophysics. The physical background behind
the structuring in liquids and macromolecular assemblies is the same. Understand-
ing the structuring in liquids could be a stepping stone towards understanding the
processes of biomacromolecules and perhaps formulating the theoretical approaches
from the point of view of site-site interactions.
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Tema ovog doktorskog rada je analiza različitih vrsta uređenja prisutnih u tekući-
nama. Glavnina istraživanja se bavi binarnim mješavinama koje imaju barem jednu
asocijativnu komponentu, tj. koja može tvoriti vodikovu vezu. Asocijativne tekućine,
kao što su voda ili alkoholi, spadaju u kompleksne tekućine. Mješavine vode i alko-
hola su poznate po svojstvu mikro-heterogenosti (MH) - njihove komponente su
segregirane na molekularnoj razini [186, 187]. Postoji mnogo literature na temu
jednostavnih tekućina (tipičan primjer je tekući argon) [1, 11], dok se isto ne može
reći za kompleksne tekućine i njihove mješavine. Veliki broj autora u ovom polju se
usredotočuje na termodinamička i transportna svojstva mješavina [16, 20, 58, 60, 61,
62, 63, 64], a ukoliko se bave strukturnom organizacijom, te studije su ograničene na
kratkodosežno uređenje [18, 19, 22, 59, 128]. Novost rada predstavljenog u ovoj tezi
se očituje u proučavanju dugodosežne organizacije u kompleksnim mješavinama.
Glavni cilj je povezati atom-atom interakcije u molekulama s raznolikošću supra-
molekularnog strukturiranja u različitim mješavinama. U ovom istraživanju su ko-
rištene metode statističke fizike te je pokazano da isti statistički alati koji se koriste
za opis jednostavnih tekućina mogu dati nove informacije i perspektive o komplek-
snosti u binarnim mješavinama.
Tekuće mješavine su se proučavale simulacijama molekulske dinamike (MD) [67],
koje su se izvršavale u programskom paketu Gromacs [110]. Opći teoretski uvod
u MD i važni rezultati statističke fizike, kao i opis korištenih metoda, su sadržani
u Poglavlju 2. Detaljnija diskusija oko relevantnih simulacijskih detalja za čiste
tekućine i mješavine se nalazi u Dodacima A i B.

Prvi važan koncept u ovoj tezi je jednostavni i kompleksni nered u mješavinama, koji
je predstavljen u Poglavlju 3 [72]. Opisan je kroz binarne mješavine s benzenom kao
zajedničkim otapalom, dok su otopljene tvari molekule različitih kemijsko-fizikalnih
svojstava (alkani kao inertne, neutralne molekule; aceton kao dipolarna molekula;
etanol kao asocijativna molekula). Benzen, modeliran kao jednostavna tekućina,
je omogućio da jasnije vidimo efekte otopljenih tvari, što je bilo jako izazovno u
slučajevima vodenih mješavina [148, 149, 189]. Na temelju strukturne analize, kao
i rezultata Kirkwood-Buff integrala (KBI), te tri različite mješavine se mogu kat-
egorizirati na sljedeći način. Sustav benzen-alkan je primjer jednostavnog nereda,
jer komponente imaju slične interakcije, a mješavina kao takva ima gotovo idealne
koncentracijske fluktuacije (KF), a nema primjetno lokalno ili globalno uređenje.
Benzen-aceton je primjer regularne mješavine, jer ima kratkodosežno uređenje, a
KF odudaraju od idealnog slučaja zahvaljujući acetonovim dipolarnim interakci-
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jama. Benzen-etanol spada u kategoriju kompleksnog nereda. Etanolove vodikove
veze promoviraju klasteriranje i formaciju domena, koje se mogu detektirati kao
pre-peakovi na malim k vrijednostima u site-site strukturnim faktorima. Također,
KF u ovom sustavu su velike i snažno ovise o koncentaciji komponenti. Osim što su
se definirali različiti tipovi mješavina, ovi rezultati su pokazali da su interakcije od
presudne važnosti. Interakcije između jedne vrste su te koje generiraju kompleksni
nered i MH, dok je utjecaj molekularne topologije inertnog otapala gotovo zane-
mariv. Ova studija pokazuje koliko je važno promatrati strukturiranje preko cijelog
k prostora, a ne samo u k = 0.

Poglavlje 4 se bavi konceptom idealnih mješavina, koje proučavamo kroz perspektivu
Poglavlja 3 [73]. Glavni fokus je na sustavu metanol-etanol, koja je udžbenički prim-
jer idealne mješavine. Strukturna analiza pokazuje bogatu organizaciju prisutnu
u ovom sustavu, promoviranu od strane hidroksilne skupine i njene tendencije da
stvara klastere kroz vodikovu vezu. Klastere grade hidroksilne grupe oba alkohola,
bez obzira kojem alkoholu pripadaju, što se vidi u rezultatima distribucije vjero-
jatnosti klastera, ali i site-site strukturnih faktora. U potonjima postoji pre-peak
na lokaciji k ≈ 0.9 Å kojeg smo, zbog svog porijekla, nazvali klaster peak. Zbog
tih strukturnih značajki, sustav metanol-etanol se znatno razlikuje od jednostavnog
nereda, iako ima gotovo idealne KF. Budući da komponente mješavine imaju iden-
tične interakcije koje promoviraju klasteriranje, moguće je dobiti prividnu termodi-
namičku idealnost.

U poglavlju 5 produbljujemo ideje kompleksnog nereda kroz analizu i usporedbu
dva sustava s etanolom: etanol-voda i ethanol-nepolarno otapalo [74]. Otkrivamo
ključne razlike u stvaranju i detektiranju domena u tim mješavinama. U čistim
alkoholima, hidroksilna skupina promovira klasteriranje u lance i petlje [155, 161,
162, 169, 170], koji opstaju i kad se dodaju molekule nepolarnog otapala [174, 175].
U potonjem slučaju, povećavanje molarnog udjela nepolarnog otapala dovodi do
toga da se klasteri alkohola organiziraju u domene. Te domene se mogu detektirati
kroz strukturne faktore, ali i kroz distribucije vjerojatnosti klastera, jer se domene
alkohola mogu reducirati na klastere od kojih su izgrađene. U mješavinama alkohol-
voda pri niskim udjelima alkohola, domene alkohola se formiraju posve drukčijim
mehanizmom (varijanta hidrofobnog efekta). Stoga, te domene imaju svoj potpis
u site-site strukturnim faktorima, ali ne i u distribucijama vjerojatnosti klastera.
Račun klastera nije pogodan za otkrivanje domena koje se ne mogu reducirati na
klastere, što je slučaj kod alkohola-vode.

Poglavlje 6 se bavi temperaturnom ovisnosti strukturnih svojstava u mješavinama
mono-ola s vodom. Tri sustava: metanol-voda, ethanol-voda i tert-butanol-voda
su ispitivana pri niskim temperaturama [75, 76]. Ove tri vodene mješavine imaju
slične karakteristike, poput smanjenja koncentracijskih fluktuacija sa smanjenjem
temperature, što se vidi iz gotovo idealnog ponašanja KBI-jeva. Sa spuštanjem
temperature, fuzzy domene, koje su tipične za mješavine voda-alkohol pri sobnoj
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temperaturi, postaju puno definiraniji objekti. Ovo je najočitije za tert-butanol-
vodu, gdje se mogu vidjeti linearni klasteri vode za visoke koncentracije alkohola.
Postoji transfer fluktuacija od k = 0 do malog k, koji potvrđuje ideju da je struk-
turiranje potrebno analizirati preko čitavog raspona k prostora.

Poglavlja 7 i 8 istražuju mješavine s otapalima koje nisu mono-olni alkoholi. U
Poglavlju 7, žarište je na propilaminu i njegovoj vodenoj otopini [77]. Propil-
amin je amfifilna molekula, baš kao i alkoholi, no ima amino (NH2) funkcionalnu
skupinu. Dva donora i jedan akceptor u funkcionalnoj skupini impliciraju više
mogućnosti za ostvarenje vodikove veze. Posljedice toga su vidljive u čistom propil-
aminu kroz pojavu razgranatih lanaca, dok su u mono-olima lanci linearni. Mješav-
ina propilamin-voda dijeli zajedničke značajke s mješavinama vode i alkohola, poput
trenda ponašanja dvočestičnih korelacijskih funkcija. Također, site-site strukturni
faktori propilamina zrcale one etanola u vodenoj mješavini. No, glavna razlika je u
ponašanju vode. Kod propilamina-vode, voda se organizira dvojako. Do xP = 0.3,
voda gradi globularne domene koje imaju svoj potpis u obliku domenskog pre-peaka
u kisik-kisk strukturnim faktorima. Nakon xP = 0.3, pojavljuju se linearni klasteri
vode, koji povlače za sobom manje pre-peakove u strukturnima faktorima i gotovo
idealne KBI-jeve.

Poglavlje 8 govori o diolnim alkoholima, kako u čistoj formi [78], tako i u mješav-
inama [79]. Čisti 1,n-dioli pokazuju klasteriranje slično kao u čistim mono-olima,
iako nekoliko strukturalnih rezultata pokazuje da je nešto manje izraženo. Glavni
rezultat ovog poglavlja su izračunati intenziteti raspršenja za predstavljena četiri
1,n-diola. Mono-oli imaju pre-peak lociran oko kP≈1 Å-1 u svojim intenzitetima
raspršenja, što je potpis klasteriranja hidroksilnih grupa u lance i prstene [153, 155,
161, 169, 173, 170]. Dioli, pak, na istom k položaju imaju samo “rame” u izraču-
natom intenzitetu, što je pomalo začuđujuće zbog prisustva klastera u čistim 1,n-
diolima [210]. No, taj neobični rezultat je posljedica lanca metilenskih grupa koje
povezuju dvije hidroksilne skupine u molekuli diola, koji djeluju kao veza. Doprinosi
CH2 siteova intenzitetu raspršenja padaju na različite k vrijednosti između glavnog
peaka i pre-peaka, što u konačnici rezultira proširenjem glavnog peaka i maskiranjem
signala pre-peaka.
Drugi dio poglavlja se odnosi na mješavine 1,n-diola s vodom odnosno etanolom. Di-
olni alkoholi pokazuju dualnost ponašanja u kratkodosežnom strukturiranju, ovisno
o prirodi druge komponente u mješavini. U mješavinama s vodom, dioli se ponašaju
kao tipični mono-oli [17, 59], dok u mješavini s etanolom, dioli preuzmu ulogu vode,
što je potvrđeno kroz dvočestične korelacijske funkcije. Rezultati KBI-jeva pokazuju
male koncentracijske fluktuacije za sustave s diolima, što je u raskoraku s ponašanjem
vodenih mješavina mono-ola. Site-site strukturni faktori diolnih mješavina nemaju
domenski pre-peak, već postaju plosnati prema k = 0. Odsustvo pre-peaka u S(k) je
znak Lifshitz stanja - nove vrste nereda, koja predstavlja stanje između nasumičnog
nereda i domenskog reda.

Zaključak je predstavljen u Poglavlju 9, gdje su sažete najzanimljivije točke ove
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teze. Nakon toga, ukratko su predstavljeni drugi projekti, neki od kojih nisu bili
dovršeni zbog poteškoća s modeliranjem ili računanjem ili su pak prešli vremensko
trajanje ove teze. Nadalje, govori se o perspektivama koje otvara ovaj rad, naročito
u polju biofizike. Fizikalna pozadina iza strukturiranja u tekućinama i formiranja
makromolekula je ista. Razumijevanje strukturiranja u tekućinama može biti korak
naprijed prema razumijevanju biomakromolekularnih procesa i formuliranju teoret-
skih pristupa iz perspektive atom-atom interakcija.
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Le but de cette thèse est d’analyser la riche variété de désordres présents dans les liq-
uides. La majorité de la recherche comporte des mélanges binaires avec au moins un
composant de liaison hydrogène. Les liquides à liaison hydrogène, tels que l’eau ou
les alcools, entrent dans la catégorie des liquides complexes. Les mélanges d’eau et
d’alcool sont connus pour être micro-hétérogènes, c’est-à-dire que leurs composants
sont ségrégés au niveau moléculaire [186, 187]. Bien qu’il existe un corpus important
sur le sujet des liquides simples (l’exemple typique étant l’argon liquide) [1, 11], il
n’en va pas de même pour les liquides complexes et leurs mélanges. Un bon nombre
d’auteurs dans le domaine se concentrent sur les propriétés thermodynamiques ou de
transport [16, 20, 58, 60, 61, 62, 63, 64] et, s’ils travaillent sur l’organisation struc-
turelle dans les liquides, ces investigations se limitent généralement à l’organisation
à courte portée [18, 19, 22, 59, 128]. La nouveauté du travail dans cette thèse est
qu’il porte une attention particulière à l’organisation à moyenne et longue portée.
L’objectif principal est de relier la nature des interactions atome-atome chez les es-
pèces moléculaires à la diversité de la structuration supramoléculaire formée dans
différents mélanges. Les méthodes de physique statistique sont employées dans cette
recherche et nous montrons que les mêmes outils statistiques utilisés pour étudier
des liquides simples peuvent donner de nouvelles informations et perspectives sur la
complexité présente dans les mélanges binaires.
Cette mine d’informations sur les systèmes binaires étudiés est accessible au travers
des simulations de dynamique moléculaire (MD) [67] effectuées dans le logiciel Gro-
macs [110]. On trouvera au Chapitre 2 une introduction théorique générale à la MD
et des résultats importants de la physique statistique, ainsi qu’une description des
méthodes utilisées. On trouvera en annexes A et B une analyse approfondie des
détails pertinents spécifiques à la simulation pour les liquides purs et les liquides
mélanges, respectivement.

Le premier concept important abordé dans cette thèse, concerne les notions de dé-
sordre simple et complexe dans les mélanges, tel qu’elles sont présentées au Chapitre
3 [72]. Ces notions sont introduites par l’étude des mélanges binaires avec le ben-
zène comme solvant commun, les co-solvants étant des molécules de caractéristiques
physico-chimiques différentes (les alcanes en tant que molécules neutres inertes,
l’acétone en tant que molécule dipolaire, l’éthanol en tant que molécule faisant les
liaisons hydrogène). Le benzène, modélisé comme un liquide simple, nous a permis
de voir plus clairement les effets produits par les molécules de soluté, ce qui est très
difficile dans les mélanges aqueux, à cause de la nature de la ségrégation. Sur la base
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de l’analyse structurelle, ainsi que des résultats des Kirkwood-Buff intégrales (KBI),
les trois mélanges différents pourraient être classés de la manière suivante. Le sys-
tème benzène-alcane est un exemple de désordre simple, dans lequel les composants
ont des interactions similaires, le mélange a des fluctuations de concentration (CF)
quasi-idéales, et aucune organisation locale ou globale notable n’apparait. Le sys-
tème benzène-acétone est un mélange régulier, car il possède une organisation à
courte distance et ses CF s’écartent du cas idéal, en raison des interactions dipo-
laires de l’acétone. Le mélange benzène-éthanol relève de la catégorie de désordre
complexe. La liaison hydrogène de l’éthanol est à l’origine du regroupement et de
la formation de domaines importants, qui peuvent être détectés dans les facteurs de
structure site-site sous la forme de pré-pics à des petits k. De plus, les CF dans ce
système sont importantes et varient fortement avec la concentration. Outre la défi-
nition de différents types de mélanges, ces résultats ont montré l’importance capitale
des interactions de type association. Ce sont ces dernières qui génèrent un désordre
complexe et la MH, alors que l’influence de la forme moléculaire du solvant inerte
est presque négligeable. Cette étude démontre l’importance d’observer la structure
sur toute la gamme k, et pas seulement à k = 0.

Le Chapitre 4 traite du concept de mélanges idéaux, étudiés à partir de la perspec-
tive présentée au Chapitre 3 [73]. L’accent est mis sur le mélange méthanol-’éthanol,
qui est un exemple classique de mélange idéal. L’analyse structurale de ce mélange
a montré une organisation riche, induite par le groupe hydroxyle et sa tendance à
former des agrégats (clusters). Ces agrégats sont construits par les groupes hydrox-
yles sans distinction entre les deux alcools, comme en témoignent les résultats des
distributions de probabilité des clusters, mais aussi les facteurs de structure site-site.
Dans ce dernier cas, il y a un pré-pic à k ≈ 0.9 Å que nous avons appelé le pic de clus-
ter, en raison de son origine. Grâce à ces caractéristiques structurelles, le mélange
éthanol-méthanol diffère considérablement du simple désordre, même s’il a les CF
proche de l’idéal. L’idéalité thermodynamique n’est donc qu’apparente, puisque les
constituants de ce mélange ont des interactions fortent qui favorisent la formation
des clusters, et donc une forte hétérogénéité dans la distribution moléculaire.

Au Chapitre 5, nous approfondissons les notions de désordre complexe en analysant
et en comparant deux mélanges binaires avec l’éthanol: éthanol-eau et éthanol-
solvant non polaire [74]. Nous découvrons les principales différences dans la forma-
tion et la détection des domaines dans leur structuration. Dans les alcools purs, le
groupe hydroxyle entraîne le regroupement en chaînes et en boucles [155, 161, 162,
169, 170], qui persistent même lorsque des molécules de solvant non polaire sont
ajoutées [174, 175]. Dans ce dernier cas, au fur et à mesure de l’ajout de solvant
non polaire, on observe la formation de domaines de clusters d’alcool. Ces domaines
sont détectables grâce à l’analyse des facteurs de structure et de la distribution des
clusters, car les domaines sont réductibles aux clusters qui les construisent. D’autre
part, dans les mélanges alcool-eau, les domaines à faible concentration de l’alcool
sont formés par un mécanisme complètement différent (une variante de l’effet hy-
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drophobe), perceptible uniquement par un pic des facteurs de structure site-site.
Les distributions de probabilités des clusters, qui dans ce cas montrent des résultats
similaires à un liquide simple, ne constituent pas un outil approprié pour découvrir
des domaines qui ne sont pas réductibles aux clusters.

Le Chapitre 6 traite de la dépendance en température des propriétés structurelles
dans les mélanges alcool-eau. Trois mélanges: méthanol-eau, éthanol-eau et tert-
butanol-eau sont étudiés en conditions froides [75, 76] pour des températures bien
en dessous de celle ambiante. Ces mélanges d’alcools aqueux ont tous des traits
communs, tels que la diminution des CF avec l’abaissement de la température, visible
d’après le comportement idéal des KBI calculés. Avec la chute de température, les
domaines peu définis, qui sont une caractéristiques des alcools aqueux à température
ambiante, deviennent des objets plus définis, tels que des agrégats linéaires. Ceci
est le plus apparent pour l’eau à tert-butanol, où des clusters d’eau linéaires à haute
concentration en alcool peuvent être observées. Il y a un transfert de fluctuations
de k = 0 à petit k, ce qui renforce la notion d’analyse de la structure sur toute la
gamme k.

Les Chapitres 7 et 8 explorent des mélanges avec différents types de co-solvants.
Au Chapitre 7, l’accent est mis sur la propylamine et son mélange aqueux [77]. La
propylamine est un composé amphiphile, tout comme les alcools, mais elle possède le
groupe fonctionnel amine (NH2). La présence des deux donneurs et d’un accepteur
dans le groupe fonctionnel impliquent plus de choix de liaisons hydrogène. Ses
conséquences sont visibles dans la propylamine pure lors de l’apparition de chaînes
ramifiées, alors que dans les alcools, nous avons des chaînes linéaires. Le mélange
aqueux de propylamine partage certains traits communs avec les mélanges d’alcool
aqueux, tels que les tendances dans les fonctions de corrélation de paires. Les
facteurs de structure site-site de la propylamine reflètent le comportement de ceux
de l’éthanol. Cependant, la principale différence provient du comportement de l’eau.
Dans la propylamine aqueuse, l’eau présente une dualité de structuration. Il forme
des domaines globuleux allant jusqu’à la concentration en propylamine xP = 0,3,
et qui ont une signature de domaine pré-pic dans le facteur de structure oxygène-
oxygène. Au delà de xP = 0,3, des clusters linéaires d’eau se produisent, ce qui
conduit à des facteur de structure moins structurés et à un KBI proche de l’idéal.

Le Chapitre 8 traite des di-alcools (diols), à la fois en tant que liquides purs [78] et
en mélanges [79]. 1,n-diols purs présentent un regroupement similaire aux mono-ols
purs, même s’il est moins proéminent, comme le montrent plusieurs caractéristiques
structurelles. Les points forts du chapitre sont les intensités de diffusion calculées
pour les quatre 1,n-diols étudiés. Les alcools mono-ol ont un pré-pic environ kP≈1
Å-1 dans leurs intensités de diffusion, qui est une signature du groupement hydroxyle
en chaînes et boucles [153, 155, 161, 169, 173, 170]. Les diols, par contre, présentent
une caractéristique d’épaulement du facteur de structure à la même position, ce
qui peut paraître étrange prenant en considération les chaînes présentes dans 1,n-
diols [210]. Ce résultat particulier est dû aux chaînes de carbone dans 1,n-diols,
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Resumé

qui agissent comme une contrainte, forçant les contributions des sites de carbone
à l’intensité de diffusion à tomber à différentes valeurs k qui se situent entre le pic
principal et le pré-pic. Cet élargissement au pic principal semble masquer le signal
du pré-pic.
Des mélanges binaires de 1,n-diols avec de l’eau ou de l’éthanol ont également été
étudiés. Les diol alcools présentent une dualité de comportement dans la structura-
tion à courte distance, en fonction de la nature de l’autre composant dans le mélange.
Dans les mélanges avec de l’eau, ils se comportent comme un mono-ol [17, 59], alors
que dans les mélanges avec les mono-ol, le diol joue le rôle de l’eau, ce qui est con-
firmé par les fonctions de corrélation des paires. Cependant, les mélanges avec des
diols présentent de faibles CF, comme en témoignent les KBI, ce qui constitue un
écart par rapport aux mono-ols aqueux. Il n’y a pas de signatures de pré-pics de
domaine dans les facteurs de structure site-site, mais plutôt un aplatissement du
S(k). Cette absence de pré-pic dans S(k) est une signature de l’état de Lifshitz, qui
est une nouvelle forme de désordre que nous avons introduite - un état intermédiaire
entre désordre simple et ordre de domaine, dans un liquide homogène globalement
désordonné.

La conclusion est présentée au Chapitre 9, où les points les plus marquants de la thèse
sont mis en avant. En outre, nous avons ajouté une courte présentation d’autres
projets, dont certains n’ont pas pu être complétés pour des raisons de temps de calcul
ou de modélisation, tandis que d’autres dépassaient les limites temporelles de cette
thèse. Enfin, d’autres perspectives sont discutées, en particulier celles concernant
la biophysique. La physique derrière la structuration dans les assemblages liquides
et macromoléculaires reste la même. La compréhension de la structuration dans
les liquides pourrait être un tremplin pour comprendre les processus incluant des
biomacromolécules et aider à formuler les approches théoriques de ces systèmes, de
la perspective des interactions atome-atome.
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