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Chapter 1

Introduction

Remotely Operated Vehicles (ROVs) have revolutionized underwater explo-

ration and operations, playing a major role in various industries, includ-

ing marine research, exploration, and intervention. These machines are

equipped with advanced sensors and technologies, enabling them to navi-

gate complex underwater environments and carry out tasks that would be

hazardous or impossible for human divers. The impact of ROVs extends

beyond mere environmental monitoring; they contribute significantly to

resource management, and the advancement of underwater industrial con-

structions.

As ROVs are deployed in immensely challenging environments, the need

for effective navigation and obstacle avoidance mechanisms becomes of

prime importance. These vehicles often operate in dynamic settings where

unexpected obstacles, such as marine life, submarines or underwater waste,

can pose significant risks to their mission objectives. Therefore, developing



robust algorithms and optimization models that allow ROVs to adapt their

trajectories in real-time is necessary for ensuring safe and efficient opera-

tions. The integration of obstacle avoidance strategies not only enhances

the operational competence of ROVs but also minimizes the risk of damage

to both the vehicle and the surrounding environment.

As expected, optimization of path planning plays a crucial role in en-

hancing the performance of ROVs. In essence, optimization involves finding

the best solution to a problem within a defined set of constraints and ob-

jectives. In the case of ROVs, this means determining the most efficient

path that the vehicle can take while full-filling operational constraints such

as energy consumption and mission timelines. The optimization process

can be compound, as it must account for multiple objectives, including

minimizing travel distance while prioritizing completion of different tasks

and minimizing risk caused by environmental changes.

Multi-objective optimization (MOO) techniques are particularly rele-

vant in this context, as they allow for the simultaneous consideration of

antagonistic objectives. For instance, an ROV may need to balance the

trade-off between minimizing travel time and maximizing the quantity of

data collected during its mission or minimizing travel distance while max-

imizing number of tasks that need to be achieved. The weighted sum

method is one approach that can be used to seize such multi-objective

problems. By assigning weights to each objective, decision makers can pri-

oritize their goals and explore various trade-offs, ultimately leading to more

informed, significant and effective operational strategies.

In the process of finding path for avoiding the obstacle, the application
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of optimization techniques becomes even more demanding. ROVs must be

equipped with software that enable them to detect obstacles in real-time

and adjust their paths correspondingly. This requires a dynamic algorithms

that can process incoming data from sensors and imaging systems, allow-

ing the ROV to make quick decisions about its trajectory. The Dijkstra

Algorithm is one of the widely known shortest path-finding algorithm that

can be adapted for use in ROVs to identify the shortest and safest route

while avoiding detected obstacles.
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Chapter 2

Multi-objective Optimization

2.1 Introduction to Optimization

Optimization is a fundamental concept that is spread through various fields,

from engineering and economics to logistics and machine learning. The core

of optimization is to find the best possible solution to a problem given a set

of constraints and objectives. Formally, an optimization problem involves

establishing the optimal value of a function within a given domain. This

section provides a general overview of optimization, and single-objective

optimization, followed by a more detailed discussion of linear programming,

a specific and widely used optimization technique.

Optimization problems can be commonly categorized into several types

based on the nature of the objective function, the constraints, and the

decision variables. The considerable categories include linear, nonlinear,

integer, combinatorial, and dynamic optimization.



2.1. Introduction to Optimization

Let’s begin by defining the most general form of the optimization prob-

lem.

Definition 2.1.1. An optimization problem can be expressed as:

min
x∈X

f(x)

where f(x) is the objective function to be minimized, and X is the feasible

region defined by a set of constraints.

The feasible region X is the set of all x that satisfy the constraints of the

problem.

An optimization problem does not only handle minimization of an ob-

jective function, but can also be used to maximize an objective function.

Therefore, sometimes our goal is to find not just the lowest value but also

the highest value of the objective function.

To approach both types of problems in a consistent way, we can use a

simple mathematical equivalence relation:

max f(x)⇔ min(−f(x))

This principle shows that any problem where we need to maximize a

function can be turned into a minimization problem by taking the negative

of the function, and the other way round. Therefore, most optimization

problems are commonly formulated as minimization problems for simple-
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2.2. Single-objective optimization

ness and convenience.

2.2 Single-objective optimization

Single-objective optimization (SOO) can be described as a type of opti-

mization problem where a single objective function is used. Meaning, the

focus is on optimizing only one of the criteria whilst following the given con-

straints. Let’s take a look at a special type of single-objective optimization

in which the objective function and constraints are linear.

2.2.1 Linear Programming

Linear programming (LP) is a powerful mathematical method for deter-

mining the best end result in a mathematical model whose requirements

are represented by linear relationships. It has numerous applications in

various industries, including manufacturing, transportation, finance, and

military planning.

Definition 2.2.1. A linear programming problem is formulated as:

min
x∈Rn

cTx

subject to:

Ax ≤ b

x ≥ 0

6



2.2. Single-objective optimization

where c is an n-dimensional vector of coefficients for the objective func-

tion, A is an m × n matrix of coefficients for the constraints, b is an

m-dimensional vector of constraint bounds, and x is the vector of decision

variables.

As we can see from definition above, in linear programming,the objec-

tive function and the constraints are linear. This means that the objective

function is a linear combination of decision variables. Analogously, the

constraints are linear equations or inequalities involving the decision vari-

ables. The feasible region, defined by the intersection of linear constraints,

forms a convex polytop. This convexity suggestes that any local optimum

is also a global optimum, which is a significant advantage in finding the

best solution efficiently. Linear programming benefits from a well known

theoretical premise and efficient algorithms, such as the Simplex method

and Interior-point methods, which make solving these problems relatively

straightforward [1].

Example 2.2.1 (Production Optimization). In a factory, two different

products X1 and X2 are being manufactured by three machines M1, M2,

and M3. Each machine can be used for a limited amount of time. Machine

M1 has a maximum working time of 10 hours, machine M2 is restricted to

20 hours, and machine M3 is limited to 12 hours to avoid excessive wear.

The production times of each product on each machine range: product

X1 requires 1 hour on machine M1, 1 hour on machine M2, and 3 hours

on machine M3; product X2 requires 1 hour on machine M1, 4 hours on

machine M2, and 1 hour on machine M3. The objective is to maximize the

7



2.2. Single-objective optimization

combined time of usage of all three machines.

Every production decision must follow the constraints on the available

time. In particular, we have:

x1 + x2 ≤ 10

x1 + 4x2 ≤ 20

3x1 + x2 ≤ 12

where x1 and x2 denote the production levels. The combined production

time of all three machines is:

f(x1, x2) = 5x1 + 6x2.

Thus, the problem in compact notation has the form:

maximize cTx

subject to Ax ≤ b

x ≥ 0,

where

cT = [5, 6],

8



2.2. Single-objective optimization

x =

x1

x2

 ,

A =


1 1

1 4

3 1

 ,

b =


10

20

12

 .

Definition 2.2.2. Any vector x that yields the minimum value of the

objective function cTx over the set of vectors satisfying the constraints

Ax = b,x ≥ 0, is said to be an optimal feasible solution.

Definition 2.2.3. An m-element subset B of {1, . . . , n} is said to be a ba-

sis (with respect to matrix A) if the columns of A indexed by the elements

in B are linearly independent.

We say that x∗ ∈ Rn is a basic solution to the system Ax = b if there

exists a basis B such that

(i) Ax∗ = b;

(ii) x∗
j = 0 for all j /∈ B.

Definition 2.2.4. An optimal feasible solution that is basic is said to be

an optimal basic feasible solution.

9



2.3. Multi-objective Optimization

Theorem 2.2.1 (Fundamental Theorem of LP). Consider a linear pro-

gram in standard form.

(i) If there exists a feasible solution, then there exists a basic feasible

solution;

(ii) If there exists an optimal feasible solution, then there exists an opti-

mal basic feasible solution.

2.3 Multi-objective Optimization

In the last few years, the field of multi-objective optimization has gained

significant attention across various domains, including engineering, finance,

and environmental management. Multi-objective optimization involves op-

timization of two or more objectives simultaneously, which is a common

scenario in real-life applications.

2.3.1 Multi-objective Optimization Problem

Similarly to a single-objective optimization problem, the multi-objective

optimization problem may contain a number of constraints which any fea-

sible solution (including all optimal solutions) must satisfy. Therefor, any

multi-objective optimization problem can be represented by the following

general mathematical model:

10



2.3. Multi-objective Optimization

min f(x) = [f1(x), f2(x), . . . , fm(x)]
T

subject to gi(x) ≥ 0, i = 1, 2, . . . , p

hj(x) = 0, j = 1, 2, . . . , q

x
(min)
i ≤ xi ≤ x

(max)
i , i = 1, 2, . . . , n

x = [x1, x2, . . . , xn]
T ∈ Q

where m is the number of objective functions, Q is the n-dimensional

search space defined by the lower bounds x(min) = [x
(min)
1 , x

(min)
2 , . . . , x

(min)
n ]T

and upper bounds x(max) = [x
(max)
1 , x

(max)
2 , . . . , x

(max)
n ]T of decision variables

x. The constraints gi(x) ≥ 0 and hj(x) = 0 represent p inequality con-

straints and q equality constraints, respectively. If p = q = 0, the problem

simplifies to an unconstrained multi-objective optimization problem.

Example 2.3.1 (Multi-Objective Production Optimization). In a factory,

two different products X1 and X2 are being manufactured by three ma-

chines M1, M2, and M3. Each machine can be used for a limited amount of

time. Machine M1 has a maximum working time of 15 hours, machine M2 is

restricted to 10 hours, and machine M3 is limited to 12 hours. Production

times of each product on each machine are given in Table 1. The objec-

tive is to maximize the combined production time of utilization of all three

machines as well as to maximize the profit generated by the production.

11



2.3. Multi-objective Optimization

Machine X1 (hours) X2 (hours)
M1 2 3
M2 4 1
M3 3 2

Table 2.1: Production times for X1 and X2 on machines M1, M2, and M3

The time constraints for each machine are:

2x1 + 3x2 ≤ 15 (Machine M1 time constraint)

4x1 + x2 ≤ 10 (Machine M2 time constraint)

3x1 + 2x2 ≤ 12 (Machine M3 time constraint)

The combined production time of all three machines is given by the

function:

f1(x1, x2) = 2x1 + 3x2 + 4x1 + x2 + 3x1 + 2x2 = 9x1 + 6x2

Production of product X1 bring profit of 5 and production of product X2

bring profit of 7. Hence, the profit generated by producing these products

is:

f2(x1, x2) = 5x1 + 7x2

Thus, the problem in compact notation has the form:

maximize [f1(x), f2(x)]
T

subject to Ax ≤ b

x1, x2 ≥ 0,

12



2.3. Multi-objective Optimization

where:

f1(x1, x2) = 9x1 + 6x2,

f2(x1, x2) = 5x1 + 7x2

A =


2 3

4 1

3 2

 ,

b =


15

10

12

 ,

x =

x1

x2



2.3.2 Multi-objective Optimization Solutions

In multi-objective optimization problems, the challenge lies in defining the

solutions. From a mathematical standpoint, there is not a single solution of

multi-objective problem but rather a set of solutions. In 1951, Koopmans

introduced the concept of Pareto efficiency, which describes the solution

set under partial order rather than total order. A solution is considered

Pareto optimal if no other solution can improve one objective without de-

grading another. This concept is crucial in decision-making processes where

multiple criteria must be considered.

13



2.3. Multi-objective Optimization

Definition 2.3.1 (Feasible Solution). A solution vector x ∈ Q is defined

as a feasible solution if it satisfies all the inequality and equality constraints

for i = 1, 2, . . . , p and j = 1, 2, . . . , q. Otherwise, it is an infeasible solution.

All feasible solutions constitute the feasible domain U , and all infeasible

solutions constitute the infeasible domain U ′. Clearly, U ∪ U ′ = Q, where

U ⊆ Q and U ′ ⊆ Q.

In other words, feasible solution is one that meets all the constraints

imposed by the problem. The feasible domain is the set of all such solutions,

while the infeasible domain is the set of solutions that do not meet the

constraints.

In the decision variable space (space of all possible values of decision

variables), a solution a is said to dominate another solution b if a is no

worse than b in all objectives and strictly better in at least one objective.

Definition 2.3.2 (Decision Variable Domination). For two vectors a =

[a1, a2, . . . , an]
T and b = [b1, b2, . . . , bn]

T in the decision variable space, a is

said to dominate b (denoted as a ≺ b) if:

(i) ∀i ∈ {1, 2, . . . ,m} fi(a) ≤ fi(b)

(ii) ∃j ∈ {1, 2, . . . ,m} fj(a) < fj(b)

In the objective function space, a point g dominates another point h

if g is no worse than h in all objectives and strictly better in at least one

14



2.3. Multi-objective Optimization

objective.

Definition 2.3.3 (Objective Function Domination). For two vectors g =

[g1, g2, . . . , gm]
T and h = [h1, h2, . . . , hm]

T in the objective function space,

g is said to dominate h (denoted as g ≺ h) if:

(i) ∀i ∈ {1, 2, . . . ,m}, gi ≤ hi

(ii) ∃j ∈ {1, 2, . . . ,m}, gj < hj

Definition 2.3.4 (Pareto Optimal Solution). A vector x∗ = [x∗
1, x

∗
2, . . . , x

∗
n]

T ∈

Q is a Pareto optimal solution if:

∀x ∈ Q, x ̸= x∗ ⇒ f(x) ̸≺ f(x∗)

The set of all Pareto optimal solutions is called the Pareto optimal set,

denoted as PS∗.

In other words, a Pareto optimal solution is one where no other solu-

tion in the feasible domain can improve any objective without causing a

degradation in at least one other objective.

Definition 2.3.5 (Pareto Optimal Front). The Pareto optimal set repre-

sented in the objective function space is called the Pareto optimal front,

denoted as:

PF∗ = {f(x) |x ∈ PS∗}

15



2.3. Multi-objective Optimization

The Pareto optimal front is the set of objective vectors corresponding

to the Pareto optimal solutions. It displays the trade-offs between different

objectives in the objective function space.

Multi-objective optimization methods focuses on finding solutions that

are as close as possible to the Pareto optimal front and are uniformly dis-

tributed to ensure equity. Such methods should show good convergence

and diversity. Additionally, the solutions should be numerous to ensure a

wide range of options for decision-makers. Once the Pareto optimal set is

found, decision-makers can select the concluding solution based on specific

optimization problems or personal preferences. A diverse and sizeable set

of solutions allows for better comparison and selection according to various

criteria and fondness.

2.3.3 Weighted Sum Method

One of the most simple and commonly used approaches to tackle multi-

objective optimization problems is the weighted sum method.

This method transforms the multi-objective problem into a single-objective

problem by allocating weights to each objective function, considering their

relative importance. The weighted sum of the objectives is then optimized,

allowing for the observation of different trade-offs by varying the weights.

This approach is particularly appealing due to its simplicity and ease of

implementation.

However, it has its limitations, such as the potential to overlook non-

convex regions of the Pareto front and the challenge of selecting appropriate

16



2.3. Multi-objective Optimization

weights that accurately represent the decision-maker’s preferences.

Mathematically, general formulation of the weighted sum method for a

multi-objective optimization problem can be expressed as follows:

min f(x) =
M∑

m=1

wmfm(x)

subject to gj(x) ≥ 0, j = 1, 2, . . . , J

hk(x) = 0, k = 1, 2, . . . , K

x
(L)
i ≤ xi ≤ x

(U)
i , i = 1, 2, . . . , n

where:

(i) x is the vector of decision variables.

(ii) fm(x) is the m-th objective function.

(iii) wm is the weight assigned to the m-th objective function, with wm ≥ 0

and
∑M

m=1 wm = 1.

(iv) gj(x) are the inequality constraints.

(v) hk(x) are the equality constraints.

(vi) x
(L)
i and x

(U)
i are the lower and upper bounds on the decision vari-

ables.

The weights wm are user-supplied and represent the priority or impor-

tance of each objective function. This allows for a customized approach de-

pending on the importance of each objective and exploring different trade-

offs between the objectives.

17



2.4. Mathematical Model

One of the key strengths of this method lies in its simplicity and flex-

ibility. The weighted sum method is apparent and easy to implement. It

converts a multi-objective problem into a single-objective problem, which

can be solved using standard optimization techniques.

On the other hand, choosing appropriate weights to obtain a desired

Pareto-optimal solution can be challenging. The solution is sensitive to

the choice of weights, and inappropriate weights may lead to sub-optimal

solutions. Additionally, in cases where the objective space is non-convex,

the weighted sum method may fail to find certain Pareto-optimal solutions.

This is because the method relies on linear combinations of the objectives,

which may not capture the true trade-offs in a non-convex space [2].

2.4 Mathematical Model

In this section we are constructing a model to determine the optimal route

for a Remotely Operated Vehicle (ROV) in an offline setting, considering

various factors that impact the route choice.

The ROV’s mission demand visiting a series of stations, each with a

specific priority for visitation, while taking into account the distance be-

tween stations and the corresponding environmental risks. The objective

is to minimize the total distance traveled, prioritize stations based on their

urgency (with 1 being the highest priority and 5 the lowest) and precedence

(some stations need to be visited before others, because of the nature of the

tasks executed in stations), and manage risks related to certain stations.

18



2.4. Mathematical Model

This must be achieved within a set of constraints to ensure an efficient and

feasible route.

By utilizing the before-mentioned weighted sum method, we combine

these objectives into a single, flexible objective function. The constants α,

β, and γ play a influential role in balancing the different objectives, allowing

for a modifying approach depending on the specific mission requirements.

The model’s design is not only practical but also highly customized,

with the ability to adjust the weights to explore different trade-offs and

optimize the ROV’s route according to the decision-maker’s preferences.

This foundation prepare the way for further purification and application in

real-world scenarios, where the balance between these competing objectives

is critical to the success of ROV missions.

By minimizing the total distance, prioritizing stations with higher ur-

gency, while also taking into account the risks associated with environmen-

tal conditions, this model provides a comprehensive and flexible tool for

offline ROV route optimization.

2.4.1 Data

To build our model, we first need to lay out and formalize the data that

will be used. Let us assume we have gathered the necessary information

and now introduce the notation that will represent the data:

(i) B: set of all stations.

(ii) S = |B| <∞: total number of stations.

19



2.4. Mathematical Model

(iii) N : minimum number of stations required to visit (0.5 S).

(iv) dij: distance between station i and station j.

(v) pi: priority of station i, lower values indicate higher priority.

(vi) P : set of precedence ordered pairs (i, j) such that beacon i must be

visited before beacon j

(vii) ri: the risk of extreme weather conditions at station i

Figure 2.1: Example of data: Search area with station ranked by
visitation priority

20



2.4. Mathematical Model

2.4.2 Decision Variables

The decision variables xij and ui are essential components of the model,

with each serving a well defined purpose in the optimization process:

(i) xij: binary variable indicating if the route goes from station i to

station j.

(ii) ui: auxiliary variables for sub-tour elimination.

2.4.3 Objective Function

Applying the weighted sum method, the objective function in the model is

expressed as:

α
∑
i∈B

∑
j∈B

dij · xij + β
∑
i∈B

∑
j∈B

pi · xij + γ
∑
i∈B

∑
j∈B

ri · xij

Here is an explanation of each part of the objective function:

Term

∑
i∈B

∑
j∈B

dij · xij

focuses on minimizing the total distance in the route. Here, dij rep-

resents the distance between station i and station j, and xij is a binary

variable indicating whether the route from i to j is taken (1 if taken, 0

otherwise).
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2.4. Mathematical Model

Term

∑
i∈B

∑
j∈B

pi · xij

incorporates the priority or urgency of each station into the optimiza-

tion. Here, pi represents the priority of station i, with lower values indi-

cating higher priority.

Finally, term

∑
i∈B

∑
j∈B

ri · xij

accounts for additional factors represented by ri, which include various

environmental risks associated with visiting station i. The product ri · xij

incorporates these risks into the route planning, ensuring that the model

considers potential challenges or disadvantages when determining the op-

timal path. Stations situated in environmentally sensitive or hazardous

areas might have higher ri values to account for potential environmental

impacts.

The formulation of objective function effectively combines the three

objectives—minimizing distance, prioritizing important stations, and min-

imizing risk—into a single objective. The constants α, β, and γ can be

adjusted to achieve the preferred balance between these competing objec-

tives, with the constraint that their sum must equal one. This adjustment

allows for an analysis of how their values impact the overall objective func-

tion value.
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2.4. Mathematical Model

2.4.4 Constraints

Constraints are given by:

∑
i∈B

∑
j∈B

xij ≥ N (2.1)

∑
j∈B

xij ≤ 1 ∀i ∈ B (2.2)

∑
i∈B

xij ≤ 1 ∀j ∈ B (2.3)

ui − uj +N · xij ≤ N − 1 ∀i, j ∈ B, i ̸= j (2.4)

ui ≥ 0 ∀i ∈ B (2.5)

xij ∈ {0, 1} ∀i, j ∈ B (2.6)

pi ∈ {1, 2, 3, 4, 5} ∀i ∈ B (2.7)

ui ≤ uj ∀(i, j) ∈ P (2.8)

α + β + γ = 1 (2.9)

• (2.1): Visit at least 50% of the stations

• (2.2): Each visited station must be exited exactly once

• (2.3): Each visited station must be entered exactly once

• (2.4): Miller-Tucker-Zemlin sub-tour elimination constraint

• (2.5): This constraint ensures that the values of are appropriate for

eliminating sub-tours

• (2.6): constraint on the variable’s values

• (2.7): constraint on the variable’s values
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2.4. Mathematical Model

• (2.8): ensures that the auxiliary variable for station i is less than or

equal to that of station j, effectively enforcing the visit order

• (2.9): constraint on weights of Weighted sum method
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Chapter 3

Obstacle Avoidance Using

Dijkstra Algorithm

Now, we are addressing the problem of obstacle avoidance for a remotely

operated vehicle in a 3D underwater environment. In the context of ROVs

performing underwater navigation, an effective and fast online obstacle

avoidance mechanism is crucial for maintaining safe and logical travel.

This process is particularly significant when the ROV, which follows a pre-

planned offline path, encounters unexpected obstacles in its environment.

The main objective of this problem is to dynamically adjust the ROV’s

trajectory to navigate around such obstacles while ensuring that the de-

tour is minimal and reasonable, and that ROV returns to the pre-planned

path seamlessly. This mechanism becomes active when the ROV detects

an obstacle, which is identified through image processing techniques.



3.1. Problem Definition

3.1 Problem Definition

The ROV is tasked with following a predetermined path that optimally

visits several stations or waypoints. However, the path planning conducted

offline does not account for unforeseen obstacles that might suddenly ap-

pear in the ROV’s path during its operation. To address this, the ROV

must employ an obstacle avoidance mechanism that can adapt to real-time

changes in the environment.

The ROV is equipped with image-capturing technology that provides

continuous visual data of its surroundings. Let’s suppose that at discrete

intervals, denoted as ∆t, the ROV updates its memory with new image

data. The image processing system analyzes these images to detect the

presence of obstacles in environment. If an obstacle is detected, it is, gen-

erally, represented as a polygon with n sides, which approximates the shape

and broadness of the obstacle. This polygonal representation allows for a

precise definition of the obstacle’s location and dimensions.

The operational procedure of obstacle avoidance mechanism involves

the following steps:

1. The ROV relies exclusively on images captured from its onboard sen-

sors to perceive its surroundings. At discrete time intervals, denoted

as ∆t, the ROV updates its environmental memory with new data

gathered through these images.

2. When an image processing indicates the presence of an obstacle, the

ROV initiates an obstacle avoidance protocol. This involves analyz-
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3.1. Problem Definition

Figure 3.1: Data is gathered from image processing and used for obstacle
avoidance strategies

ing the captured image to identify and locate the obstacle. When an

captured image undergoes a detection algorithm of a standard train-

ing model for detection tasks, a n-sided polygon is constructed on the

resultant image indicating presence of an obstacle. Therefore, the re-

sult of this image processing procedure is a polygon with n sides that

approximates the obstacle’s shape and position in the environment.

Vertices of the n - sided polygon are 3-dimensional points that will

be an input data of graph search algorithm for obstacle avoidance.

Meaning, at each time step ∆t, a graph G(V,E) is updated where:

(i) V represents the set of vertices (3D coordinates) of the polygons.

(ii) E represents the edges, which are the Euclidean distances be-

tween these vertices.

Since the positions of the vertices are updated at each time step,

continuously, the graph is dynamic and needs to be reconstructed

continually.
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3.1. Problem Definition

Figure 3.2: Polygon with sides that approximates the obstacle’s shape

To ensure accurate obstacle avoidance, we need to address the fact

that not every vertex of the polygon will be used as a node in the

graph due to limitations in the captured image.Specifically, the image

may not encompass the entirety of the obstacle, leading to incomplete

data. Vertices of the polygon located along the periphery of the cap-

tured image are particularly problematic. These vertices suggest that

the captured image does not cover the entire extent of the obstacle,

indicating that the obstacle likely extends beyond the edges of the

captured picture.
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3.1. Problem Definition

Figure 3.3: Vertices of the polygon located close to the periphery of the
captured image are disregarded

Therefore, these vertices that are on or closed to the periphery of the

captured image are disregarded in the graph construction process.

This is because including them could lead to an inaccurate represen-

tation of the obstacle’s shape and position. When vertices on the edge

of the image are included, there is a risk that the polygon’s bound-

aries are not correctly aligned with the actual obstacle. Since these

edge vertices are likely to be outside the true obstacle’s boundary,

their inclusion could cause the graph to misrepresent the obstacle’s

location and shape.

The primary concern with incorporating such edge vertices is that it

may lead to a situation where the ROV’s path planning algorithm

does not accurately avoid the obstacle. Specifically, if the edges as-

sociated with these vertices extend beyond the actual edge of the

image, the ROV might be directed towards areas where the obstacle

is actually present but not captured. Consequently, this could result

in potential collisions between the ROV and the obstacle, undermin-

ing the effectiveness of the obstacle avoidance strategy. Therefore,
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3.1. Problem Definition

to ensure a safe and accurate navigation, these peripheral vertices

are excluded from the graph to prevent any misleading conclusions

about the obstacle’s extent and to maintain a reliable path planning

system.

Furthermore, not every new node in an updated graph will be con-

nected to all the previous nodes. For every new update, nodes that

are vertices of the same polygon will be connected in a way that ev-

ery node is connected to its neighbors nodes. Also, all nodes from

the new update will be connected to the all the nodes in only the

forerunner update. Reason for this is to ensure logical form of the

graph and so the result of search algorithm is valid and sensible.

3. Upon detecting an obstacle, the ROV’s path is no longer aligned

with the oflline pre-planned route. Consequently, a graph search

algorithm is employed to determine a new path around the obstacle.

The search begins at the point where the ROV strays from the pre-

planned trajectory, establishing this point as the start node of the

graph for shortest path finding algorithm.

4. Once the ROV has successfully navigated around the obstacle and

no further obstacles are detected, it resumes its journey towards the

subsequent station or waypoint as defined in the original pre-planned

path.
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3.2. Dijkstra’s Algorithm

Figure 3.4: Obstacle avoidance process

3.2 Dijkstra’s Algorithm

Dijkstra’s algorithm is a fundamental and well known algorithm in com-

puter science, named after Dutch computer scientist Edsger W. Dijkstra,

who first published it in 1959. It is used to find the shortest path from a

starting node (often referred to as the "source" node) to all other nodes in

a graph with weighted edges.

Dijkstra’s algorithm has several significant characteristics that make it

particularly effective in solving specific types of problems. The algorithm

implements a greedy approach, meaning it makes the optimal choice at

each step with the goal of finding the global optimum. This characteristic

ensures that once the shortest path to a node is pined down, it remains

unchanged, contributing to the algorithm’s overall efficiency and speed.

Another critical aspect of Dijkstra’s algorithm is its demand for non-

negative edge weights. The algorithm assumes that once a path to a node

has been established with a certain cost, no shorter path will be discovered

later. Negative weights would compromise this assumption, potentially

leading to incorrect results and making the algorithm unsuitable for graphs

with such weights.
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3.2. Dijkstra’s Algorithm

The time complexity of Dijkstra’s algorithm varies depending on the

data structures used. In its simplest form, when implemented with arrays,

the algorithm has a time complexity of O(V 2), where V represents the

number of nodes. Nevertheless, by utilizing more advanced data structures

like Fibonacci heaps, the time complexity can be reduced to O(V log V +

E), where E denotes the number of edges. This improvement makes the

algorithm more suitable for greater graphs.

Dijkstra’s algorithm has a wide range of implementations across various

fields. In computer networks, it plays a crucial role in network routing pro-

tocols, determining the shortest path for data to travel across routers. In

Geographic Information Systems (GIS), the algorithm is integral to map-

ping software, helping to find the shortest path between locations, such as in

GPS navigation systems. The algorithm is also widely used in robotics and

artificial intelligence for path-finding, enabling robots to navigate through

environments efficiently. Furthermore, in telecommunications, Dijkstra’s

algorithm is employed to optimize the routing of signals across complex

networks, ensuring efficient communication pathways [3].

Dijkstra’s Algorithm steps:

1. Set the distances of all nodes as∞ except for the source node, which

is set to 0.

2. Mark all nodes as non-visited, including the source node.

3. While there are non-visited nodes:

(a) Set the non-visited node with the smallest current distance as

the current node C.
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3.2. Dijkstra’s Algorithm

(b) For each neighbor N of the current node C:

i. Calculate the potential new distance through C as:

new distance = current distance of C + weight of edge CN

ii. If this new distance is smaller than the current distance of

N , update the distance of N .

(c) Mark the current node C as visited.

4. Repeat the process in step 3. until all nodes are marked as visited.

Example 3.2.1 (Finding the Shortest Path using Dijkstra’s Algorithm).

To illustrate how Dijkstra’s Algorithm works, let’s consider the following

example of the graph whose nodes are denoted as numbers and weights

written above the edges:

To find the shortest path from the source node (0) to all other nodes in

the weighted graph using Dijkstra’s Algorithm, we perform the following
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3.2. Dijkstra’s Algorithm

steps.

First, initialize the distance table by setting the distance of all nodes

as ∞, except for the source node, which is set to 0. This gives the initial

distances as follows:

Distance to 0: 0,

Distance to 1: ∞,

Distance to 2: ∞,

Distance to 3: ∞,

Distance to 4: ∞,

Distance to 5: ∞.

All nodes are initially marked as non-visited.

We then proceed by iterating through the non-visited nodes, selecting

the node with the smallest current distance as the current node and up-

dating the distances of its neighbors. The process continues until all nodes

are visited.

In the first iteration, the current node is source node 0 because it has

the smallest distance (0). We update the distances of its neighbors (nodes

1, 2, and 3). The new distance to node 1 is calculated as

0 + 8 = 8,

to node 2 as

0 + 5 = 5,

and to node 3 as

0 + 6 = 6.
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3.2. Dijkstra’s Algorithm

The updated distances after this iteration are:

Distance to 1: 8,

Distance to 2: 5,

Distance to 3: 6.

Node 0 is then marked as visited.

In the second iteration, node 2 is set as the current node as it has the

smallest distance among non-visited nodes. We then update the distances

of its neighbors (nodes 0, 1, 3, and 4). The new distance to node 4 is

calculated as

5 + 8 = 13.

Since the current distances to vertices 1 and 3 are smaller than their po-

tential new distances, they are not updated. The updated distance to node

4 becomes 13:

Distance to 4: 13.

Node2 is marked as visited.

In the third iteration, node 3 is set as the current node, having the

smallest distance among non-visited nodes. The distance to its neighbor,

node 5, is updated to

6 + 3 = 9.

The updated distances are:

Distance to 5: 9. Node 3 is marked as visited.

Next, node 1 is selected as the current node. The distance to its neigh-

bor, node 4, is updated to 8 + 4 = 12, which is smaller than the current
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3.2. Dijkstra’s Algorithm

distance of 13. Thus, the distance to vertex 4 is updated:

Distance to 4: 12.

Node 1 is marked as visited.

In the fifth iteration, node 5 is the current node with a distance of 9.

However, all its neighbors are already visited, so no further updates are

necessary. Node 5 is marked as visited.

Finally, in the sixth iteration, node 4 is selected as the current node

with a distance of 12. Again, all its neighbors are already visited, so no

further updates are needed and node 4 is marked as visited.

At this point, all nodes have been visited, and the shortest distances

from vertex 0 to all other vertices have been determined.

The final shortest distances from vertex 0 to all other vertices are:

Distance to 0: 0,

Distance to 1: 8,

Distance to 2: 5,

Distance to 3: 6,

Distance to 4: 12,

Distance to 5: 9.
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3.3 Implementation of Dijkstra Algorithm to

Obstacle Avoidance Problem

In the real-time underwater navigation, efficiently avoiding obstacles is cru-

cial for the safe operation of ROVs. The dynamic nature of the underwa-

ter environment demands a vigorous algorithm capable of calculating and

recalculating paths as new obstacles are detected. Dijkstra’s algorithm,

famous for its effectiveness in finding the shortest paths in a graph, is par-

ticularly well-suited for this task. By integrating Dijkstra’s algorithm with

the ROV’s obstacle detection system, we can ensure that the vehicle can

dynamically adjust its path, avoiding obstacles while minimizing detours.

The following section details the implementation of Dijkstra’s algorithm

specifically tailored to address the obstacle avoidance problem in a 3D un-

derwater environment.

The first step in the obstacle avoidance process involves updating the

graph that represents the ROV’s environment. As described in problem

definition, this graph consists of nodes corresponding to points in 3D space

and edges representing the Euclidean distances between these points. The

vertices are updated dynamically based on the data provided by image

processing, which are designed to detect and approximate obstacles. When

a new set of points is identified, representing the vertices of an obstacle,

the graph needs to be updated to include these points.

The updateGraph algorithm begins by connecting all the vertices of

the newly detected obstacle to its neighbors. This is done by iterating

through the list of new vertices and calculating the Euclidean distances
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3.3. Implementation of Dijkstra Algorithm to Obstacle Avoidance Problem

between vertex with previous and following vertex, thereby adding the cor-

responding edges to the graph. In other words, the current update are

connected in a way that every vertex, except for the last one, is connected

to the subsequent one and every vertex, except the first one, is connected

to the previous one. Finally, first and the last vertex are connected. After

connecting the vertices of the current update, the algorithm proceeds to

connect these new vertices with the vertices of the previous update. This

ensures that the graph remains sensibly connected, accounting for all ob-

stacles that the ROV has encountered so far. By continually updating the

graph in this manner, the algorithm maintains an accurate and up-to-date

representation of the ROV’s environment, which is crucial for the path

finding process. The graph is undirected, meaning that the distance from

point u to point v is the same as the distance from v to u, which is why

the distance is stored symmetrically in the graph matrix.
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Algorithm 1 Update Graph
Require: graph matrix of size MAX_POINTS × MAX_POINTS
Require: points array of all points
Require: setSize array of input sizes
Require: inputNumber number of updates
Require: totalPoints size of array points
1: for u← totalPoints - setSize[inputNumber] +1 to totalPoints

do
2: if u > then totalPoints - setSize[inputNumber] +1 ▷

Connect to the previous node (if not the first node)
3: graph[u][u-1] ← euclideanDistance(points[u],

points[u-1])
4: graph[u-1][u] ← graph[u][u-1] ▷ Graph is undirected
5: end if
6: if u < totalPoints then ▷ Connect to the following node (if not

the last node)
7:
8: graph[u][u+1] ← euclideanDistance(points[u],

points[u+1])
9: graph[u+1][u] ← graph[u][u+1] ▷ Graph is undirected

10: end if
11: end for
12: Connect first and last node
13: for u ← totalPoints - setSize[inputNumber]

- setSize[inputNumber - 1] to totalPoints -
setSize[inputNumber] do

14: for v ← totalPoints - setSize[inputNumber] +1 to
totalPoints do

15: graph[u][v] ← euclideanDistance(points[u],
points[v]) ▷ Connect all nodes in the current update with previous
update

16: graph[v][u] ← graph[u][v] ▷ Graph is undirected
17: end for
18: end for
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Once the graph is updated, the next step is to find the shortest path

from the ROV’s current location to one of the nodes in the latest update.

This is accomplished using Dijkstra’s algorithm, which is well-suited for

finding the shortest path in a weighted graph.

The algorithm starts by initializing the distance to all nodes in the

graph as infinite, except for the starting node, which is set to zero. This

initialization reflects the fact that initially, the shortest path to any node is

unknown, except for the starting node itself. A set called sptSet (Shortest

Path Tree Set) is used to keep track of the nodes that have been visited,

ensuring that each node is only visited once.

The core of Dijkstra’s algorithm is its greedy approach: at each step,

the algorithm selects the non-visited node with the smallest known distance

from the starting node and explores its neighbors. For each neighbor, the

algorithm calculates the potential new distance by adding the distance from

the current node to the weight of the edge connecting the current node to

the neighbor. If this new distance is smaller than the currently known

distance to the neighbor, the algorithm updates the neighbor’s distance

and records the current node as its predecessor.

The process repeats until all distances of the goal nodes(nodes from

the latest update) are calculated. The result is a list of distances from the

starting node to the goal nodes in the graph, with the shortest path to each

node being determined by following the recorded predecessors back from

the goal node to the starting node.

40



3.3. Implementation of Dijkstra Algorithm to Obstacle Avoidance Problem

Algorithm 2 Dijkstra Algorithm
Require: graph matrix of size MAX_POINTS × MAX_POINTS
Require: totalPoints number of nodes in the graph
Require: currentLocation source node
Require: inputSet array of goal nodes
1: Initialize distances as array of size totalPoints with all elements set

to ∞
2: distances[currentLocation] ← 0 ▷ Distance to the source is zero
3: Initialize sptSet as array of size totalPoints with all elements set to

false
4: Initialize previous as array of size totalPoints with all elements set

to null
5: for count ← 0 to totalPoints - 1 do
6: u ← vertex with minimum dist not in sptSet
7: sptSet[u] ← true ▷ Mark vertex u as processed
8: if u is in inputSet then
9: break ▷ Stop if we reach a goal node

10: end if
11: for v ← 0 to totalPoints - 1 do
12: if not sptSet[v] and graph[u][v] ̸= 0 and distances[u]
̸=∞ and distances[u] + graph[u][v] < distances[v] then

13: distances[v] ← distances[u] + graph[u][v]
14: previous[v] ← u ▷ Track the predecessor of v
15: end if
16: end for
17: end for
18: Initialize goalNode as node in inputSet with the minimum distances
19: Initialize path as an empty list
20: currentNode ← goalNode ▷ Start with the goal node found
21: while currentNode is not null do
22: insert(currentNode, path) ▷ Insert currentNode at the

beginning of the path
23: currentNode ← previous[currentNode]
24: end while
25: return path ▷ Return the list of nodes forming the shortest path to a

goal node
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In a dynamic environment, where the ROV continually encounters new

obstacles, the graph and shortest path need to be updated regularly. The

graph-update algorithm combines the graph updating and shortest path

calculation into a single process, allowing the ROV to adjust its path in

real-time as it navigates through the underwater environment.

The algorithm begins by initializing the graph with the ROV’s current

location and then enters a loop where it continuously reads input from the

ROV’s sensors. Each time a new obstacle is detected, the graph is updated

with the new points, and Dijkstra’s algorithm is invoked to recalculate the

shortest path from the ROV’s current location to the next target. The

newly calculated path is then used to guide the ROV around the obstacle.

If no new obstacles are detected, the algorithm re-initializes its data

structures, preparing for the next obstacle avoidance process. This re-

initialization is crucial because it ensures that the algorithm does not re-

tain outdated information from previous avoidance, which could lead to

incorrect path calculations and overloaded memory.

By dynamically updating the graph and recalculating the shortest path,

the algorithm ensures that the ROV can adapt to changes in its environ-

ment and navigate around obstacles in an efficient way.
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Algorithm 3 Dynamic Graph Update and Shortest Path Calculation
Require: Initial 3D point currentLocation ▷ Point where ROV

deviates from pre-planned trajectory and a source node of the graph
Require: Array of 3D points inputSet

Initialize points as a null array of size MAX_POINTS ▷ Array to hold
the points from the inputs

2: Initialize graph as a null matrix of size MAX_POINTS × MAX_POINTS
Initialize setSize as a null array of size MAX_POINTS ▷ Array to hold
the sizes of each input set

4: Initialize inputNumber as integer ▷ Counter for the number of
non-empty inputs
Initialize totalPoints as integer

6: totalPoints ← 1
setSize[0] ← 1

8: inputNumber ← 0
while True do

10: Read inputSet
Remove noncompliant points from inputSet

12: Read currentLocation
points[0] ← currentLocation

14: if inputSet is not empty then
inputNumber ← inputNumber+ 1

16: setSize[inputNumber] ← number of points in inputSet
Update points with inputSet

18: totalPoints ← totalPoints + setSize[inputNumber]
Call updateGraph(graph, points, setSizes,

inputNumber, totalPoints)
20: Call dijkstra(graph, totalPoints, currentLocation)

newPath[MAX_POINTS] ← dijkstra(graph, totalPoints,
currentLocation)

22: Print newPath
end if

24: Reinitialize all data structures ▷ No obstacle or avoidance process
is done

points[0] ← currentLocation
26: totalPoints ← 1

setSize[0] ← 1
28: inputNumber ← 0

sleep(∆ t)
30: end while
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3.3.1 Experiment

The algorithm from the section before is now tested on synthetic data,

which consists of 3D point that represent current location of the ROV

and multiple sets of points that mimic the vertices of the polygon that

approximates the obstacle in multiple captured images, as explained before.

Input:

{0.0, 0.0, 0.0}

{ ∅,

{ {1, 3, 0}, {1, -3, 0}, {1.5, 1, 3}, {1.5, -2, 2.5} },

{ {7, 6, 3.5}, {7.5, -2.7, 5.5}, {7.5, 2, 5}, {7, -6.7, -3.1} },

{ {12.1, 2, 7.3}, {12.4, 3.6, 5.5}, {13, -4.6, 5.4} },

∅ }

Here we label input points and visualize the data and graph.

O=(0.0,0.0,0.0),

A=(1,3,0),

B=(1,-3,0),

C=(1.5,1,3),

D=(1.5,-2,2.5),

F=(7,6,3.5),

G=(7.5,-2.7,5.5),

H=(7.5,2,5),

J=(7,-6.7,-3.1),

K=(12.1,2,7.3),

L=(13, -4.6, 5.4),
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I=(12.4, 3.6, 5.5).

Figure 3.5: Data represented in 3D space

Figure 3.6: Floor plan of data
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Output:

(0.00, 0.00, 0.00)

(1.00, 3.00, 0.00)

(7.00, 6.00, 3.50)

(12.10, 2.00, 7.30)

Time taken: 0.000058 seconds
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Chapter 4

Conclusion

In summary, the integration of optimization techniques into the operational

framework of Remotely Operated Vehicles (ROVs) is essential for enhanc-

ing their effectiveness and safety in complex underwater environments. As

ROVs continue to play a essential role in various industries, the devel-

opment of advanced optimization models that address multiple objectives

will be crucial for their future success. By employing methods such as the

weighted sum method, decision-makers can tailor ROV operations to meet

specific mission goals, ensuring that these vehicles can adapt to unforeseen

challenges while maximizing their operational efficiency.

Moreover, the implementation of advanced obstacle avoidance algo-

rithms, such as those based on Dijkstra’s Algorithm, highlights the im-

portance of real-time data processing. As technology continues to advance,

the potential for ROVs to operate autonomously and efficiently in chal-

lenging underwater scenarios will only increase, paving the way for new



discoveries and innovations.

Ultimately, the ongoing research and development in optimization tech-

niques for ROVs not only enhance their operational capabilities but also

contribute to the broader understanding of marine environments. By en-

suring that ROVs can navigate safely and effectively, we can unlock new

opportunities for exploration, conservation, and data collection, thereby

making a lasting impact on our understanding of the underwater world.
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