Skip to main content
Home
About repository
Contact
EN
HR
Repository of Faculty of Science
Browse
By Author
By Year
By Organizational unit
By Scientific field
By Object type
All documents
Advanced search
Upload
Search Term
Access restricted to students and staff of home institution
undergraduate thesis
12
0
Solving Pancake Sorting Problem
Zrinka Šarić (2016)
University of Split
University of Split, Faculty of science
Department of Informatics
Cite this item:
https://urn.nsk.hr/urn:nbn:hr:166:446410
Metadata
Title
Rješavanje problema sortiranja palačinki
Author
Zrinka Šarić
Mentor(s)
Branko Žitko
(thesis advisor)
Abstract
Problem sortiranja palačinki se može riješiti u 2n - 3 okretaja za n ≥ 2, gdje je n broj zadanih palačinki. Analiza problema dovodi do sljedeće skice algoritma. Ponavljati sljedeći korak dok se problem ne riješi: donijeti najveću palačinku koja još nije u konačnom položaju na vrh s jednim okretajem, a zatim je postavi u konačni položaj s još jednim okretajem. Pokazano je da je svaku permutaciju stoga od n palačinki moguće sortirati u maksimalno 2n-3 okretaja. Algoritmi pretraživanja su implementirani u Python-u. Rezultati su analizirani i potkrijepljeni primjerima.
Keywords
pancake sorting
graph
permutations
pancake number
Parallel title (English)
Solving Pancake Sorting Problem
Committee Members
Branko Žitko
(committee chairperson)
Ani Grubišić
(committee member)
Divna Krpan (committee member)
Granter
University of Split
University of Split, Faculty of science
Lower level organizational units
Department of Informatics
Place
Split
State
Croatia
Scientific field, discipline, subdiscipline
TECHNICAL SCIENCES
Computing
Study programme type
university
Study level
undergraduate
Study programme
Mathematics and Computer Science
Academic title abbreviation
univ. bacc. math. et inf.
Genre
undergraduate thesis
Language
Croatian
Defense date
2016-09-14
Parallel abstract (English)
The pancake sorting problem can be solved in 2n − 3 flips where n ≥ 2 is the number of pancakes given. Analysis leads to the following outline of an algorithm. Repeat the following step until the problem is solved: bring the largest pancake not yet in its final position to the top with one flip, and then take it down to its final position with one more flip. It is shown that every permutation of n pancakes can be sorted in a maximum of 2n-3 flips. Search algorithms are implemented in Python. Results are analyzed and supported by the examples.
Parallel keywords (Croatian)
sortiranje palačinki
graf
permutacije
palačinka broj
Resource type
text
Access condition
Access restricted to students and staff of home institution
Terms of use
URN:NBN
https://urn.nsk.hr/urn:nbn:hr:166:446410
Committer
Anđela Gudelj