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Sveučilišni diplomski studij Fizika; smjer: Astrofizika i fizika elementarnih čestica
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klasterima visokih performansi. Pokazujemo kako ideja algoritma radi na primjeru s 2 qubita
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Rad prihvaćen: 25. 10. 2023.

Rad je pohranjen u Knjižnici Prirodoslovno – matematičkog fakulteta, Sveučilišta u Splitu.
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University graduate study programme Physics, specialization in Astrophysics and Elementary Particle

Physics

Abstract:
With the second quantum revolution currently ongoing, the ability to precisely predict the behavior of

many-body quantum systems via computer simulations remains of utmost importance. Tensor networks

provide a unique way to simulate these systems classically. This thesis shows how a serial tree tensor

network algorithm can be adapted to operate across multiple computer threads, making it possible to

manipulate these networks faster on high-performance computing clusters. We show how the idea of the

algorithm works on a 2-qubit example by finding the ground state energy in a 1D quantum Ising model

lattice. Future improvements should make it possible to manipulate large tree tensor networks based on

the algorithms of this thesis and accurately solve many-body quantum physics problems, both in statics

and dynamics.

Keywords: tensors, TN, TTN, HPC, Ising, algorithm, parallel

Thesis consists of: 43 pages, 24 figures, 0 tables, 41 references. Original language: English.

Supervisor: Prof. Dr. Leandra Vranješ Markić
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Asoc. Prof. Dr. Petar Stipanović,
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1 Introduction

With the second quantum revolution unravelling [1], we are seeing the primary focus of
quantum physics research being shifted from understanding the basic principles of quantum
mechanics to solving complex problems using modern quantum-based technology, and
controlling quantum systems to develop new technologies which will further improve both our
understanding of the world and open the door for many new advancements in industry [2].
When the first quantum revolution started at the beginning of the 20th century, our
understanding of the basic concepts of fundamental physics changed drastically. We suddenly
went from looking at physics through the lens of classical mechanics on all scales to an
entirely new set of rules on the microscopic scale governed by the laws of the emerging theory
of quantum mechanics. This shift changed our understanding of the universe from the strictly
deterministic nature of classical mechanics, where we could determine the entire past and the
future of a system of particles just by knowing the current state of the system, to the
probabilistic nature of quantum mechanics, where there are sets of possible past and future
states of a system with assigned probabilities.

Although the fundamental equations of quantum mechanics may have a simple form, many
problems arise when we look at systems of particles. When trying to find the possible energy
levels of a system by looking at the stationary solutions of time-independent Schrödinger
equation, we soon realize that for the vast majority of Hamiltonians, there are no analytical
solutions. These problems are extensively studied in quantum many-body (QMB) physics, and
sometimes analytical workarounds can be found by simplifying the problem. However, that is
often impossible, and we must resort to numerical methods.

When solving problems in QMB physics numerically, the main obstacle is the exponential
growth of the total Hilbert space dimension with the number of elementary constituents of the
system , such as quantum particles or lattice sites [3]. This makes finding the solutions for
larger system sizes impossible on a classical computer. For example, in a system of N spin-1/2
particles the dimension of the Hilbert space grows as 2N [4], thus the memory requirements
to store a single quantum state, with double precision complex coefficients, would exceed 10
terabytes of memory at just N≈40, which means that exact diagonalization techniques [5] are
restricted only to much smaller system sizes.

While many numerical QMB methods exist [6–8], a convenient way to make many-body
quantum problems solvable in a reasonable amount is based on the renormalization group
(RG) paradigm, which is the idea of truncating the exponential increasing Hilbert space based
on energy considerations [4]. The assumption is that a system’s low-energy physics is
primarily influenced by the low-energy sections of its individual components [9].
Conventional RG techniques iteratively expand the system size, discarding the high-energy
sections during each step. This concept has seen further refinement in condensed matter

1
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systems through the introduction of the density matrix renormalization group (DMRG) [10]. A
computationally manageable variational ansatz capable of capable of capturing the many-body
properties of a system, while being as unbiased as possible, are tensor network (TN) states [3,
11]. The computational complexity of TN states is directly controlled by their entanglement,
and they are particularly useful in low-entanglement systems [3]. Fortunately, there are many
systems with short-range interacting Hamiltonians where the ground state entanglement is low,
as they obey the area laws of entanglement, where the entanglement entropy scales with the
boundary of a region rather than its volume [12].

The importance of tensor networks in the second quantum revolution lies in classically
simulating low-entanglement systems which are used to build quantum hardware, e.g, based
on superconducting qubits [13], trapped ions [14] or neutral atoms [15]. This thesis expands
on the already existing library Quantum TEA [16], which uses tensor networks to simulate
quantum systems and solve machine learning tasks. The type of tensor networks used in this
thesis are tree tensor networks (TTNs) [17]. TTNs can be used in various QMB problems,
which includes both dynamics and statics, so developing better algorithms is extremely
important. My thesis explains the process of expanding the existing functions and methods
from the Quantum TEA library to work in parallel on multiple processor threads. These new
algorithms will allow for significantly faster run times when working on high-performance
computing (HPC) clusters where many threads can be utilized. Modifications of serial DMRG
algorithms to parallel have already been previously described and proven to work [18], so we
expect that the new algorithm described in this thesis will greatly improve the Quantum TEA
library, once it can be deployed on more than 2 qubits.

In this thesis, we first cover the quantum mechanics background needed to understand how
low-entanglement TN approximations work, we then introduce the basics of tensor networks,
followed by describing the original serial algorithm and its modification to the parallel
algorithm, which is then shown to work on a 2-qubit example of the 1D quantum Ising
model [19], motivating us to continue developing the algorithm.
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2 Quantum States and Entanglement

The state of a quantum system is most often described by its state vector, usually represented
as |ψ⟩. However, representing quantum states as state vectors is only possible if we are dealing
with pure states, and there is another different category of states, called mixed states, which do
not share this property [20]. In this chapter’s first part, we define pure and mixed states and
explain their differences. To do that, we will first introduce the concept of density matrices,
with which we can describe both pure and mixed states [21].

In the second subchapter, we introduce multipartite systems [22], i.e., systems composed of
multiple subsystems, where we explain how their states are constructed in general and how we
can view individual subsystems using the so-called reduced density matrix [22].

Arguably the most important subchapter is the one about entanglement [23], where we
introduce the basics of entanglement and show some interesting properties in the case of a
2-qubit system. We also show how entropy can be quantified through the Von Neumann
entanglement entropy [24] and introduce the area law of entanglement entropy [12].

What follows next is a subchapter about the Schmidt decomposition [25], which is
particularly useful in the context of making accurate numerical approximations. It is closely
linked to the singular value decomposition (SVD) [3], which is discussed in chapter 3.5.

The last part of the chapter explains the basics of the 1D quantum Ising model [19]. This
simple model captures the quantum effects in condensed matter lattices where neighboring spin
interactions occur. We also introduce its Hamiltonian, on which the ground state search of our
algorithm is tested in the last chapter.

2.1 Pure and Mixed States

One way to split quantum states into two distinct categories is to split them into pure and mixed
states [26]. To do that, we will first need to introduce the concept of a density matrix [4], the
importance of which will become apparent by the end of this subchapter.

2.1.1 Density Matrix Formalism

A different way of describing quantum states is through the use of density matrices. In a finite-
dimensional Hilbert space of dimension d, we can write any state vector |ψ⟩ in the form:

|ψ⟩ =
d∑

i=1

αi |Φi⟩ , (2.1)

3
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where |Φi⟩ are the basis vector of our Hilbert space, and αi are their corresponding complex
coefficients. To simplify matters, from now on, we assume that all states are normalized.

The density matrix operator of the state |ψ⟩ is defined as the outer product of |ψ⟩ and its
corresponding dual space vector ⟨ψ|, which is the definition of the projection operator to the
state |ψ⟩:

ρ̂ = |ψ⟩ ⟨ψ| . (2.2)

If we write each |Φi⟩ as a column vector where only the i-th element is equal to 1, and the rest
are 0, the density matrix operator can now be expressed as a dxd matrix of the form:

ρ̂ =



|α1|2 α1α
∗
2 α1α

∗
3 . . . α1α

∗
d

α2α
∗
1 |α2|2 α2α

∗
3 . . . α2α

∗
d

α3α
∗
1 α3α

∗
2 |α3|2 . . . α3α

∗
d

...
...

... . . . ...
αdα

∗
1 αdα

∗
2 αdα

∗
3 . . . |αd|2


. (2.3)

Examining the terms of the density matrix, we see an interesting pattern. The amplitudes
squared of the coefficients αi, which correspond to the probabilities of measuring |ψ⟩ to be in
the state |Φi⟩, are on the main diagonal of our density matrix. This may seem unimportant now,
but it will turn out to be one of the main motivations for using the density matrix formalism.

2.1.2 Pure States

Pure states are the first thing everyone thinks of when thinking of quantum states. They are
simply states which can be described by state vectors. In finite-dimensional Hilbert spaces, we
can always describe them in the form shown in Eq. (2.1). It is also immediately apparent that
if we take multiple vector states from the same Hilbert space that their linear combination will
also be a valid state vector from the same Hilbert space. Pure states usually appear in systems
without hidden information, such as interactions with the environment.

We can now express fundamental quantum mechanical quantities, such as the norm of a state
and the expectation value of an operator, using the density matrix representation:

|⟨ψ|ψ⟩|2 = ⟨ψ| |ψ⟩ ⟨ψ| |ψ⟩ = Tr(ρ̂) = 1, (2.4)

⟨Ô⟩ = ⟨ψ|Ô|ψ⟩ = ⟨ψ|ψ⟩ ⟨ψ| Ô |ψ⟩ = ⟨ψ| ρ̂Ô |ψ⟩ = Tr(ρ̂Ô), (2.5)

where Tr is the trace operator, and Ô is any quantum operator.

4
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2.1.3 Mixed States

Mixed states, often referred to as statistical or classical mixtures, are states that can not be
described by state vectors. They usually occur due to our incomplete knowledge of the quantum
system [26]. To realize how that is possible, we must remember that the quantum state vector
is not a measurable quantity. In some situations, we can only know the probability pi of finding
the system in the state |Φi⟩, where |Φi⟩ would be a state from the Hilbert space of the entire
system. This level of knowledge is not enough to define the original state vector of the system,
such as the one shown in Eq. (2.1). To do that, we would need to know the exact values of
the complex coefficients αi, which are unique (up to a global phase factor). The probabilities
pi correspond to |αi|2, so we would know the value of each αi only up to its own phase factor,
and quantum state vectors are not invariant under relative phase changes. For a quick check you
can see that inner product of the original normalized state vector and the one where a relative
phase factor is introduced is not equal to 1. The systems we describe as mixed states can be in
some pure state. However, due to our inability to determine which state that is or our inability to
account for all degrees of freedom (e.g., because of environmental entanglement), we describe
them as classical mixtures of pure states with assigned probabilities.

This is where the density matrix formalism finally shows its advantages. We can generalize
the density matrix operator as the sum of the projection operator to each pure state in the
mixture, |ψi⟩ ⟨ψi|, weighted by their probability, pi, to get:

ρ̂ =
N∑
i=1

pi |ψi⟩ ⟨ψi| , (2.6)

where N is the number of states in the mixture. Since the sum
∑N

j=1 pj is, by definition, equal
to 1, we can get back to the pure state case of |ψi⟩, from Eq. (2.3), by setting the condition
pi = δij for every pi. If we now write the mixed state density operator in its matrix form, we
get:

ρ̂ =



p1 0 0 . . . 0

0 p2 0 . . . 0

0 0 p3 . . . 0
...

...
... . . . ...

0 0 0 . . . pN


. (2.7)

We can immediately notice that the probabilities of the states are on the main diagonal, but
now, all the off-diagonal elements are equal to 0. This leads us to conclude that Tr(ρ̂)=1 just
as in Eq. (2.4). Similarly, the operator expectation value in this case can be written as ⟨Ô⟩ =∑N

i=1 pi⟨ψi|Ô|ψi⟩, which by using the density matrix operator definition from Eq. (2.6) would
again lead us to ⟨Ô⟩ = Tr(ρ̂Ô), just like in Eq. (2.5). We have to be careful with the shape

5
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of the mixed state density matrix. If we change the basis of our system, the matrix will stop
being diagonal. However, the trace operator is independent to this change of basis, even though
the individual components of the sum will be different. In conclusion, in the basis where the
probabilities are on the diagonal, the state is mixed is all non-diagonal elements are equal to
zero.

2.1.4 Purity

A simple way of measuring how close a system is to a pure state is by introducing the purity
concept of purity [26]:

γ ≡ Tr(ρ̂2). (2.8)

If we look at Eq. (2.2), we immediately see that, since ρ̂ is a projection, we get:

γ = Tr(ρ̂2) = Tr(ρ̂) = 1. (2.9)

The closer the system’s purity is to 1, the more pure it is, i.e., we have more information about
the said system [26]. Suppose we wish to find the other extreme, the so-called maximally
mixed state [27]. In that case, we can minimize the purity γ =

∑N
i=1 p

2
i subject to the constraint∑N

i=1 pi = 1, using the method of Lagrange multipliers [28], to get the condition result:

pi =
1

N
,∀i ∈ {1, 2, 3, . . . , N}. (2.10)

To summarize, for the purity of a mixture of N states, the following condition holds:

1

N
≤ γ ≤ 1. (2.11)

2.2 Multipartite Systems

In quantum mechanics, a composite or multipartite system is a system that consists of several
smaller subsystems [22]. These smaller subsystems can be systems of particles, lattice sites,
individual particles, individual degrees of freedom (like spin and angular momentum, for
example), and many other things.

Each subsystem can be associated with its own Hilbert space. Let us consider N subsystems.
Let Hn be the Hilbert space for the n-th subsystem, where n ∈ {1, 2, 3, . . . , N}. The entire
Hilbert space is the tensor product of all the individual Hilbert spaces:

6
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H = H1 ⊗H2 ⊗ ...⊗HN . (2.12)

The total dimension d of the total Hilbert space is the product of the dimensions of all the
subsystem Hilbert spaces, i.e., d = d1 · d2 · ... · dN , and the total wavefunction can be written as:

|Ψ⟩ =
∑

α1,α2,...αN

Cα1,α2,...αN
|α1α2...αN⟩, (2.13)

where Cα1,α2,...αN
are complex coefficients, each index αn takes values of 1, 2, ..., dn, the state

vector |α1α2...αN⟩ is shorthand notation for |α1⟩ ⊗ |α2⟩ ⊗ ... ⊗ |αN⟩, and each set |αn⟩ spans
the entire local Hilbert space Hn.

In many cases, the system will be composed of identical subsystems with the same dimension,
in which case the total dimension of the Hilbert space is dN , where we have assumed that d is
the dimension of each local Hamiltonian. We can immediately see that numerically solving
systems like these becomes increasingly more difficult as we add more particles due to the
exponential growth of the total Hilbert space.

2.2.1 Reduced Density Matrix

The definition of the density matrix of a multipartite quantum system is the same as in the
previous subchapter. However, we often want to look at the properties of only one of the
subsystems independently of the rest of the system. For this purpose, we introduce the concept
of the reduced density matrix [22]. To get the reduced density matrix for the n-th subsystem in
a system of N particles, we take the partial trace over all other degrees of freedom, as shown
below:

ρ̂n = Trm ̸=n(ρ̂)

= ⟨α1α2...αn−1αn+1...αN | ρ̂ |α1α2...αn−1αn+1...αN⟩ .
(2.14)

The reduced density matrix encapsulates all the information we can obtain about a subsystem
through measurements, even if we cannot access the other subsystems. What we are actually
doing when performing a partial trace is averaging out all the other degrees of freedom [22].

Moreover, the form of the reduced density matrix can give insights into the nature of
correlations between the subsystems, which is covered in the next chapter.

7
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2.3 Entanglement

Entanglement is one of the most profound and distinct concepts in quantum mechanics
because of how counterintuitive it was at the time. In its simplest form, entanglement refers to
quantum states of multiple subsystems where the state of one subsystem cannot be described
independently of the state of the other subsystems. This inherent connection of quantum states
poses both theoretical challenges, but it also offers practical advantages, particularly in the
field of quantum information.

In this subchapter, we first introduce entanglement through separable states and show how
the density matrix formalism can be used to determine whether a bipartite system is entangled.
We then briefly cover the concept of entanglement entropy and the area law of entanglement,
which is crucial for studying low entanglement systems using tensor networks.

2.3.1 Separable States

To introduce the concept of separable states [29], we first start with product states [29]. A
product state |ψ⟩ is a multipartite state which can be written as a tensor product of each of the
N subsystem states |ψi⟩:

|ψ⟩ = |ψ1⟩ ⊗ |ψ2⟩ ⊗ ...⊗ |ψN⟩ . (2.15)

Since this is a pure state, we already know how to construct the corresponding density matrix
ρ̂ from Eq. (2.2), which, when written out in terms of subsystem density matrices ρ̂i, takes the
following form:

ρ̂ = ρ̂1 ⊗ ρ̂2 ⊗ ...⊗ ρ̂N . (2.16)

We are interested in product states because when we make measurements on one of the
subsystems, we do not influence the state of any of the other subsystems, meaning that the
entire system is fully non-entangled. Using product states, we can define a more general form
of non-entangled states called separable states. Separable states are probabilistic mixtures (or,
more accurately, convex combinations) of product states, in the same way mixed states are a
convex combination of pure states. We can write a general separable state density matrix ρ̂ as :

ρ̂ =
M∑
i=1

pi · ρ̂i, (2.17)

where M is the number of product states in the mixture, each ρ̂i ≡ |ψi⟩ ⟨ψi| is the density matrix
of its corresponding product state and |ψi⟩ are now pure states. Additionally, the set of pi must
satisfy the condition

∑M
i=1 pi = 1.
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We must remember that there is no one-to-one correspondence between pure/mixed states
and separable/non-separable states. It is only true that separable states are pure if and only if
they are product states, and in general, finding out if a state is separable for many-body systems
is a computationally challenging problem.

2.3.2 Entanglement in Bipartite Systems

The connection between pure and mixed states with separable and non-separable states can
easily be seen in the case of a bipartite system.

Let us now first examine the case where the system is fully separable. We first define two
2-state normalized state vectors of subsystems A and B as follows:

|ψ⟩A = α |0⟩A + β |1⟩A
|ψ⟩B = γ |0⟩B + δ |1⟩B .

(2.18)

When taking the tensor product, we get the product state:

|ψ⟩ = |ψ⟩A ⊗ |ψ⟩B
= αγ |00⟩+ αδ |01⟩+ βγ |10⟩+ βδ |11⟩ .

(2.19)

Let us now consider the reduced density matrix of subsystem A:

ρ̂A = Tr(|ψ⟩ ⟨ψ|)B
= ⟨0|B |ψ⟩ ⟨ψ| |0⟩B + ⟨1|B |ψ⟩ ⟨ψ| |1⟩B
= (αγ |0⟩+ βγ |1⟩)(α∗γ∗ ⟨0|+ β∗γ∗ ⟨1|)

+ (αδ |0⟩+ βδ |1⟩)(α∗δ∗ ⟨0|+ β∗δ∗ ⟨1|)

=
(
|αγ|2 + |αδ|2

)
|0⟩ ⟨0|+ (αγβ∗γ∗ + αδβ∗δ∗) |0⟩ ⟨1|

+ (α∗γ∗βγ + α∗δ∗βδ) |1⟩ ⟨0|+
(
|βγ|2 + |βδ|2

)
|1⟩ ⟨1|

. (2.20)

We can now notice that ρ̂A has the same form as a density matrix for pure states from Eq. (2.3),
which is not a coincidence.

Let us now look at a completely different example, where the measurement of subsystem
A completely determines the subsequent state of subsystem B. We can write the general state
vector of one of these possible systems as:

|ψ⟩ = α |00⟩+ β |11⟩ . (2.21)

In this scenario, if we measure the first qubit (2-state system) to be in the state |0⟩ or |1⟩, we
would find the second qubit in the same state, and vice versa.
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If we calculate the reduced density matrix of subsystem A in the same way as in the previous
example, we get:

ρ̂A = |α|2 |0⟩ ⟨0|+ |β|2 |1⟩ ⟨1| , (2.22)

which has the shape of a mixed state density matrix, as in Eq. (2.7). If |α|2 = |β|2=1/2 in (2.21),
we would get a so-called maximally entangled state, and if we then compare Eq. (2.22) to Eq.
(2.7) we would see that the reduced density matrix ρ̂A would correspond to a maximally mixed
state density matrix.

These results were expected. If we start with a non-entangled pure quantum system, we
should expect that if we average out the effects of one subsystem to another, we should get a pure
quantum state. On the other hand, if we start with an entangled system where the measurement
of one subsystem uniquely determines the state of the other, averaging over one subsystem
will just give us the probability of finding the second system in each state (if the basis is such
to give us a diagonal reduced density matrix). This was only useful as an example because
things become very complicated in large systems, which is not a convenient way to measure
entanglement.

In general, the off-diagonal elements of a density matrix in a multipartite system are called
quantum coherences, and they tell us how the state of a subsystem is connected to the rest of
the system. They play an essential role in studying multipartite systems, but the details are not
important for understanding this thesis.

2.3.3 Entropy of Entanglement

One way to measure the entanglement between two subsystems is through the introduction of
Von Neumann entropy [24], which is defined as S(ρ) = −Tr(ρ log2 ρ). For two uncorrelated
subsystems:

S(ρA) = −Tr(ρA log2 ρA) = −Tr(ρB log2 ρB) = S(ρB), (2.23)

where the two subsystems have been labeled as A and B. The value of S is 1 for maximally
entangled systems and 0 for non-entangled systems. We can use the Von Neumann
entanglement on larger systems by grouping all of the subsystems into two subsystems and
measuring the entanglement between them. Doing this to different bipartitions of a system can
give us some insights about the entanglement in the entire system.

Another essential concept is the so-called area law of entanglement [12], which states that
entanglement entropy scales with the size of the first region, A. In many quantum systems,
particularly in lower dimensions or at low temperatures, the entanglement entropy does not
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scale with the volume of the region A (as one might at first expect) but rather with the area of
the boundary between the two subsystems, A and B, due to the interactions with the closest
neighbors being dominant. Hence, the name "area law."

More formally, for a d-dimensional system:

S(ρA) ∝ Ld−1, (2.24)

where L is the linear size of the region A.

2.4 Schmidt Decomposition

The Schmidt decomposition of a system divided into two subsystems, A and B, is defined as:

|ψ⟩ =
∑
k

λk|uk⟩A ⊗ |vk⟩B, (2.25)

where |uk⟩A are orthonormal states in subsystem A, |vk⟩B are orthonormal states in subsystem
B, and λk are Schmidt coefficients, which are non-negative and usually normalized in a way
that

∑
k λ

2
k = 1. The number of positive Schmidt coefficients is called the Schmidt rank, and

the maximum number of the coefficients is equal to min(dA, dB) where dA and dB are the
dimensions of subsystems A and B.

2.4.1 Low-Entanglement Approximations

The Schmidt decomposition is closely related to the singular value decomposition (SVD) [3],
which is explained in Ch. 3.5. The reason why it is so useful lies in the fact that it quantifies how
important each term in the Schmidt decomposition is by the value of their Schmidt coefficient.
In tensor network algorithms, we discard the values with the small Schmidt coefficients, vastly
simplifying the calculations by reducing the dimension of the total Hilbert space while keeping
the results accurate. If we have a low-entangled system, many of the coefficients will be very
small, making TN methods extremely powerful in those scenarios.

The extreme case of these low-entanglement approximations is the mean-field (MF)
approximation [4], where we successively divide the systems into smaller subsystems while
keeping only the term with the highest Schmidt decomposition. In MF approximations, the
total wavefunction of a multipartite system composed of N subsystems takes the form of a
product state:

|Ψ⟩MF = |ψ⟩1 ⊗ |ψ⟩2 ⊗ ...⊗ |ψ⟩N , (2.26)
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where |ψ⟩i ∈ Hi. The memory requirements to store the state, which depend on the number of
indices needed to describe the total wavefunction, are now defined as d = d1 + d2 + ... + dN .
Assuming that all di are equal, we immediately see that the total memory requierements now
grow linearly instead of exponentially. This makes the MF approximation a very powerful tool
in numerically solving QMB problems with large numbers of particles on classical computers.
Unfortunately, such an approximation is not justified in many cases, as the quantum correlations
between the subsystems can not always be ignored.

2.5 1D Quantum Ising Model

Because the algorithm this thesis describes is used for performing a ground state search, we
should first introduce the concept of local Hamiltonians [30] in general. A local Hamiltonian
is an operator that describes the energy of a quantum system, where the interactions between
the system’s constituents are "local", i.e., particles (or other degrees of freedom, such as lattice
sites) interact primarily with their immediate neighbors. In the context of many-body systems,
a common example is a spin lattice where each spin interacts with its neighbors via some
potential.

Mathematically, for a system of N particles, a local Hamiltonian H can be written as a sum
of terms Hi that each act non-trivially only on a small number of particles:

H =
N∑
i=1

Hi (2.27)

EachHi might only act on particle i and its neighbors but is the identity operator on other distant
particles.

One of the most popular examples is the 1D quantum Ising model [19], which describes a
chain of spins in one dimension, where each spin can either point up or down. The spins are
viewed as projections along the z-axis, and an external transverse magnetic field is applied in the
x-axis, which creates a bias for one x-axis spin direction compared to the other. This system’s
Hamiltonian incorporates spin-spin interactions and an external magnetic field. It is defined as:

H = −J
∑
i

σz
i σ

z
i+1 − g

∑
i

σx
i , (2.28)

where J is the coupling strength between adjacent spins, σz
i and σx

i are Pauli matrices, g is the
coupling coefficient between the spins and the external magnetic field, and the summation is
done over all lattice sites.

The 1D Quantum Ising model is very useful for studying magnetic phase transitions. As one
varies the parameter g/J , the quantum Ising model undergoes a phase transition. When g/J<1,
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the system is in a ferromagnetic phase where spins prefer to align. On the other hand, when
g/J>1, the system is in a paramagnetic phase dominated by the transverse field. At the critical
point, g/J=1, the system is highly correlated over long distances. In the ferromagnetic and
paramagnetic phases, the entanglement entropy is constant, regardless of how we partition the
system, which is in line with Eq. (2.24). However, at the critical point, the area law does not
hold.
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3 Tensor networks

In this chapter, we explain everything about tensor networks (TNs) needed for understanding
the algorithm of this thesis. We start with defining tensors and basic tensor diagram notation.
Moving from there, we define the basic tensor index operations and explain computational
complexity in the context of tensor networks, particularly in the case of tensor contractions. We
also describe the tensor decomposition used throughout the algorithm, called the singular value
decomposition (SVD). We also go through how SVDs can be applied to tensors of arbitrary
dimensions and how it allows us to simplify our QMB physics algorithms by neglecting low-
entanglement terms.

Later, we introduce common types of tensor networks, namely the matrix product state (MPS)
and its corresponding operator TN, the matrix product operator (MPO). We end the chapter with
defining tree tensor networks (TTNs), the tensor network the algorithm of this thesis is based
on.

3.1 Tensors and tensor networks

Tensors are mathematical objects with an arbitrary number of indices used to store information
in a convenient way. A tensor with N indices is called an N-rank tensor, which, in general, has
the form:

Tα1,α2,...,αN
, (3.1)

where αn ∈ {1, 2, ..., dn}. The total tensor can be interpreted as an object that stores d =

d1 · d2 · ... · dN scalars in an ordered way.

A tensor network is a network composed of many different tensors connected through index
contractions [4]. Some of the most common examples of tensor contractions are matrix-vector
multiplication and matrix-matrix multiplication:

A · v⃗ =
∑
j

Aijvj,

(AB)ij =
∑
k

AikBkj.
(3.2)

A general QMB wavefunction has the form as shown in Eq. (2.13). TNs can express the state
amplitude Cα1,α2,...αN

as a contraction over smaller tensors. The contracted indices are usually
called auxiliary or virtual indices, while the other indices are called physical indices.
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3.2 Basics of Tensor Network Notation

One of the main advantages of tensor networks is our ability to draw tensor network diagrams
and manipulate the tensors using diagram notation. Tensors are depicted as nodes, i.e., some
shape, which is usually a circle for a simple tensor and a square if it is an operator. It is common
to use different colors or labels to distinguish between different tensors when it is not obvious.
The lines coming out of the tensors are called links, and the number of lines represents the
number of tensor indices. Some basic TN diagrams are shown in Fig. 1, namely a vector, a
matrix, a 3-rank tensor, and an N-rank tensor.

(a) (b) (c) (d)

...

i1 i2 iN-1 iN

Figure 1: Basic TN diagrams. (a) TN diagram of a vector (rank-1 tensor). (a) TN diagram of a matrix
(rank-2 tensor). (a) TN diagram of a rank-3 tensor. (a) TN diagram of a rank-N tensor.

When two tensors are connected via links, that corresponds to the contraction over the index
the link represents. Examples of matrix-vector multiplication, matrix-matrix multiplication, and
an example of the trace operator are shown in Fig. 2.

(a) (b) (c)

Figure 2: TN diagrams for: (a) matrix-vector multiplication
∑

j Aijvj ; (b) matrix-matrix multiplication∑
k AikBkj; (c) trace operator

∑
ij δijAij =

∑
iAii

We can even show outer products by drawing two tensors next to each other, without
connecting them, as shown in Fig. 3a, and dual space vectors as a ball with the link in the
opposite direction like in Fig. 3b.

We can now clearly see how TN diagrams are a fantastic way of visualizing tensors and index
contractions. Many operations can be visualized with TN diagrams. In the following chapters,
we will see various link manipulations, tensor splitting and decompositions, but even operations
like partial derivatives and many others can be represented via TN diagrams [3, 4].
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(a) (b)

1 2 3

Figure 3: TN diagrams for: (a) outer product of 3 state vectors ; (b) a ket vector with its corresponding
dual/bra vector

3.3 Tensor Network Links

The role of links is crucial in tensor networks, as they define how the tensors within are
connected. Manipulating these links is crucial in understanding how to work with tensor
networks, so we cover some basic link operations in this chapter.

The most basic link operation is link permutation, corresponding to reordering the tensor
indices. One possible permutation of the tensor Tabcd would be the tensor Tcbda. The simplest
form of link permutation is in the case of a rank-2 tensor, where performing a link permutation
is called transposing a matrix: MT

ab =Mba.

Next, we have link fusion. For an arbitrary tensor Tα1,α2,...,αN
, we can construct another

tensor, T ′, by fusing the links in the following manner:

T ′
α1,α2,...,αi,β,αj ,...,αN

= Tα1,α2,...,αi,(αi+1,...,αj−1),αj ,...,αN
, (3.3)

where we have contracted the indices (αi+1, ..., αj−1) into β. The index β now takes values
in the Cartesian product of all fused links, i.e., it must cover all the combinations of all the
different values each contracted indices may take. Since each index αn can have dn different
values, β can have di+1 · di+2 · ... · dj−2 · dj−1, which preserves the overall dimension of the
tensor in terms of the number of scalars it can store. A simple example of link fusion would be
converting a matrix (a tensor with two links) into a vector (a tensor with one link), where the
total number of elements remains the same:

(
a1 a2

a3 a4

)
→


a1

a2

a3

a4

 . (3.4)

The inverse operation of link fusion is link splitting. When splitting links, we split the desired
index αn into multiple other indices, which we can label as β1, β2, ..., βm. The same rules apply
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again, the dimension of αn, i.e., the number of values αn can take, has to equal the product of
the dimensions of all βi. Since the link dimension is a natural number, this limits our options
with link splitting because we cannot write any natural number as a product of as many other
natural numbers we want. In practice, we often do link fusing and splitting together when we
want to do some operation in between, in which case we can just split the links in a way to get
the tensor of the original shape. We can also sometimes add zeroes if necessary. For example,
if we want to reshape a 3x1 column vector into a matrix, we could do it like this:

a1

a2

a3

0

→

(
a1 a2

a3 0

)
. (3.5)

However, this is not recommended practice and should be avoided if possible, as increasing the
number of elements we work with usually increases the computational cost of running our code.

The last link operation we cover is link compression. Link compression is reducing the
dimension of a tensor link by discarding a subset of the values the corresponding index can
take. By reducing the dimension of a link, we also reduce the total dimension of the entire
tensor, making it possible to speed up calculations. Link compression is the generalization of
reducing the dimension of matrices when they are in a block matrix form, as can be seen below:a11 a12 0

a21 a22 0

0 0 0

→

(
a11 a12

a21 a22

)
, (3.6)

where both the first and the second link have been reduced from dimension 3 to dimension 2.

3.4 Computational Complexity in Tensor Network Algorithms

Computational complexity refers to the amount of resources (usually time or memory) required
to execute an algorithm as a function of the size of its input. In simple terms, it shows how an
algorithm’s runtime (or space requirements) grows when the input data grows.

There are different ways to represent computational complexity, the most common being the
big O notation. It describes the upper limit of time or space required as the input size grows.
For example:

• O(1): Constant complexity. No matter how large the input, the algorithm takes a constant
amount of time (or space).

• O(m): Linear complexity. The time (or space) taken grows linearly with the input size.
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• O(m2): Quadratic complexity. The time (or space) taken grows quadratically with the
input size.

• O(2m): Exponential complexity. The time (or space) taken grows exponentially with the
input size.

Additionally, if we do a fixed number of operations of varying complexity in a row, the total
complexity is equal to that of the operation with the highest complexity (i.e. that of the function
which grows the fastest as m → ∞, for smaller m-s, lower order terms might still dominate).
On the other hand, if we do mN operations of complexity O(mM), then the overall complexity
is O(mNmM).

Since computers often deal with large inputs (in the number of bits), classical computers
have difficulty solving problems with exponential complexity, often making it impossible to
solve such problems. These types of problems are actually the main reason why we want to
develop quantum computers. In chapter 2.2, we saw that the size of a multi-particle Hilbert
space grows exponentially with the number of particles. Quantum computers use entangled
particles to store and process information, making the amount of data they can store rise
exponentially with the number of particles (without taking many other effects, such as
noise [31], into consideration). However, we are using TNs to make classical simulations of
quantum systems in this thesis, so we need to make approximations of the system where the
complexity does not grow exponentially with the number of particles.

To understand how we can reduce the complexity of TN algorithms, we first need to introduce
the concept of bond dimension. Bond dimension (denoted m) is one of the key parameters that
dictate the computational cost of TN states. When two tensors are connected via a link, the
range of the shared index represented by the links (previously also referred to as the link or
index dimension), is called the bond dimension. When describing QMB systems with TNs, the
bond dimension determines the amount of entanglement between the subsystems we consider.
The relationship between bond dimension and entanglement will become more apparent in the
following two chapters.

As an example, we will now show the computational complexity of some basic tensor
contractions, as tensor contractions are often the most complex tasks when running a TN
algorithm. To simplify matters, we assume all links are of dimension m. When calculating a
scalar product, we have m multiplications and m-1 additions since u⃗ · v⃗ =

∑m
i=1 uivi, which

corresponds to complexity O(m) [4]. When performing a matrix-vector multiplication,
(A · v⃗)i =

∑m
j=1Aijvj , we get the i-th element of the new vector by performing a scalar

product of the i-th row of the matrix with the original vector. Thus, the number of scalar
product operations of complexity O(m) scales with the number of matrix rows, which is again
m, gives us the overall complexity of O(m2). We can now clearly see that the complexity
scales with the number of elements of the resulting tensor and the number of rank-1 tensor
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contractions. Thus, we can clearly see that the overall complexity of tensor contractions scales
with the product of the dimensions of all links, where we count the shared links only once.
Some simple tensor contractions and their complexities are shown in Fig. 4. In practice, some

Figure 4: Computational complexities of various tensor contractions, with all links being of dimension
m. The total complexity scales with the total number of links the contracted tensors have, with the shared
links only being counted only once.

algorithms can reduce the complexity of some contractions. For example: the contraction of
square matrices can be reduced from O(m3) to O(m2.376) if we use optimized methods [32].

When dealing with TN algorithms, we often contract entire groups of tensors into one. The
order of those contractions matters, as seen in the example in Fig. 5. There is no general rule in
what order we should perform the contractions. What we usually do instead is avoid the high-
complexity contractions as much as possible, as one high-complexity contraction has a much
higher impact on the overall runtime of our program than multiple low-complexity contractions.
We replace these high-complexity contractions with multiple lower-complexity ones wherever
we can, and we do that iteratively many times to reduce the overall complexity as much as
possible. There are also many other ways we could optimize a TN algorithm in addition to
optimizing just the tensor contractions [3], but that is beyond the scope of this thesis.

Additionally, we could parallelize some tasks to multiple processing threads. For example:
we could perform a scalar product by assigning each term in the sum to a different thread,
and add them all up on a single thread in the end. Alternatively, we could do a matrix-
vector multiplication by assigning a single scalar product to a single thread (each scalar product
representing an element of the resulting vector), and let each thread calculate one element before
recreating the final vector on a single thread in the end. In the case of an entire TN, we could
also contract some tensors on one thread and others on another. When extending this logic
to a large number of tensors and threads, with the order of contractions also being extremely
important, we can see that there are many possible TN algorithms we could create. Thus, finding
optimized TN algorithms is a challenging task, and creating just one such algorithm was enough
to motivate this entire thesis while still leaving room for improvement.

3.5 Singular Value Decomposition

The singular value decomposition (SVD) is a matrix factorization method that decomposes a
general mxn matrix M into three matrices, often labeled as U , S and V †, where M = USV †.
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Rocco Barač: Tensor network algorithm for solving quantum physics on HPC clusters

(a)

(b)

1

1

2

2

3

3

Figure 5: Example of how the total computational complexity of contracting a group of tensors is
determined by the order of contractions. All links are assumed to be of dimension m, the contracted
tensors are circled with red dashed lines, and the corresponding contraction complexities are shown
below the diagrams. In (a) the total complexity is O(m4), while in (b) the total complexity is O(m5).

U and V are semi-unitary matrices, meaning that they satisfy the conditions U †U = Im and
V †V = In. S is a diagonal matrix, and its diagonal elements form a set of non-negative, real-
valued scalars {λk}, called singular values.

In the context of tensor networks, we perform a singular value of an arbitrary tensor by
performing link operations in the following way [3]:

T(α1...αi)(αi+1...αN )
fuse
= Tab

SVD
= USV † =

∑
k

UakλkV
†
kb

split
=
∑
k

U(α1...αi)kλkV
†
k(αi+1...αN ). (3.7)

Even though performing an SVD has a computational cost, it makes up for it by allowing us
to perform an appropriate link compression, which is done by compressing the indices of the
S matrix. The singular values are set up in a descending order on the main diagonal. Some
of them might be zero, already leaving us with a block-diagonal matrix. We can go further by
rounding all singular values smaller than some ϵ to zero. This truncation creates an even smaller
block-diagonal matrix, which is then compressed by removing all rows and columns with only
zeroes left, just as in the Eq. (3.6). Since the links of S are shared with U and V , we do the
same link compression on all of these tensors, reducing the computational cost of subsequent
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Figure 6: Example of a 6-site MPS tensor network diagram. Auxiliary indices are labelled as αi, and
physical indices as si

contractions of any of these tensors.

In the context of QMB, the singular values capture the entanglement properties of the
system [3]. The physical justification for discarding the smallest singular values is that by
doing so, we are removing the low-entanglement terms from our tensor. We can now also see
why tensor networks are so good at describing low-entanglement systems. In
low-entanglement systems, a significant number of the singular values will be very small,
which allows us to decrease the computational cost of performing further operations and, in
turn, allows us to simulate larger systems.

3.6 Matrix Product States

The matrix product state (MPS) is one of the most successful tensor networks. It is often used
to study one-dimensional quantum systems, where it has shown remarkable success. The MPS
tensor for N particles is defined as:

Ts1s2...sN =
∑
{α}

Aα1
s1
Aα2

α1s2
Aα3

α2s3
...AαN−1

αN−2sN−1
AαN−1sN , (3.8)

where the physical indices are labeled with si, and the auxiliary indices with αi. An example
of an MPS TN diagram is shown in Fig. 6. The MPS is a generalization of the MF
approximation. In the MPS case, neighboring tensors are connected via links, enabling us to
capture entanglement between neighboring particles. The MF approximation is the limiting
case of the MPS approximation, with all bond dimensions going to one.

3.7 Matrix Product Operators

The straightforward generalization of the MPS ansatz for operators is the matrix product
operator (MPO) ansatz [33]. Because we already know how the MPS ket and bra states can be
represented by looking at figures 3b and 6, we can construct an appropriate MPO. When
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Figure 7: Example of a 6-site MPO tensor network diagram.

calculating the expectation value ⟨ψ| Ô |ψ⟩, we should get a scalar. This means that the MPO
ansatz should have the same shape as that of the MPS but with twice as many physical links.
The MPO tensor ansatz is thus:

T
s′1s

′
2...s

′
N

s1s2...sN =
∑
{α}

Aα1s′1
s1

Aα2s′2
α1s2

Aα3s′3
α2s3

...A
αN−1s

′
N−1

αN−2sN−1A
s′N
αN−1sN , (3.9)

and the corresponding TN diagram in the case of a 6-site MPO is shown in Fig. 7, where we
have used the convention of drawing operators as squares instead of circles.

3.8 Tree Tensor Networks

This subchapter introduces a type of tensor network called a binary tree tensor network, which
we call a tree tensor network (TTN) throughout this thesis. This type of network is built on top
of a one-dimensional lattice of physical links but has an advantage over the MPS when dealing
with periodic boundary conditions [3, 34]. TTNs are composed of tensors with three links. They
are arranged in a hierarchical structure where each tensor is connected to one tensor above (the
parent tensor) and two tensors below (children tensors). The top two tensors are connected to
each other with their parent link, and all the tensors in the bottom layer have free/physical links.
When working with TTN algorithms, it is typical to label the TTN tensors by their layer and
position in the layer. The first layer is usually the top layer, while the first tensor is the left-most
tensor. An example of a 3-layer TTN diagram is shown in Fig. 8.

TTNs can be constructed in many different ways. We can always start from a more
straightforward TN for our QMB system tensor, such as the MPS, and then through a series of
tensor contractions and decompositions, link splitting and fusing, we could get a TTN shape.
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Figure 8: Example of a 3-layer TTN diagram.

4 Algorithm

This section is the main part of the thesis, as the algorithm is described here. We start with
explaining the Lanczos algorithm, an iterative algorithm used to find the most extreme
eigenvalues and their corresponding eigenvectors in the case of Hermitian operators. This
algorithm is an extremely useful iterative method, and it has already shown great success in
other TN algorithms used in QMB, such as the density matrix renormalization group
(DMRG) [18].

We then continue describing the initial serial algorithm from the Quantum TEA [16] library.
Here we introduce and describe the concept of isometry centers and effective operators, and how
they are used in the context of this algorithm. The algorithm starts with a random TTN state,
after which a series of single-tensor updates are performed by applying the Lanczos algorithm.
These single-tensor updates aim to minimize the expectation value of the Hamiltonian, making
this a variational approach (as is typical of TN algorithms).

The parallel algorithm is introduced as a modification of the serial algorithm. For the
algorithm to work properly, it is necessary to somehow make every tensor in the TTN an
isometry center, and we describe exactly how to accomplish it in Ch. 4.3.1. The effective
operators also need to be introduced, and once that is done, we can perform single-tensor
updates on every tensor simultaneously in parallel by giving each tensor its own processing
thread. The usual size of TTNs makes this algorithm most suitable for high performance
computing (HPC) clusters. However, even HPC clusters have a limited number of threads, and
further improvements of the algorithm are possible. This can be done by grouping tensors

23
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together and applying two-tensor updates in addition to single-tensor updates.

In Ch. 4.4 we show how the principles of the algorithm work on a 2-qubit Ising model system.
The tensors are updated simultaneously and they give the expected results, both for the phase
diagram and the energy.

4.1 Lanczos Algorithm

The Lanczos algorithm is an iterative algorithm used to find the extreme eigenvalues and their
corresponding eigenvectors of an nxn Hermitian matrix. It is particularly useful in QMB
physics as we often aim to find the extreme eigenvalues and eigenvectors, and most quantum
mechanics operators are Hermitian. In the context of this thesis, we use it for finding the lowest
eigenvalue and the corresponding eigenvector of the Hamiltonian, giving us the ground-state
energy and the ground-state vector, respectively.

The Lanczos algorithm is the simplification of the more general Arnoldi iteration, which
works on non-Hermitian matrices as well. To explain the Arnoldi iteration, we first start with
explaining the basic power iteration. Given an arbitrary nxn matrix A, and a random vector
v, applying the matrix A to the vector v iteratively, and normalizing after every step, will
result in getting the eigenvector corresponding to the largest eigenvalue [35]. To get the lowest
eigenvector, we could simply multiply the matrix by -1. The Arnoldi iteration is a modification
which uses the modified Gram-Schmidt procedure, i.e., with every new iteration vector, the
components of the vector which are projections along the previous attempts are subtracted from
the vector. Let vk be vector we get from the k-th iteration, with v0 being the initial vector, and
A be the matrix whose maximum eigenvalue we wish to find. The procedure can be summed
up in the following pseudocode:

v0 = random vector

k = 1

Repeat until vk converges :
vk = Avk−1

for j from 1 to k − 1 :
hj,k−1 = v∗j vk

vk = vk − hj,k−1vj

hk,k−1 = ||vk||
vk = vk/hk,k−1

k = k + 1

If A is Hermitian like in the Lanczos algorithm, things get simplified a lot. We can conclude
that most hj,k−1 are 0 because hj,k−1 = v∗j vk = v∗jAvk−1 = v∗jA

∗vk−1 = (Avj)
∗vk−1. Since all

the vectors vk are orthogonal by construction, hj,k−1 is not equal to 0 only if j=k − 2, greatly
simplifying the algorithm.
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Figure 9: Moving the isometry center from A to B via SVD. A is decomposed into U, S and V. U becomes
the new A’, while the contraction of S, V and B becomes the new B’.

4.2 Serial Algorithm

To describe the parallel algorithm, we first need to describe the initial serial algorithm from
the Quantum TEA [16] library. The part of the library this code is from is called Quantum
TEA Leaves, and it consists of just Python code, a part of which has many functions used to
manipulate TTNs. In this section, we describe the basics of the serial algorithm by covering the
most important concepts needed to perform a ground-state search. The serial algorithm starts
from a random state TTN and converges it to the ground-state TTN.

4.2.1 Isometry Center

To start, we first need to introduce the concept of the isometry center [36]. The isometry center
of the tensor network is the tensor where most of the information about the state of the system
is stored, as it is the only non-unitary tensor in the entire network. Moving the isometry center
is done through a series of SVD (or QR [4]) decompositions, as shown in the example of
SVDs in Fig. 9. This process is repeated for every tensor by going along the shortest path
from said tensor towards the desired isometry center tensor. All the tensors along the path are
also turned into unitary tensors (actually semi-unitary, but the contractions are always in the
correct direction, so we just refer to them as unitary in this chapter). Once the tensor network
is set up in a state with one isometry center and the other tensors are unitary, the TN is said
to be isometrized. In the algorithm, the position of the tensor is labeled by its layer and the
position in said layer, with both of these starting from 0. The TTN in Fig. 10 is said to be
isometrized at position (1,2). The isometry center is often used in various TN algorithms (such
as DMRG [37]). An isometrized tensor network has unique properties that can be exploited
to reduce the program’s computational costs. As an example, we can see how easy it is to
normalize an isometrized TTN by taking the scalar product of the TTN with its corresponding
dual space TTN, as is demonstrated in Fig. 11. Here, all the unitary tensors become identities,
reducing the problem to just contracting the isometry center with itself.
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i

Figure 10: An example of a 2-layer TTN with the isometry center labeled with "i" at the position (1,2)
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i
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Figure 11: Taking the norm of an isometrized TTN reduced to just taking the norm of the isometry center,
here at the position (1,3).
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4.2.2 Effective Operators

Since TN algorithms are variational algorithms, we perform a ground state search by first
defining the expectation value of the Hamiltonian in terms of TNs. In this specific algorithm,
the Hamiltonian for the 1D quantum Ising model is written as an MPO, introduced in 3.6. The
expectation value of the Hamiltonian, which is to be minimized, is shown in an example in Fig.
12.

Throughout the algorithm, large parts of the TTN will be contracted. To avoid contracting
the same tensors multiple times, effective operators are introduced. This enables us to greatly
reduce the overall computational complexity of the algorithm. Before constructing the effective
operators, the TTN is isometrized. Effective operators are contractions of the entire Hamiltonian
expectation value TN towards the isometry center, and they are placed on the links of the TTN.
An example of some of the effective operators where the TTN is isometrized towards (0,0), here
labeled as the tensor 1, can be seen in Fig. 13.

The algorithm always isometrizes the TTN towards (0,0) at the beginning. This enables us to
construct the effective operators from the bottom up, using the effective operators from the layer
below. We iterate over tensors in each layer, constructing the effective operator on the parent
link by contracting the tensor with the effective operators on its children links and with its dual
tensor, as can be seen in Fig. 14. The bottom effective operators are trivial as they represent
only the Hamiltonian sites. From this point on, whenever the isometry center is moved, the
effective operators are adjusted accordingly. This is done by updating the effective operator on
the link connecting the original and the new isometry center. The update is done in the same
way the operator was originally created, by using the updated tensor and contracting it with the
children effective operators as in Fig. 14.

4.2.3 Single-Tensor Update

The algorithm modifies the entire TTN one tensor at a time. The process starts by first moving
the isometry center to the tensor that is about to be updated, updating the effective operators
appropriately. When performing a ground-state search, it is the eigenvalues of the Hamiltonian
we wish to find. Since the TTN is isometrized, all the other tensors just change the basis of
the Hamiltonian, which does not impact the eigenvalues. This means that that we can treat the
effect of the effective operators on the isometry center as an effective Hamiltonian acting on a
vector, with the effective Hamiltonian having the same eigenvalues as the Hamiltonian. This is
exactly the situation where the Lanczos algorithm from Ch. 4.1 can be used, as we are dealing
with a hermitian operator and searching for just the lowest eigenvalue. We apply one iteration of
the Lanczos algorithm by contracting the effective Hamiltonian with the isometry center. Since
the common Python functions which perform the Lanczos algorithm have to take a vector as
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Rocco Barač: Tensor network algorithm for solving quantum physics on HPC clusters

Figure 12: Example of taking the expectation value of an operator in the MPO form, with respect to
a state vector vector represented as a TTN. The MPO tensors are represented as yellow squares with
links, and it represents an operator. The TTNs are TN structure with tensors represented as blue circles
with links. The top TTN represents a ket vector, while the bottom TTN represents the corresponding bra
vector.
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Figure 13: The left image shows an example of effective operators going towards (0,0), which is always
in the direction of the parent link with the exception of the (0,0) tensor itself. They represent contractions
of the entire operator expectation value TN up to the same tensor on the adjunct TTN. The middle image
shows what the effective operator 1 represents, and the right image shows what the effective operator 2
represents.
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Figure 14: Example of building an effective operator on the parent link by using the effective operators
from the children links. The effective operator on the parent link is the contraction of the tensor, its
adjunct, and the effective operators on the children links between them. The effective operators may have
additional links, depending on the structure of the operator whose expectation value we are calculating.
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Figure 15: Example of a serial algorithm TTN sweep performed on a 3-layer TTN. The sweep arrow
tells us the order in which the tensors are optimized.

an input and give a vector as output, we reshape the isometry center into a vector through link
compression. We already know how the effective Hamiltonian acts on the isometry center in
tensor format when they are contracted, so we can just reshape the resulting tensor into a vector
in the same way as before. The Lanczos algorithm does not need the effective Hamiltonian in
matrix form, it just needs to know how that operator acts on any vector to be able to continue
the iteration.

4.2.4 Tree Tensor Network Sweep

The single-tensor update we introduced works by minimizing one tensor while keeping the rest
of the TTN constant. To minimize the entire TTN, we have optimize all tensors. This is done
by optimizing each tensor individually through a TTN sweep, as shown on Fig. 15. We start
the sweep by optimizing the tensors in the bottom layer by going from left to right, moving
the isometry center along the way. When moving to the next layer (one above), we optimize
the tensors in the opposite direction, thus reducing the path for moving the isometry center, and
increasing the algorithm’s efficiency. When finishing a sweep across the entire TTN, we have to
remember that the tensors from the beginning of the sweep were optimized with an operator that
was constructed from non-optimized tensors. For this reason, the sweep is performed iteratively,
until our result for the ground-state energy converges, finishing the ground-state search.

4.3 Parallel Algorithm

Now we move on to the main subject of this thesis, the parallel algorithm. The main idea is to
be able to apply a single-tensor update across the entire TTN at the same time, instead of doing
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a sweep. To do this, various parts of the algorithm need to be changed, which is described in
the following chapters.

4.3.1 Splitting the Isometry Center to All Tensors

Since we want to use the same single-tensor update as before, we need to somehow split
the isometry center across all tensors. We start the same way as before, by isometrizing the
TTN. Now, instead of moving the isometry center, we have to split it! We perform an SVD
decomposition (Eq. (3.7)) on the isometry center as before. This time, we insert an identity
matrix between the S and V † matrices, and we write it as S−1S. We then make the original
isometry center a contraction of U and S matrices, and the new isometry is now a contraction
of V † and the original tensor, while an extra S−1 is left on the link between the two isometry
centers. The splitting procedure is shown in Fig. 16. To make things simpler, it is best to
start with the TTN isometrized at one of the top tensors, and we choose the top left tensor, at
position (0,0). From here we first split the isometry center into the top right tensor. After we
have our two top isometry centers, we continue splitting the isometry center into both of their
respective children tensors. The process is repeated for all tensors in the layer of new isometry
centers, until we reach the bottom of the TTN. If we had started with the isometry center at some
random tensor in the TTN, it would still take the same amount of splitting to get the isometry
center everywhere, but with this technique (going layer by layer), we can easily parallelize the
isometry center splitting as well. By giving each tensor in a layer its own thread, it modifies
just itself and the children tensor, and after each layer, the information on the modified tensors
is exchanged across all threads.

4.3.2 Effective Operators

Having each tensor be the isometry center means that every one of them should have appropriate
effective operators. If we just use the effective operators from the serial algorithm, some of
them will be useless for other tensors, as they would be contractions of the TN in the opposite
direction. Instead of making effective operators for each individual tensor, it is more efficient to
just have two effective operators on every link in the TN, representing contractions in opposite
directions. One set of effective operators represents contractions toward the (0,0) tensor, while
the other set represents contractions away from the (0,0) tensor. An example with a few of these
operators is shown in Fig. 17.

The operators are constructed by first constructing the effective operators towards (0,0) like
in the serial algorithm. The other half is constructed when splitting the isometry center, which
is easier since we can already use the first set of effective operators. The inverses of the singular
value matrix are included into the effective operators. When creating the effective operators,
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Figure 16: Splitting the isometry center from tensor A to tensor B. After performing the SVD
decomposition, an identity is inserted between S and V , and written as S−1S. The tensors U and S
are contracted into the new tensor A’, while the tensors S, V and B are contracted to form the new
tensor B’. An additional tensor, S−1, is left on the link between the two isometry centers.
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Figure 17: Example of effective operators going towards and away from (0,0). They represent
contractions of the entire TN up to the same tensor on the adjunct TTN.
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Rocco Barač: Tensor network algorithm for solving quantum physics on HPC clusters

i

i

i i
S-1 S-1

i

i i
S-1 S-1

S-1 S-1

i

i

i i
S-1 S-1

i

i i

S-1 S-1

S-1 S-1

S-1

Figure 18: Parallel TTN ready for optimization. The operators going toward (0,0) are red squares, while
the ones going away are purple squares. The isometry center is split to all tensors.

contracting S−1 with the operator on the desired end of the link cancels out the S matrix part
of them, making them unitary again. Without this, the operator we get for the Lanczos iteration
would not represent an effective Hamiltonian, making it useless for the purpose of performing
a ground-state search.

4.3.3 Parallel TTN Update

By splitting the isometry center to all tensors as described in Ch. 4.3.1, along with the effective
operators as described in Ch. 4.3.2, we finally get the TTN in the form from Fig. 18. When
in this form, every tensor can be updated simultaneously using the single-tensor optimization
from Ch. 4.2.3, each on its own processing thread. Taking the correct effective operators is
easy with the way they are constructed. Every tensor takes the "incoming" (going towards
(0,0)) effective operators from their children links, and the "outgoing" (going away from (0,0))
effective operator from their parent link. The exception is the (0,0) tensor, which takes the
incoming effective operators from all links. The entire TTN is thus optimized by optimizing
all tensors simultanously. After each iteration, the inverse singular values on the link no longer
contract with their respective tensors to form a unitary tensor, so they must be updated as well.
This is done by letting every tensor, except the (0,0) tensor, contract with the inverse singular
values from their parent tensor. The TTN is now again isometrized at (0,0), just as in the
beginning. This entire process is then iteratively repeated until the ground ground-state energies
from each single-tensor update converge to the same result. Since the optimization process is
the most computationally complex, parallelizing it can significantly reduce the computation
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Figure 19: An example of an algorithm which groups tensors to perform both sweeps on groups of
tensors on some threads, while doing single-tensor updates on others. The dashed lines represent one
processing thread.

time. This is especially useful when running the algorithm on high-performance computing
(HPC) clusters, as is almost always the case. HPC clusters have a large number of processing
threads, making it able to run a large number of single-tensor optimizations in parallel, which
would not be possible on personal computers.

Although HPC clusters can have a very large number of threads, we are often interested in
simulating large TTNs, so we expect to run into situations where the TTN has more tensors
than the HPC cluster has available threads. We could, of course, perform the algorithm by
waiting for some single-tensor updates to finish, so others can take their place. However, this
is not ideal and the algorithm is not intented to be used in this way. A better approach would
be upgrading the algorithm in a way that the tensors are grouped together and sent to the same
processing thread. One of the possibilities is to mix up the serial update of a group of tensors
using sweeps in addition to applying single-tensor updates to other tensors if we have enough
processing threads. An example of this is in Fig. 19. However, this is also not optimal, as
there are algorithms which can perform certain two-tensor updates faster than performing two
single-tensor updates in a row, as well as many other possibilities to consider.

4.4 2-Qubit Example

We now show to find the ground-state energy of a 2-qubit quantum Ising model system by using
the logic of the algorithm described in the last chapter. We describe the system with an MPS TN
due to it being only a 2-site system. The Hamiltonian for this system, as stated by Eq. (2.28),
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Figure 20: The expectation value of a 2-qubit MPO Ising model Hamiltonian. The rectangles on the left
TN are a shorthand notation for term by term summation. The first and the second qubit are of different
colors for clarity.

is:
H = −Jσz

A ⊗ σz
B − gσx

A ⊗ I2 − gI2 ⊗ σx
B, (4.1)

where the first and second qubit are labelled A and B, respectively. The Hamiltonian is
represented by a 4x4 matrix, making it easy to solve the problem analytically, by diagonalizing
the Hamiltonian. This enables us to check whether the algorithm works.

Since state vectors of a 2-qubit system are 4x1 vectors, we start the algorithm with
generating a random state vector. We want to have a 2-site MPS, and two tensors to optimize
simultaneously, so we reshape the 4x1 vector into a 2x2 matrix through link fusion, as
demonstrated in Eq. (3.4). An SVD is performed and the isometry center is split by making
US qubit A, and SV qubit B, while having an extra S−1 on the link connecting them. The
parts of the Hamiltonian acting on qubit A connect to its physical link, and the same goes for
qubit B. Since the Hamiltonian is a sum of three terms, we use an arbitrary shorthand notation
for the expectation value shown on Fig. 20. To get the usual MPO shape, we would need to
increase the dimensions of all tensors through outer products with identity tensors, and
contract those extra dimensions by inserting a link between the two parts of the Hamiltonian.
If we contract two 3-term tensors (like the two Hamiltonian parts for each qubit), we do it by
contracting them term by term, i.e., the first term of the first tensor is contracted with the first
term of the second tensor etc.

There is no need for effective operators in this case example. In this example, the effective
Hamiltonian operators act on each qubit as the contraction of the entire TN into the qubit of
interest, with the exception of contracting its dual-space counterpart qubit. In one iteration of the
algorithm, the qubits are optimized separately via Lanczos, making it possible to parallelize the
process onto two threads if we want. They are then contracted into one 2x2 matrix, normalized,
and the 2-qubit MPS TN is recontstructed via SVD, making it ready for the next iteration. One
cycle of updating the qubits in this way is shown in Fig. 21. In each iteration, the two qubits
are first updated without exchaning any information about the changes in the TN, which is part
of the process that can be parallelized. Those two qubits, together with the inverse singular
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Figure 21: One optimization iteration cycle from the 2-qubit example. (1) We start off with a 2-site MPS
with the isometry center split, (2) simultaneously optimize both tensors, (3) contract the TN back into a
single tensor, (4) normalize the contracted tensor, and finally get back to (1) using an SVD and splitting
the isometry center.

values, are contracted into a 2x2 matrix again. The matrix is normalized element-wise, where
the sum of the squared norms of the elements must equal to 1, as they represent the probability
amplitudes of a state vector. This matrix is again decomposed via SVD, and the isometry center
is split, making the TN ready for the next iteration.

The results almost completely converge even after the first iteration, and after a few more,
the error compared to the analytical result is almost non-existent. Plotting error graphs in
this situation would not make much sense, since it would just fluctuate depending on inherent
numerical errors and the initial random wavefunction. What we do instead is plot the average
magnetization in the x direction as a function of g, while keeping J constant, and see if it
matches our theoretical predictions from Ch. 2.5. We do the same thing for the ground-state
energy. All variables are dimensionless for simplicity.

We start with the x-axis average magnetization diagram. The average magnetization is
defined as the arithmetic mean of the magnetization of the two individual qubits. In regular
quantum mechanics notation, the average magnetization in is written as follows:

⟨M⟩ = 1

2
(⟨ψ|σx ⊗ I2 |ψ⟩+ ⟨ψ| I2 ⊗ σx |ψ⟩), (4.2)

where |ψ⟩ represents the state of the total system, which is the ground state in our case. We can
see the this calculation in TN diagram notation in Fig. 22.

We first look at the magnetization diagram from Fig. 23, where J=1 and g is varied from 0 to
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Figure 22: Average x-direction magnetization from the 2-qubit example in TN form.

4. The results are just as expected! The average magnetization in the x direction is 0 when g is 0.
This is because there is no bias introduced by the external magnetic field to the directions of the
spins. Around g=1=J , we can see a transition from the ferromagnetic phase to the paramagnetic
phase as the spins align with the external magnetic field. At g=4, the magnetization is already
pretty close to 1, meaning that the spins have aligned with the external magnetic field.

The ground-state energy diagram from Fig. 24 also makes sense. The spin coupling without
the external magnetic field is enough to cause a bound state, resulting in the negative energy.
With the increasing magnetic field strength, it becomes harder and harder to dislodge the spins,
resulting in an even lower energy.

With this example, we conclude our algorithm chapter. The idea of the algorithm worked
just as expected in the 2-qubit case, motivating us to continue its development and incorporate
everything the Quantum TEA [16] library.
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Figure 23: Average magnetization diagram of a 2-qubit Ising model system. The magnetization in the
direction of the transverse magnetic field increases as the coupling constant g increases, while J is
constant and equals 1.
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Figure 24: Ground state energy of a 2-qubit Ising model system. The ground state energy decreases E0

as the coupling constant g increases, while J is constant and equals 1.
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5 Summary and outlook

Throughout this thesis, we have detailed the adaptation of a serial TTN algorithm to function
in parallel, aiming to decrease the computation time of QMB simulations on HPC clusters.
This was done by splitting the isometry center to all tensors in the TTN, making it possible
to do single-tensor optimizations on multiple processing threads simultaneously. The methods
developed in this thesis work on an arbitrarily large TTN, and a successful ground state search
with this kind of algorithm was shown to work in chapter 4.4, where we have used the algorithm
on a 2-qubit system in a 1D quantum Ising model lattice.

We plan on further improving the algorithm and expanding it so that it can work on a limited
number of computer threads, which is always the case when working with real-world computer
clusters. Every improvement will be incorporated into the Quantum TEA [16] library, allowing
everyone to use our algorithms in their research and further improve our understanding of
QMB systems. Tensor networks have now been around for more than two decades, but are
still an exciting and developing field. Their role in the second quantum revolution [38] will
undoubtedly continue to be significant. With quantum simulations still being limited by the
small number of qubits [39] and the always-present quantum noise [31] in current quantum
hardware [40], tensor networks provide a unique way to simulate low-entanglement quantum
systems on classical computers [3]. Developing new algorithms, such as the one described in
this thesis, will bring us closer to large-scale quantum computers with a significant quantum
advantage, which will have many uses in various fields, both in research and industry [2], such
as optimization, cryptography, chemistry and drug development, machine learning [41] and
many more [42].
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