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1 Introduction

The main goal of this thesis is to study the dynamics of liquids and mixtures which exhibit

micro-heterogeneities [144, 6, 178, 128, 134]. The main problem which will be adressed is how

micro - heterogeneities evolve in time, and how this evolution is manifested through the van

Hove function G(r, t) , the intermediate scattering function F(k, t) and the dynamical structure

factor S(k,ω). All mentioned functions describe the microscopic structure of the system from

pair correlation point of view. Since the term “micro - heterogeneity” represents the key point of

this research, we will discuss this point in more details, in order to further clarify the principal

motivation behind this work.

1.1 Duality of fluctuations and micro - heterogeneity

Micro-heterogeneities in neat liquids can be seen as particular case of fluctuations in den-

sity, while, in mixtures, these fluctuations are related to the concentrations of each molecular

component. Fluctuations in density are characteristic for any liquid. For example, they arise

even in the hard sphere toy model, where the interaction is purely repulsive, and the origin

of fluctuations is purely entropic. In simple Lennard – Jones liquid, where particles inter-

act both repulsively (at small inter-particle separations) and attractively (at larger inter-particle

separations), the origin of these fluctuations is both entropic and energetic, since particles mu-

tually attract in this case. The complexity of fluctuations increases as the complexity of in-

terparticle interactions in the system grows. In an ionic liquid, such as NaCl at sufficiently

large temperatures (∼ 3000 K), a special form of local order appears, which is called charge

order [163, 77, 132, 137, 57, 55]. This order is particularly characteristic for molten salts

[153, 163, 77] and is realized through the alternation of + and – charges, caused by the fact that

(+,+) and (−,−) charges mutually repel, while (+,−) charges attract each other. Although

the alternation of charges in the liquid state is not as perfect as in a crystal, it is still visible,

as in a simulation snapshot shown in Figure 1, where two simulation boxes of equal sizes are

compared, consisting of red and blue soft spheres of equal diameters. In the left simulation

box, both red and blue spheres are neutral, while, in the right simulation box, red spheres are

positively charged (+1), while blue spheres are negatively charged (-1).
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Figure 1: Simulation snapshots showing one microstate of simple Lennard - Jones binary mix-
ture (left panel) and one microstate of charged soft sphere model (right panel). Both red
and blue spheres have the same diameters. In the case presented in left panel, both red and
blue spheres are neutral, while, in the case presented in right panel, red spheres are positively
charged (+1), while blue spheres are negatively charged (−1).

One can note that the right simulation box appears to be “more ordered” through the alternation

of charges. This form of order affects significantly the pair correlation functions, as is shown

in Figure 2, where gAA(r), gAB(r) and gBB(r) functions are shown (A - red spheres, B - blue

spheres) in black, red and green colors respectively for the case of LJ binary mixture (left panel)

and charged soft sphere model (right panel). Corresponding S(k) functions are shown in the

insets.

Figure 2: Radial distribution functions gAA(r), gAB(r) and gBB(r) of simple LJ binary mixture
(left panel) and charged soft sphere model (right panel). Insets show corresponding structure
factors S(k). Particles A represent red spheres, while B represent blue spheres from Figure 1.
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While, in the left panel of Figure 2, correlations AA, AB and BB are all in phase, in the right

panel we see that AB correlations are out of phase with AA and BB correlations, due to alterna-

tion of charges. In addition, the structure factors in the right inset show the peak and anti-peak,

which correspond to the dephasing of the spatial correlations.

Interactions in liquids with higher structural complexity, such as water, alcohols, amines or

amides, are, within classical description, described as the combination of LJ interaction and

Coulomb interaction between atoms in molecules. Coulomb interaction is governed by partial

charges which each atom bear. Therefore, the total interaction between molecule A (formed of

atoms i = 1, ...,N) and molecule B (formed of atoms j = 1, ...,M) is given with [56]:

VAB =
N

∑
i=1

M

∑
j=1

(
4εi j

"
�

σi j

ri j

�12

−
�

σi j

ri j

�6
#
−L

ZiZ j

ri j

)
(1)

where σi j is obtained with Lorentz rule, σi j =
σi+σ j

2 , where σi and σ j are diameters of atoms i

and j respectively. εi j is obtained with Bertholet rule, εi j =
√

εiε j, with εi and ε j representing

the depth of the LJ potential wells of atomic species i and j respectively. Constant L is given

with L = e2

4πε0
, while Zi and Z j represent the valences of atoms i and j.

Since the fundamental inter-molecular interactions, in all liquids mentioned above, can be de-

scribed with equation 1, all these liquids will be governed by the same fluctuations mentioned

earlier, regardless of their chemical specificity. To further discuss this problem, let us compare

the simulation box of a simple LJ liquid with that of neat octanol, shown in the left and right

panels of Figure 3 respectively. We note that the simulation box of octanol is characterized by

clustering of hydroxil OH groups (O - red spheres, H - white spheres) in chain - like clusters by

charge - order mechanism. Clustering of OH groups in one place results in the deficiency of OH

groups in the close neighbourhood of formed aggregate. This creates a local heterogeneity in

density of O atoms, with the density being high along the OH chain, and low around the chain.

We refer to this type of heterogeneities as micro - heterogeneities [144, 6, 178, 128, 134].
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Figure 3: Snapshots of simulation boxes of simple LJ liquid (left panel) and octanol (right
panel), each representing one microstate of the system. In the right panel, oxygen atoms are
shown in red, hydrogen atoms in white and alkyl groups in cyan color.

We note that the formation of such heterogeneities is possible also in simple LJ liquid, where

all charges are equal to 0. Similarly like in the case of OH groups in octanol, gathering of LJ

particles in one place is likely to result in deficiency of the same particles in the close neigh-

bourhood of the formed “cluster”. However, the origin of the formed heterogeneities will not

be the same for the two liquids, since, in octanol, their origin is mostly related to the attractive

Coulomb potential between (+,−) pairs, which is significantly stronger than attractive part of

LJ potential. Hence, density fluctuations in octanol are closer to the self-assembly mechanism

[182, 33, 51, 170], which forms “molecular objects”, which can perform “tasks”. For example,

micelles and vesicles are such objects. Through this example, we see that fluctuations have

a dual aspect, one corresponding to a random gathering of particles (as in LJ liquid), and the

other being closer to the formation of supra - molecular object (as in octanol). We note that the

supra - molecular object is itself subject to local fluctuations in density.

Supra - molecular objects are mostly found in soft-matter, but also in biological liquids [28, 24].

The Life itself is closely related to self-assembly, with organic molecules, such as lipids, pep-

tides or nucleic acids, being self - assembled to form constitutional structures of the cell, in-

cluding membranes, proteins or the genome [33]. Since the mechanism of formation of supra-

molecular entities in soft matter is similar to the formation of the same entities in smaller

systems, such as alcohols, understanding kinetics of these smaller systems is essential for un-

derstanding kinetics of larger and complex biological systems. Therefore, the study of kinetics

of alcohols and acqueous mixtures of alcohols represents the bridge between understanding

simple liquids and complex biological liquids.
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This situation could be analogous to the spontaneous emergence of elementary particles from

the quantum fluctuations in vacuum. This analogy is interesting if we suppose that specific

types of fluctuations, those that accompany the emergence of self-assembled objects, have the

potential to create a situation where information is stored in some of these objects, and that

their interactions allow them to use this information to reach a completely new physical state.

The analogy between fluctuations in molecular liquids and quantum fluctuations has already

been introduced by Pierre - Gilles de Gennes, in the context of liquid crystals, who showed

the analogy between phase transitions from nematic to smectic phase of crystal with the phase

transition from metal to superconductor [36], which is a purely quantum mechanical concept.

This analogy is materialized mathematically into the Landau – de Gennes free energy [149].

It is possible that only specific solvents (e.g. water), mixed with other appropriate molecu-

lar objects, may give rise to specific types of fluctuations, accompanied with the formation of

self - assembled meta - molecular objects, which would create conditions precursor to Life. In

order to test this hypothesis, it is necessary to start first with simple aqueous mixtures and ex-

plore the various types of results obtained, while keeping this goal in mind. Although the aim

of this thesis is not to answer all the questions posed herein, it is clear that this type of research

works could have significant impact on understanding the important biological processes. In

this work, the study of dynamics will be performed on the basis of the past work of the research

group, related to the analysis of micro-heterogeneity from static point of view, by extending it

to the dynamical point of view.

To conclude this section, the study of dynamics in this work will be based on the analysis

of dynamical correlation functions, which represent dynamic equivalents of static radial dis-

tribution function and structure factor. These functions are expected to clarify the specificities

in dynamics of micro - heterogeneous liquids, which we are particularly interested herein. In

section 2, we present fundamental mathematical formalism behind these functions and their

relationship with Theory of Liquids.
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2 Elements of the Theory of Dynamics in Liquids

The aim of this chapter is to briefly introduce the way how the theory of dynamics in molecular

liquids can be constructed from atom - atom interactions, in relation with molecular simula-

tions and statistical physics. Since the main observables of this thesis are dynamical correla-

tion functions, special focus is put on the relationship between those functions with their static

equivalents. The understanding of this relationship is important for understanding how charge

order, together with micro - heterogeneity, manifests in dynamical correlation functions. In ad-

dition, we introduce difficulties encountered in the development of coherent formalism, which

are expected to be solved numerically in the future.

2.1 Introduction

In statistical physics, dynamics in liquids can be conveniently studied in phase space [38, 109,

191], which represents all possible states (rN ,pN) which specific system can occupy, with rN =

(r1,r2, ...,rN) and pN = (p1,p2, ...,pN) representing positions and momenta of all N particles

in the system. A Hamiltonian of such system is given with [183, 56, 191, 17]:

H =
N

∑
i=1

p2
i

2mi
+VN(rN) (2)

,with the first term being the total kinetic energy of the system, whereas the second term is the

total potential energy. We note that this form of equation (2) does not specify whether particles

i are bound within molecules or not, or whether there are many species or only one single

specie.

The equations of motions (as the ones used in typical simulation) are given with equations (3)

and (4):[56, 191, 17]

ṙi =
∂H

∂pi

(3)

ṗi =−∂H

∂ri
(4)

These equations describe the dynamics of N particles in 3D space. In a specific state, a 6 -

dimensional vector, (rix,riy,riz, pix, piy, piz), can be attributed to each particle i, describing its

total position (ri) and momentum (pi). Therefore, one state of the entire system, composed of

N particles, can be described with a point in 6N - dimensional space. The dynamics of this

“point” occurs in sub - space of the total phase space, with the sub - space being determined

with the choice of ensemble. We remind that an ensemble represents a collection of microstates

for which certain thermodynamic quantities are kept constant. For example, in microcanonical

ensemble, N, V , and E (number of particles, volume and energy respectively) are constant,

while in canonical ensemble, N, V and T are constant (with T denoting the temperature).
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[191, 56, 17] The analogy between dynamics in three - dimensional space (used in simulations

with periodic boundary conditions (PBC)) and the dynamics in 6N - dimensional NV T sub -

space is illustrated in Figure 4. As shown in the right panel, each configuration in phase space

is represented with a point inside 6N - dimensional space. Points t1 and t2 represent the states

of the system at times t1 and t2 respectively.

Figure 4: Visualization of relationship between dynamics in real 3-D space (left panel) and
dynamics in 6N-D phase - space (right panel). In phase - space, each microstate is represented
with a point in 6N-D space.

The probability of each (rN ,pN , t) state is given with f [N](rN ,pN , t)drNdpN , with f [N](rN ,pN , t)

being phase - space probability density [56, 191, 17], which satisfies:

Z

rN

Z

pN
f [N](rN ,pN , t)drNdpN = 1 (5)

for all times t. Since the states (rN ,pN) are not being created or destroyed as time t changes,

distribution f [N](rN ,pN , t) is stationary and its time evolution can be described with Louville

equation:[56]
df [N](rN,pN, t)

dt
= 0 (6)

Since both positions and momenta are functions of t, the total time derivative in equation (6)

can be rewritten in more explicit form:

∂ f [N]

∂ t
+

N

∑
i=1

(
∂ f [N]

∂ri
·

∂ri

∂ t
+

∂ f [N]

∂pi

·
∂pi

∂ t

)
= 0 (7)

,which, by using equations (3) and (4), can be written as:

∂ f [N]

∂ t
+

N

∑
i=1

(
∂ f [N]

∂ri
·

∂H

∂pi

− ∂ f [N]

∂pi

·
∂H

∂ri

)
=

∂ f [N]

∂ t
+
n

H, f [N]
o
= 0 (8)
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where we have introduced the Poisson bracket [38], defined as:

{H, f}=
N

∑
i=1

∂H

∂ri

∂ f

∂pi
− ∂H

∂pi

∂ f

∂ri
(9)

By introducing Louville operator [183, 119] L = i{H, }, we can write equation (8) in form:

∂ f [N]

∂ t
=−iLf [N] (10)

The formal solution of equation (10) is given with:

f [N](rN ,pN , t) = exp(−iLt)·f [N](rN ,pN ,0) (11)

and it describes the time evolution of the phase - space probability density.

Similarly, in the case of general phase - space variable A(rN ,pN), we can write [38, 109, 17, 56]:

dA

dt
= iLA (12)

with ∂A
∂ t

term being omitted, since A(rN ,pN) does not depend explicitly on time, but only

through positions and momenta. Equation (12) has formal solution in form:

A(t) = exp(iLt) ·A(0) (13)

In this work, we will be particularly interested in microscopic density ρ . The most general

form of microscopic density, dependent of both positions and momenta, is given with [38]:

ρ(r,p, t) =
N

∑
i=0

δ (r− ri(t))δ (p−pi(t)) (14)

Configurational density ρ(r, t) [63, 56, 17] can be obtained by integrating ρ(r,p, t) over all

possible momenta in phase - space:

ρ(r, t) =
Z

ρ(r,p, t)dp =
N

∑
i=0

δ (r− ri(t)) (15)

Similarly, the microscopic flux j(r, t) is given with [17]:

j(r, t) =
1
m

Z
ρ(r,p, t)pdp (16)

,while microscopic kinetic energy e(r, t) is given with [17]:

e(r, t) =
1

2m

Z
ρ(r,p, t)p2dp (17)

9



Theoretical developments under Kinetic Theory of Liquids [17, 56, 191, 2], are quite involved,

since they couple both positions and momenta. However, in this work, we will consider only

(r, t) functions, in particular the Van Hove and related functions. This operation is possible in

Classical Mechanics, since the momentum part can be decoupled from the configurational part,

as can be seen from equations (14) and (15).

For any microscopic variable A(rN ,pN , t), it is possible to define average in terms of the phase

space probability density f [N](rN ,pN , t) [38, 119]:

< A(rN ,pN , t)>=
Z

rN

Z

pN
A(rN ,pN , t) f [N](rN ,pN , t)drNdpN (18)

or equivalently [38, 119]:

< A(rN ,pN , t)>=
Z

rN

Z

pN
A0(r

N ,pN) f
[N]
0 (rN ,pN)drNdpN (19)

In the case of particularly microscopic density ρ , defined with equation (15), it can be shown

that:[56]

< ρ(r, t)>=
N

V
(20)

with N representing the total number of particles in volume V .

2.2 Dynamical correlation functions

For given microscopic density ρ(r, t), density autocorrelation function between points (r1,τ)

and (r2,τ + t) is given with:[63, 56, 17]

Cρρ(r1,r2; t) =< ρ(r1,τ)ρ(r2, t + τ)>= ρ(2)(r1,r2; t) (21)

with τ representing the time origin. Since we are considering liquids in equilibrium, the choice

of the time origin is arbitrary and we can set τ = 0. In addition, function ρ(2)(r1,r2; t) is even

[56, 17]:

ρ(2)(r1,r2; t) = ρ(2)(r1,r2;−t) (22)

,which means that its time derivative is zero in time origin:

d
dt

ρ(2)(r1,r2; t = 0) = 0 (23)

10



2.2.1 Van Hove correlation functions

We note that, in spatially homogeneous and isotropic liquids, the correlation functions depend

only on the modulus of the relative distance. We introduce here a more general density cor-

relation function between atoms, whether or not they are part of molecules, and subsequently

consider molecular liquids as mixtures of atoms. The intra-molecular correlations should then

account for the molecular nature, as we show below.

Correlation between density ρa of atoms a in point (r1,0) and density ρb of atoms b in point

(r2, t) is given with:[63, 56]

ρ
(2)
ab (r1,r2; t) =< ρa(r1,0)ρb(r2, t)> (24)

In the limit when the relative distance r12 = |r1 − r2| is large enough, densities ρa(r1,0) and

ρb(r2, t) will be decorrelated:

lim
r12→∞

ρ
(2)
ab (r1,r2; t) =< ρa(r1,0)>< ρb(r2, t)>= ρaρb (25)

,where the last equality follows from equation (20).

Equation (24) allows us to define Van Hove correlation function:[56, 37, 17]

Gab(r1,r2, t) =
1

ρaρbV

Z
ρ
(2)
ab (r1,r2, t)dr1 (26)

=
1

ρaρbV
< ∑

ai

∑
b j

Z
δ [r1 − rai

(0)]δ
�

r2 − rb j
(t)

�

dr1 >

with ∑ai
and ∑b j

representing sums over all atoms a1,a2, ...,an and b1,b2, ...,bm respectively,

with a and b denoting atomic species. In homogenous and isotropic liquids, correlations will

be dependent only of the relative distance r = r2 − r1. If we apply the substitution r2 = r1 + r,

it follows:

Gab(r, t) =
1

ρaρbV
< ∑

ai

∑
b j

δ
�

r−
 
rb j

(t)− rai
(0)

��

> (27)

From equations (26) and (25), it follows:

lim
r12→∞

Gab(r1,r2, t) = 1 (28)

The sum ∑ab in equation (27) is over all possible (ai,b j) atomic pairs and, therefore, encom-

passes both the cases when pairs belong to the same molecule and when pairs belong to different

molecules. Hence, the total sum can be written as:

∑
ai,b j

=
(s)

∑
ai,b j

+
(d)

∑
ai,b j

(29)
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with sum ∑
(s)
ai,b j

representing the sum over all pairs (ai,b j) which belong to the same molecule,

while ∑
(d)
ai,b j

representing all pairs (ai,b j) which belong to different molecules. Therefore, the

total Van Hove function from equation (27) can be written as:

Gab(r, t) = G
(s)
ab (r, t)+G

(d)
ab (r, t) (30)

with self Van Hove function G
(s)
ab (r, t) and distinct Van Hove function G

(d)
ab (r, t) defined with

following equations:

G
(s)
ab (r, t) =

1
ρaρbV

<
(s)

∑
ai,b j

δ
�

r−
 
rb j

(t)− rai
(0)

��

> (31)

G
(d)
ab (r, t) =

1
ρaρbV

<
(d)

∑
ai,b j

δ
�

r−
 
rb j

(t)− rai
(0)

��

> (32)

Self Van Hove function represents intramolecular contribution to the total density correlations

between atoms a and b, while distinct Van Hove functions represents intermolecular contribu-

tion. We note that these definitions of Van Hove functions are not the same as in the literature

[56, 17, 63], and differs by a factor ρ−1
b . Our definition is compatible with the standard defini-

tion of the t = 0 static pair correlation function gab(r), since we have:

G
(d)
ab (r, t = 0) = gab(r) (33)

We note that equation (27) can be rewritten in form:

√
ρaρbGab(r, t) =

1√
NaNb

< ∑
ai

∑
b j

δ
�

r−
 
rb j

(t)− rai
(0)

��

> (34)

,which will be used in the section 2.2.2, in context of the definition of intermediate scattering

function Fab(k, t).

2.2.2 Intermediate scattering function and dynamical structure factor

Van Hove functions, presented in section 2.2.1, cannot be measured experimentally, which

means that experiments cannot directly provide information about the distribution of atoms and

molecules in space. This information can be obtained only by computer simulations, which are

a convenient way to mimic matter, but through a model representation, which distorts reality to

some extent. However, this information can be obtained experimentally by probing liquids with

different forms of radiation in scattering experiments, such as X - ray or neutron scattering. In

quantum mechanical representation, radiation is described with plane waves exp(ikr), where

12



k is the wave vector describing spatial periodicity of the wave. It is known that the spatial

distribution of molecules in k - space (with k now being related to the difference in momentum

of scattered radiation and incident radiation, k = k2−k1), accessible by experiments, is related

to the distribution in r - space (with r denoting the inter-particle separation, r = r2 − r1) by

simple Fourier transformation [56]. Following this, one can measure the structure factor Sab(k),

which is the Fourier transform of the static correlation function gab(r). The corresponding

dynamical equivalent of the static structure factor is called the intermediate scattering function

Fab(k, t), which is formally defined as:[56, 63, 37, 17]

Fab(k, t) =
1√

NaNb

< ρa(k,0)ρb(−k, t)> (35)

where ρa(k, t) represents the Fourier transform of microscopic density ρa(r, t):

ρa(k, t) = ∑
ai

exp(ik(rai
(t)) (36)

Then we can write:

Fab(k, t) =
1√

NaNb

< ∑
ai,b j

exp(−ik(rb j
(t)− rai

(0))> (37)

If we rewrite the last equation in slightly different form:

Fab(k, t) =
1√

NaNb

< ∑
ai,b j

Z
drδ

�

r−
 
rb j

(t)− rai
(0)

��

exp(−ikr)> (38)

then, by using the definition (34), it can be easily shown:

Fab(k, t) =
√

ρaρb

Z
drexp(−ikr)Gab(r, t) (39)

meaning that Fab(k, t) is indeed the spatial Fourier transform of Gab(r, t). The power spec-

trum of Fab(k, t) is called dynamical structure factor S(k,ω) and represents the time Fourier

transform of Fab(k, t): [56, 17]

S(k,ω) =
Z

dt exp(−iωt)Fab(k, t) = (40)

In addition, this quantity is measurable in scattering experiments.
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2.2.3 Relationship with the RISM theory and W - matrix

The description of the microscopic structure of molecular liquids can be done in two different

manners, through orientational description or through atom - atom description [15, 56]. The

first description requires a large set of rotational invariants in order to account for correlations

between molecules, while the second method requires to properly take into account all atom

- atom correlations, including both intramolecular and intermolecular part. In this work, we

choose the second description, and clarify the relation between the intra - molecular correla-

tions and the self-part of the van Hove function. The atom - atom van Hove function is then the

appropriate correlation function to describe molecular liquids.

In section 2.2.1, we discussed density correlations between atoms a and b and showed that

total correlations are, in fact, superposition of intramolecular and intermolecular contributions.

Particularly, in the special case when atomic species a and b are identical (i.e. a = b), it follows

from equation (31) that self Van Hove function G
(s)
aa (r,0) is simply delta function δ (r), cen-

tered at the origin in this case. As time increases, this function spreads over entire r - domain.

Ultimately, in large t limit, we have:

lim
t→∞

G
(s)
aa (r, t) = 0 ; ∀r (41)

In the case when a 6= b, self Van Hove function G
(s)
ab (r,0) will be a delta function centered at

specific intramolecular distance dab between atoms a and b, i.e. δ (r−dab).

It is interesting to compare this situation with the Reference Interaction Site Model (RISM)

[23, 17, 56, 67, 167, 40, 64] in the static theory of liquids. In this theory, molecules are modeled

as hard objects, composed of spheres (representing atoms), whose distribution is determined

with chemical structure of each molecule. The total static density correlations between atoms

a and b, denoted with g
(total)
ab (r), then can be written as the sum of intramolecular part wab(r)

and the usual intermolecular part gab(r):

g
(total)
ab (r) = wab(r)+ρgab(r) (42)

where the intramolecular part wab(r) is equivalent to the self Van Hove function introduced

earlier, with wab(r) = ρG
(s)
ab (r,0), while gab(r) is usual radial distribution function, equal to the

distinct Van Hove function Gd(r,0). With Wab(k), Hab(k) and Sab(k) we denote spatial Fourier

transforms of functions wab(r), gab(r) and g
(total)
ab (r) respectively. Following equation (42), we

have:

Sab(k) =Wab(k)+ρHab(k) (43)
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Now we recall that the Ornstein - Zernike (OZ) equation [23, 56, 17, 11, 22, 40, 64] of a mixture

of atoms can be written in matrix form as:

Ŝ(k)Γ̂(k) = Î (44)

where Ŝ is the structure factor matrix, composed of elements Sab(k), Î is the identity matrix,

and Γ̂is given with:

Γ̂(k) = Ŵ−1(k)−ρĈ(k) (45)

with Ĉ(k) representing the direct correlation matrix [56, 23, 17]. Intramolecular matrix ele-

ments Wab(k) are given with: [23]

Wab(k) = δab +(1−δab)
Z

wab(r) · exp(−ikr)dr (46)

with δab representing Kronecker delta. Elements Hab(k) are defined with Fourier transform of

gab(r) as:

Hab(k) =
Z

drexp(−ikr) [gab(r)−1] (47)

Eq.(44) is formally referred to as the OZ equation for a mixture of atoms [23, 56], and the Γ̂

matrix is simply the inverse of Ŝ matrix, i.e. Γ̂ = Ŝ−1. We immediately note that the SSOZ

equation (44) has strong formal resemblance with the Mori - Zwanzig (MZ) equation, which

will be described in section 2.3.1. This resemblance between the two equations indicates that

the MZ equation could represent the dynamical equivalent of the SSOZ equation.

2.2.4 Relationship with Kirkwood - Buff integrals

The Kirkwood-Buff integrals are usually defined as: [8, 9, 130, 82, 35, 34]

Kab =
Z ∞

0
dr [gab(r)−1] (48)

The importance of these integrals lies in the fact that they relate microscopic properties of

liquids with thermodynamic properties, such as molar volume, isothermal compressibility or

chemical potential. For example, in the simplest case of one - component system, containing

only atomic species a, we have: [8, 9]

Kaa =
κT

β
− 1

ρa
(49)

where κT is isothermal compressibility and β = 1
kBT

, where T is the temperature of the system,

while kB is Boltzmann factor. However, the last equation is valid only in the thermodynamic
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limit of systems with infinite size. In addition, in large r limit, we have:[9, 35]

lim
r→∞

gaa(r) = 1− ρ

βN
κT (50)

where we note that lim
r→∞

gaa(r) = 1 when N → ∞. Therefore, in finite size simulations, the

asymptote of g(r) will clearly depend on the size of simulation box. [35, 82]

It is interesting adress what would be the KBI corresponding to the integrals of the dynami-

cal correlation functions, which we call here D-KBI (for dynamical KBI). We first note that

there are 2 such D-KBI integrals, one from the integral of the self part and one from the distinct

part of Van Hove function. Formally, the D-KBI should concern only the distinct part because

of the definition (48), which accounts only for distinct part of Van Hove function.

In one component system, the D-KBI of the self part is proportional to the molar volume

V (m)and is independent of time in the large R limit:

lim
R→∞

K
(s)
ab (R, t) = lim

R→∞

Z R

0
drG

(s)
ab (r, t) =

1
ρ
=

V

N
=

V (m)

NA

(51)

where NA = 6.022 · 1023mol−1 is the Avogadro constant. This is intuitively reasonable, since

G
(s)
ab (r, t) is proportional to the probability density that atom b at time t is found at the distance

r from the origin (i.e. position of reference atom a at t = 0), with ρ−1 representing the propor-

tionality constant. Hence, G
(s)
ab (r, t) integrated over entire volume gives precisely ρ−1, since the

probability of finding the particle anywhere inside the volume of integration is sure event, with

probability equal to 1.

The D - KBI of the distinct part is also independent of time in the large R limit:

lim
R→∞

K
(d)
ab (R, t) = lim

R→∞

Z R

0
dr

h
G
(d)
ab (r, t)−1

i
= Kab (52)

since the average number of particles within the integrated volume is fixed for all t. We note

that, for one - component systems, the KBI is equal to the isothermal compressibility, shifted

by the molar volume ( K = κT

β − Vm

NA
).

Self and distinct KBI integrals for neat ethanol, for the case of the oxygen (OO) and carbon

- oxygen (OC1) correlations, are shown in Figure 5, where we illustrate the convergence of

integrals in large R limit for all time values. The direction of increasing time is indicated with

arrows in Figure 5.
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Figure 5: D - KBI integrals of neat ethanol, for the case of OO (left panels) and OC (right
panels) correlations. The direction of increasing t is indicated with arrows on each panel.
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2.3 Dynamical evolution of Van Hove function

Dynamical evolution of Van Hove function can be addressed from the context of Mori - Zwanzig

formalism. This formalism is applicable to any type of dynamical variable A(r, t) or its auto-

correlation function CAA(r, t), as it will be shown in the next section. There, we introduce the

basis of Mori - Zwanzig approach.

2.3.1 Mori - Zwanzig formalism

In order to introduce the basis of Mori - Zwanzig formalism [62, 56, 89, 191], let us consider

a phase - space dynamical variable A(t). We have shown earlier that the time evolution of A

is described with Louville equation, A(t) = exp(−iLt)A(0), suggesting that A(t) can be seen

as vector in phase - space, obtained by “rotation” of vector A(0) by “angle” Lt. By using this

analogy with vectors, one can consider the projection of A(t) “parallel” to the vector A(0),

together with projection “perpendicular” to A(0). Parallel projection can be written in terms of

linear projection operator P:

PA(t) =
< A(t)A(0)>
< A(0)A(0)>

A(0) (53)

where one can immediately note that the factor in front of A(t) corresponds to normalized

autocorrelation function CAA(t) of variable A. Therefore, we can write:

PA(t) =CAA(t)A(0) (54)

The perpendicular projection, denoted with A
′
(t), can be written in terms of projector Q:

A
′
(t) = QA(t) (55)

which satisfies:

< A
′
(t)A(0)>= 0 (56)

Now, if we consider dynamical variable A in Laplace space, denoted with eA(z), we can write

Louville equation in form:

(z+L)eA(z) = iA (57)

Since P+Q = I [38, 56], we can write:

(z+L)(P+Q)eA(z) = iA (58)

The last equation can be projected in directions parallel and perpendicular to A(0), by the appli-

cation of projectors P and Q respectively. Then, by using fundamental properties of operators
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P and Q (P2 = P, Q2 = Q and PQ = 0), one can obtain equations for the time evolutions of

projections CAA(t) and A
′
(t) [109, 191]:

∂

∂ t
CAA(t)− iΩCAA(t)+

Z t

0
dsM(t − s)CAA(s) = 0 (59)

∂A
′
(t)

∂ t
− iΩA

′
(t)+

Z t

0
dsM(t − s)A

′
(s) = R(t) (60)

The time evolution of total A(t) is described with [109, 191, 56, 114, 2, 90]:

∂A(t)

∂ t
− iΩA(t)+

Z t

0
dsM(t − s)A(s) = R(t) (61)

The term R(t) in the last equation is called the random force, while the term M(t) is the memory

function, which is the autocorrelation of the random force:

M(t) =
< R(t)R(0)>
< A(0)A(0)>

(62)

The frequency term Ω is given by

iΩ =
< Ȧ(0)A(0)>
< A(0)A(0)>

(63)

Since, in the considered systems, autocorrelation functions are even functions of time, it fol-

lows iΩ = 0.

Mori - Zwanzig equation (61) has identical form as generalized Langevin equation [126, 113,

99, 56, 4], which describes the time evolution of brownian particle’s velocity in a liquid bath

composed of other particles. In a specific case when brownian particle is much larger than sur-

rounding particles, Langevin assumed that the net force on brownian particle consists of two

parts: a frictional (drag) force proportional to the velocity v(t) of the particle and a random

force R(t) which rises from the collisions with surrounding particles. Therefore, the equation

of motion of the brownian particle can be written as:[126, 113, 99, 56, 4]

m
dv(t)

dt
=−ξ v(t)+R(t) (64)

with R(t) representing the random force, equivalent to the one from Mori - Zwanzig approach,

while ξ is friction coefficient. One of the assumptions taken in the Langevin equation (64) is

that the frictional force at time t is proportional only to velocity v at the same time t, which

means that the diffusing particle adapts instantaneously to changes in surrounding medium and

that the history of the system doesn’t affect particle’s motion in the present time. This assump-

tion is reasonable when diffusing particle is much bigger that the particles of the surrounding
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bath. However, when the dimensions of the diffusing particle are similar to the dimensions of

the surrounding particles, more generalized assumptions need to be taken into consideration.

Clearly, it would be more realistic to suppose that the frictional force depends on the history

of the system in times earlier than t, which means that certain “memory” is associated with the

motion of the particle. Mathematically, this can be achieved by introducing friction coefficient

ξ (t − s) which is non-local in time and represents the contribution to the total friction force at

time t that is coming from the state of the system at earlier time t − s. Then, by writing fric-

tional force in the form of convolution in time, we obtain more generalized form of Langevin

equation [56, 17, 191, 4]:

m
dv(t)

dt
=−

Z t

0
ξ (t − s)v(s)ds+R(t) (65)

We note that the form of generalized Langevin equation (65) is identical to the form of Mori -

Zwanzig equation (61). Therefore, memory function M(t−s) from Mori - Zwanzig approach is

analogous to the time - dependent friction force ξ (t − s) from generalized Langevin equation.

In addition, both equations have analogous random force terms.

We note that, if we multiply equation (65) and take the average <>, we obtain:

m
dZ(t)

dt
=−

Z t

0
ξ (t − s)Z(s)ds (66)

with Z(t) representing velocity autocorrelation function Z(t) =< v(t)v(0) >[191, 56]. In the

last equation, we used the fact that < R(t)v(0)>= 0, which reflects the nature of random force

R(t), which is uncorrelated to the initial velocity v(0) [99, 56]. We note that form of equation

(66) is identical to the equation (59) for the time evolution of autocorrelation function CAA(t) of

random variable A(t). This shows that Mori - Zwanzig equation (61) represents generalization

of equation (65) to any dynamical random variable A(t).

Since the memory function is formal, one must rely to approximations of it. The simplest

approximation is exactly that of the initial Langevin equation (64), namely to set the memory

function as independent of time:

M(t) = ξ0δ (t) (67)

We will show in the section 3.4.7 that this approximation is not valid for realistic liquids.
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2.3.2 Application to Van Hove correlation functions

Since Mori - Zwanzig formalism can be applied to any dynamical variable (equation 61) or

its autocorrelation function (equation 59), it can be applied to microscopic density ρ(r, t) or

Van Hove function G(r, t). We remind that the van Hove correlation function is the auto -

correlation of the microscopic density, which allows us to directly apply the Mori - Zwanzig

formalism to it. However, Fourier - Laplace transform is required instead of the simple Laplace

transform (the Fourier transform concerns the position variable r, while the Laplace transform

concerns the time variable t).

This formalism can be applied to the microscopic density of specific atomic specie (ρa(r, t) =

∑ai
δ (r−rai

)) or to the total microscopic density (ρ(r, t) = ∑a ρa(r, t)). Since this formalism is

very general, it can also be applied to the vector microscopic variable [56] ρ̂ =
�

ρa(r, t),ρb(r, t), ...,ρ f (r, t)
�

.

In addition, more general full phase space variables, including both positions and momenta, can

be equally used.

The auto - correlation of ρa(r, t) is the self Van Hove function G
(s)
aa (r, t). The auto - corre-

lation of the total ρ(r, t) is the full van Hove function G(r, t). For a system in which there are

totally n atoms belonging to specie a, one can define matrix ρ̂a(r, t):

ρ̂a(r, t) =









ρa1(r, t)
...

ρan
(r, t)









(68)

where ρai
(r, t) represents the microscopic density of atom i of specie a: ρai

(r, t) = δ (r−rai
(t)).

The correlation function becomes then a correlation matrix :

P̂a(r, t) = {Ρa;i j = G
(s)
a;i j(r, t)} (69)

Similarly, for the total density in a system composed of totally f different atomic species, the

vector density is:

ρ̂(r, t) =









ρa(r, t)
...

ρ f (r, t)









(70)

and the corresponding correlation matrix of the total van Hove functions:

P̂(r, t) = {Ρab = Gab(r, t)} (71)
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In order to deal with the Mori - Zwanzig formalism, one requires the Fourier - Laplace trans-

form of these matrices. Spatial Fourier transform (r → k) of Pab(r, t), denoted with Pab(k, t), is

equivalent to intermediate scattering function Fab(k, t):

Pab(k, t) = Fab(k, t) (72)

,while the time Fourier transform (t → ω) of Pab(k, t), denoted with Pab(k,ω), gives the dy-

namical structure factor Sab(k,ω):

Pab(k,ω) = Sab(k,ω) (73)

The MZ equation for P̂(k, t) is given with:

∂

∂ t
P̂(k, t) =−

Z t

0
dsM̂(k, t − s)P̂(k,s) (74)

while time - Laplace transform (t → z) of the same equation gives:

P̂(k,z)
�

izÎ− M̂(k,z)
�

= P(k, t = 0) (75)

We note that Pab(k, t = 0) = Sab(k), while one can define a dynamical structure factor matrix

Ŝ(k,z) as time - Laplace transform of P̂(k, t), instead of usual time Fourier transform Ŝ(k,ω).

Using these analogies and the SSOZ equation (44), we can rewrite the Mori - Zwanzig equation

above as:

Ŝ(k,z)T̂(k,z) = Î (76)

with

T̂(k,z) =
�

izÎ− M̂(k,z)
�

Ŝ−1(k) =
�

izÎ− M̂(k,z)
�

Γ̂(k) (77)

This equation suggests that the memory function M̂(k,z) could represent a dynamical equiva-

lent of the atom - atom direct correlation matrix Ĉ(k), which is part of the Γ̂ matrix as in Eq.(45),

similarly like M̂(k,z) is contained in T̂(k,z) matrix. Matrix T̂(k,z) is then supposed to be ob-

tained by the inversion of Ŝ(k,z) matrix, which is related to Ŝ(k,ω) with known relation:[56]

Ŝ(k,ω) = lim
ε→0

1
π

Re
�

Ŝ(k,z = ω + iε)
�

(78)
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2.3.3 Approximations of dynamical correlation functions

We will demonstrate that the self van Hove function can be approximated with a simple Gaus-

sian function. However, it is important to keep in mind that this approximation is valid only

in diffusive regime, when t → ∞. The origin of this approximation comes from microscopic

diffusion equation, which has identical form as Fick’s equation, which describes the dynamics

of liquids in hydrodynamic regime. This equation is, in microscopic case, given with: [56]

∂

∂ t
ρ(s)(r, t)+∇j(s)(r, t) = 0 (79)

,with j(s)(r, t) being the flux associated with microscopic density ρ(s)(r, t). The solution of

equation (79) is given with:[56]

j(s)(r, t) =−D∇ρ(s)(r, t) (80)

where D is the self-diffusion coefficient. Combining both equations (79) and (80) leads to:

∂

∂ t
ρ(s)(r, t) = D∇2ρ(s)(r, t) (81)

,which can be written in k-space as:

∂

∂ t
ρ(s)(k, t) =−Dk2ρ(s)(k, t) (82)

The solution of equation (82) is given with:

ρ(s)(k, t) = ρ(s)(k, t = 0)exp
 
−Dk2t

�

The autocorrelation function of ρ(s)(k, t) is then given with;

F(s)(k, t) = exp(−Dk2t) (83)

The corresponding van Hove function is given by the inverse Fourier transform of F(s)(k, t):

[56]

G(s)(r, t) =
1

(4πDt)
3
2

exp
�

− r2

4Dt

�

(84)

whose time Fourier transform gives the following form for the self dynamical structure factor:

[56]

S(s)(k,ω) =
1
π

Dk2

ω2 +(Dk2)2 (85)

In practice, none of these form fits properly the self dynamical correlation of realistic liquids,

except in the t → ∞ regime, or equivalently small ω → 0 limit.
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In addition, if we approximate the memory function with:

M(k, t) = M(k)δ (t) (86)

we can write the Mori - Zwanzig equation for F(k, t) in form:

∂F(k, t)

∂ t
=−M(k)

Z t

0
δ (t − s)F(k,s)ds (87)

which leads to simpler equation for the time evolution of F(k, t):

∂F(k, t)

∂ t
=−M(k) ·F(k, t) (88)

with the solution given with:

F(k, t) = F(k, t = 0) · exp [−t ·M(k)] (89)

In the section 3.4.7, we will demonstrate that this simple approximation of memory function

fails to describe the dynamics in realistic liquids.
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2.4 Molecular dynamics simulations

2.4.1 The basic theory of molecular dynamics

In order to start a molecular dynamics simulation of any liquid, it is necessary to have an initial

configuration, which determines the starting coordinates and velocities of all atoms composing

the liquid. First, atoms are put inside a simulation box of given dimensions, where dimen-

sions are determined by the density of the liquid at desired temperature. Initial velocities are

determined by Maxwell distribution at given temperature, such that the total momentum of

the system is equal to zero. The time evolution of the system composed of N atoms is then

determined with classical equations of motions [56]:

mi
d2ri

dt2 = Fi ; i = 1, ...,N (90)

where i denotes each atom in the system. In order to reach the equilibrium at given thermody-

namic conditions, it is necessary to let the system run for a certain period of time [3]. In this

work, typical equilibration time was 1 ns for all the system studied.

The force
−→
Fi on each atom i is obtained with [3]:

Fi =−∇iV (r1,r2, ...,rN) ; i = 1, ...,N (91)

where the potential V of the system is the function of coordinates of all atoms. Potential V is

composed of intramolecular and intermolecular contributions [3]. Intramolecular contribution

comes from interactions of atoms inside (“intra”) the same molecule, while intermolecular part

comes from the interactions between (“inter”) different molecules. Hence, intramolecular con-

tribution is related to variations of covalent bond lengths (2 - body contribution), variations of

angles between covalent bonds (3 - body contribution) and variations of dihedral angles (4 -

body contribution) from equilibrium value.

Intramolecular potentials

The intramolecular contribution related to stretching of the covalent bond between atoms i

and j, V
(b)
i j , is usually described with harmonic potential [1]:

V
(b)
i j =

k
(b)
i j

2
(ri j − r

(0)
i j )2 (92)

where ri j represents the separation between bound atoms i and j, while r
(0)
i j is the length of the

bond in non - stretched state. Constant k
(b)
i j depends of the model used. In addition to harmonic

potential, anharmonic potentials can be used if necessary, like Morse potential or cubic bond

stretching potential [1].
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Similarly to V
(b)
i j , the intramolecular contribution V

(a)
i jk , related to vibrations of intramolecular

angles, θi jk, enclosed by bonds between atoms i j and jk, is most commonly described with

harmonic potential [1]:

V
(a)
i jk =

1
2

k
(a)
i jk (θi jk −θ

(0)
i jk )

2 (93)

where θ
(0)
i jk represents the angle enclosed by i j and jk bonds in equilibrium state.

Variations of dihedral angle between planes i jk and jkl are taken into account when molecules

need to remain planar (like in the case of aromatic rings). The harmonic dihedral potential V
(d)
i jkl

is given with [1]:

V
(d)
i jkl =

1
2

k
(d)
i jkl(ξi jkl −ξ

(0)
i jkl) (94)

where ξ
(0)
i jkl represents the angle between i jk and jkl planes in equilibrium state. Constants k

(b)
i j ,

k
(a)
i j , k

(d)
i j , together with r

(0)
i j , θ

(0)
i jk and ξ

(0)
i jkl are characteristic of each model. We note that we

used models with rigid bonds in this work, where the length of covalent bonds remains fixed

during the simulation.

Intermolecular potentials

Intermolecular potential is composed of Lennard - Jones component, describing Van der Waals

interactions, and Coulomb component, as given by equation (1) in the Introduction. Equation

for potential energy V , with parameters σ , ε , Z from equation (1), together with k
(b)
i j , k

(a)
i j , k

(d)
i j ,

r
(0)
i j , θ

(0)
i jk and ξ

(0)
i jkl mentioned earlier in this section, collectively represent a force - field. Force

- fields are usually obtained by fitting of the mentioned parameters to the experimental data,

usually obtained by thermodynamic or spectroscopic measurements. In this work, SPC/E [189]

model of water has been used, while OPLS (united - atom) models have been used to model

methanol [71], ethanol [71], DMSO [175] and propylamine [150]. Hexane has been modeled

with TraPPE model [104]. Force - field parameters water, methanol and ethanol are shown in

Figures 6, 7 and 8 respectively, since these models have been used extensively in this work.

Figure 6: Force - field parameters of SPC/E model of water. Lennard - Jones parameters (σ
and ε) and partial charges (Z) are listed in the table for each atom. The sketch on the right side
shows the lengths of intramolecular bonds and angles.
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Figure 7: Force - field parameters of OPLS (united - atom) model of methanol. Lennard - Jones
parameters (σ and ε) and partial charges (Z) are listed in the table for each atom. The sketch
on the right side shows the lengths of intramolecular bonds and angles.

Figure 8: Force - field parameters of OPLS (united - atom) model of ethanol. Lennard - Jones
parameters (σ and ε) and partial charges (Z) are listed in the table for each atom. The sketch
on the right side shows the lengths of intramolecular bonds and angles.
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Integration algorithms

When both intramolecular and intermolecular interactions are known, it is possible to solve

equations of motions (90). These equations are commonly solved with the application of nu-

merical algorithms, such as Verlet [173], velocity - Verlet [169], Leapfrog [65] or predictor -

corrector algorithm [7]. Verlet algorithm is one of the most commonly used algorithms. If ri(t),

vi(t) and ai(t) represent the position, velocity and acceleration respectively of particle i at time

t, it is possible to account for the position at t +Δt by the application of Taylor expansion:

ri(t ±Δt) = ri(t)± vi(t)dt +
1
2

ai(t)Δt2 ±O(Δt3) (95)

where O(Δt3) denotes the error in the estimation of the position at t ±Δt. If one sums up the +

and −cases of equation (95), we obtain:

ri(t +Δt)+ ri(t −Δt) = 2ri(t)+ai(t)Δt2 (96)

Similarly, if we subtract − case from + case, we obtain:

ri(t +Δt)− ri(t −Δt) = 2vi(t)dt (97)

We note that, in order to obtain positions of all particles at t +Δt, it is sufficient to know the

forces (ai(t) =
F i(t)

mi
) at time t on each particle and previous positions (ri(t) and ri(t −Δt)),

without knowing the velocities vi(t) at time t (see equation 96). However, the Verlet algorithm

is not “self - starting”, meaning that another algorithm should be used in order to obtain ri(Δt)

and ri(2Δt).

One of the mathematically analogous variants of Verlet algorithm is known as “velocity - Ver-

let”. In this algorithm, positions at t +Δt are obtained with:

ri(t +Δt) = ri(t)+ vi(t)Δt +
1
2

ai(t)Δt2 (98)

, while velocities at t +Δt are obtained with:

vi(t +Δt) = vi(t)+
Δt

2
[ai(t +Δt)+ai(t)] (99)

Although both Verlet (equations 96 and 97) and velocity - Verlet (equations 98 and 99) are

mathematically equivalent, velocity - Verlet is self - starting and the involvement of additional

algorithms is not neccessary. In addition, this algorithm minimizes roundoff errors. However,

it is computationally more demanding, since the storage of velocities is required for each time

step.

Finally, we will show the “leap - frog” Verlet’s algorithm, which has been used in this work. In
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this algorithm, positions at t +Δt are calculated based on positions at time t and velocities at

mid - step time t + 1
2Δt:

ri(t +Δt) = ri(t)+ vi(t +
1
2

Δt)Δt (100)

,while velocities are calculated with:

vi(t +
1
2

Δt) = vi(t −
1
2

Δt)+ai(t)Δt (101)

The algorithm is called “leap - frog” because calculation of velocities vi(t +
1
2Δt) occurs be-

fore (“jumps ahead”) the calculation of positions ri(t). Similarly to the original Verlet, this

algorithm is also not “self - starting”, since the term vi(
1
2Δt) requires involvement of addi-

tional algorithms. However, this algorithm is time - reversible, which makes it different from

previously mentioned algorithms. Time - reversibility is important because it guarantees the

conservation of energy, angular momentum and other conserved quantities. For example, this

algorithm is ideal for solving problems in orbital dynamics.

Since molecular dynamics simulations deal with systems of finite size (i.e. with certain number

of particles put in simulation box of given size), it is necessary to minimize finite - size effects,

in order to obtain results which resemble real macroscopic systems as much as possible. This

can be conveniently done by the application of periodic boundary conditions [3] on selected

integrational algorithm. Periodic boundary conditions imply the existence of infinite number

of copies of the simulation box, as illustrated in Figure 9, where the simulation box is shown

in the center (grey particles). As one particle leaves the box (indicated with the arrow), it re -

enters the box from the other side. The positions and momenta of all particles are the same in

all the boxes.
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Figure 9: Visualization of periodic boundary conditions. Central box (filled with grey particles)
represents the simulation box, while surrounding boxes (filled with black particles) represent
copies of the central box. Positions and momenta of all particles are the same in all copies
of the central box. Once a particle leaves the central box, it re - enters on the other side, as
illustrated with black arrows.

When considering particularly interactions between particles, where inter-particle separation

plays a key role, minimum image convention [3] needs to be applied, in order to prevent ac-

counting for the same particle twice (once in the original box and once in the copy). Let us

consider two particles, A and B, with respective coordinates (xA,yA,zA) and (xB,yB,zB), which

are put in the simulation box of dimensions (Lx,Ly,Lz). The x - separation between the parti-

cles is Δx = |xA − xB|. If Δx < Lx

2 , the Δx is taken into account for computation of inter-particle

potential. However, if Δx > Lx

2 , the Δx needs to be corrected, such that it represents the x -

separation between nearest copies of particles A and B:

Δx
′
= Lx −Δx (102)

The same needs to be applied for Δy and Δz, if Δy >
Ly

2 and Δz > Lz

2 :

Δy
′
= Ly −Δy (103)

Δz
′
= Lz −Δz (104)

We note that minimum image convention is essential also for the computation of dynamical

quantities, such as Van Hove functions, as it will be shown later on.
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Temperature and pressure coupling

In order to calculate statistical quantities of a simulated system, simulations are run in dif-

ferent types of statistical ensembles. An ensemble represents the collection of all possible

microstates for which certain thermodynamical properties are constant. For example, in canon-

ical ensemble, N (number of particles), V (volume) and T (temperature) are kept constant. In

isothermal - isobaric ensemble, N,T and p (pressure) are constant [48]. It is important to note

that all ensembles are equivalent in the thermodynamic limit, so the thermodynamic properties

of a system can be calculated as an average in any ensemble (or the most convenient one) [3].

In order to keep the temperature or pressure constant in simulation, we use different thermostat

or barostat algorithms. Let us consider the most simple thermostat - velocity re-scaling ther-

mostat [3]. In the system with 3N degrees of freedom, temperature at time t, T (t) ,is related to

the total kinetic energy K of the system with:

K

3N
=

kBT (t)

2
(105)

where the total kinetic energy K is defined with:

K =
3N

∑
i=1

mv2
i

2
(106)

which leads to the expression for temperature T :

T (t) =
2

3NkB

3N

∑
i=1

mv2
i

2
(107)

If one wants to change the temperature of the system from T (t) to T0 (bath temperature), one

possibility is to scale the velocities vi with factor λ :

T0 =
2

3NkB

3N

∑
i=1

m(λvi)
2

2
= λ 2T (t) (108)

with λ being equal to:

λ =

s
T0

T (t)
(109)

Another modification of velocity - re-scaling thermostat is Berendsen thermostat [10], where

the deviation ΔT from from the bath temperature T0 relaxes according to the equation:

ΔT

dt
=

T0 −T (t)

τT
(110)
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where dt is equal to the time step in simulation, while τT is the time constant attributed to the

thermostat. We note that, if we choose τT = dt, we obtain the thermostat analogous to simple

velocity - re-scaling. If τT is too large, thermostat becomes inactive, since large amount of time

is required to damp temperature deviations from the bath temperature. With τT being too small,

system exhibits non - realistic temperature fluctuations. In molecular dynamics simulations of

liquids, typical value of τT is 0.4 - 0.5 ps for equilibrium runs, while equilibration is usually

performed with τT = dt. Finally, the velocity - re-scaling factor is, in the case of Berendsen

thermostat, equal to:

λ =

vuut1− dt

τT

!
T0

T (t − dt
2 )

−1

%
(111)

,with the temperature T (t − dt
2 ) being calculated at t − dt

2 due to the application of leap - frog

algorithm. We note that both simple velocity - re-scaling and Berendsen thermostat affect fluc-

tuations of kinetic energy. Therefore, rigorously speaking, this thermostat does not generate

proper canonical ensemble. However, this error scales with 1/N and is, therefore, small in the

case of very big systems. Hence, most of ensemble averages will remain unaffected for large

systems. However, in order to reproduce canonical ensemble more accurately, Nose - Hoover

thermostat [120][66] could be used.

The control of the system pressure can be achieved by application of Berendsen barostat [10],

which is equivalent to its temperature counterpart:

ΔP

dt
=

P0 −P

τP
(112)

,with τP being the time constant analogous to τT . Instead of velocity scaling, the scaling of

coordinates and box sides is performed, with the scaling factor η :

η = 1− κT dt

3τP
(P0 −P) (113)

,with κT representing isothermal compressibility. Since κT affects only the time constant

τP of the pressure relaxation, and not the average pressure itself, its value can be estimated.

For example, many molecular dynamics program packages use the compressibility of water

(κT = 4.5 ·10−5 bar−1) at ambient conditions [46]). However, this barostat does not account

for pressure fluctuations accurately. This is why this barostat is ideal for equilibration pur-

poses, while production runs can be performed with Parrinello-Rahman barostat [124, 125],

analogously to previously mentioned Nose - Hoover thermostat, if precise pressure fluctuations

need to be accounted for.
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2.4.2 Liquidlib program package

In this work, modified version of Liquidlib program package [180] has been used for the calcu-

lation of Van Hove correlation functions. The modification has been done by our group and was

needed because the original version of the program did not account for the asymptotes (r → ∞)

of the Van Hove function correctly, due to an error in the application of minimum image con-

vention on the calculation of mentioned functions. Furthermore, the original package was able

to perform calculations of Van Hove functions only for correlations between same atom types

(e.g. OO correlations). However, for the purposes of this work, correlations between different

atom types were also required (e.g. OH correlations) so we modified the code accordingly, such

that it accounts for those correlations also. In the rest of this section, we will briefly outline the

basics of how this program package operates.

In order to calculate Van Hove correlations, Liquidlib uses trajectories as the input, which

can be in .trr, .xtc, .xyz or .dump format. Our trajectories were generated by Gromacs program

package [61, 147, 172] so we used trajectories in .trr format. Trajectories contain positions and

velocities of all particles in the system for the series of time frames from t = 0 until t = T ,

spaced by chosen Δt. For the purpose of this calculation, velocities were not required, but

merely atomic positions.

In order to calculate the total Van Hove function at time t = τ , G(r,τ), for the case of cor-

relations between atoms X (reference atoms) and Y, program does the following. First, the

time frame t = 0 is read from the trajectory and positions of all reference atoms (i.e. X atoms)

are taken as origins. We denote those origins with O
(0)
i , with i = 1, ...,N, where N represents

the number of X particles in the system, while superscript (0) indicates that origins are taken

from the time frame t = 0 ·Δt. Then, the histogram H0(r) of number of Y particles from the

time frame t = τ is made, where r represents the distance of Y particle from the origin:

H0(r) = ∑
O
(0)
i

ni(r,r+dr) (114)

,where ni(r,r+dr) represents the number of Y particles in a sphere shell of radius r and thick-

ness dr, centered at the origin O
(0)
i .

After all origins O
(0)
i from time frame t = 0 have been accounted for and histogram H0(r) is

completed, program switches to the next time frame (t = 1 ·Δt) and makes histogram H1(r) of

number of Y particles from the time frame t = τ +Δt, with origins O
(1)
i now corresponding to

positions of X particles in time frame t = 1 ·Δt. The same procedure is done repetitively untill

finally the histogram H f is calculated, with f denoting the number of frames over which the
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statistical average is performed. Ultimately, the total histogram Htotal is equal to:

Htotal(r) = H1(r)+H2(r)+ ...+H f (r) (115)

Here, we are interested in averaged histogram:

H(r) =
Htotal(r)

N f
(116)

where H(r) represents the average number of Y particles at distance r from the origin at time

τ , assuming that the density of X particles at the origin is non - zero at t = 0.

In order to obtain total Van Hove function, averaged histogram is normalized with the differen-

tial volume of the sphere shell:

G(r,τ) =
H(r)

4πρYr2dr
(117)

with ρY representing the density of Y particles in bulk.

Self - Van Hove function, Gs(r,τ) is calculated in similar fashion, with the exception that

ni(r,r+dr) (see equation 114) now only accounts for the particle which was located at origin

O
(k)
i at t = k ·Δt. Hence, ni(r,r+dr) can be either 0 or 1. Histogram H(r) obtained in this way

can be seen as the probability that particle diffuses distance between r and r+ dr during time

interval τ . After Gs(r,τ) is obtained, distinct Van Hove function Gd(r,τ) can be obtained by

simple subtraction: Gd(r,τ) = G(r,τ)−Gs(r,τ).

We noted earlier that the application of minimum image convention is required for the com-

putation of Van Hove functions. Minimum image convention needs to be applied because the

calculation of Van Hove functions is based on calculation of inter - atomic separations. For

each separation, it is necessary to make sure that the distance between the nearest copies of

atomic pairs is taken into account, such that same pairs are not accounted for multiple times

into statistics.

After Van Hove functions are known, F(k, t) and S(k,ω) can be obtained by simple space

and time Fourier transformations, according to equations (118) and (119) [56]:

F(k, t) =
Z ∞

0
G(r, t)exp(−ikr)dr (118)

S(k,ω) =
Z ∞

−∞
F(k, t)exp(−iωt)dt (119)
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3 Results and Discussion

3.1 Static structural properties of associative systems - the basics for dy-

namics

3.1.1 Water

The importance of water in our daily life and biological activity is very well-known. Water

is known for numerous anomalies. [19, 21, 47, 49, 121, 156, 91] One such anomaly is the

existence of a density maximum at 4oC under ambient conditions. Naturally, this feature is

absent from simple liquids, where the density monotonically decreases with increasing temper-

ature. The existence of this density maximum causes the density of solid phase to have lower

density than the liquid phase, which is visible simply in the fact that ice floats in the liquid.

Moreover, thermodynamic response functions, such as specific heat capacity (cP), isothermal

compressibility (κT ) and thermal expansion coefficient (αP) also show anomalous behavior.

While isothermal compressibility of simple liquids monotonically increases with increasing

temperature, in the case of water, this occurs only for temperatures t > 46oC, while, at lower

temperatures, isothermal compressibility of water increases with decreasing temperature, ex-

hibiting its minimum at t = 46oC. Another specificity of water is hidden in the unusual behavior

of it specific heat capacity (cP), which increases with decreasing temperature when t > 35oC.

Normally, in simple liquids, specific heat monotonically decreases with decreasing tempera-

ture. Moreover, linear expansion coefficient (αP) of water becomes negative at t < 4oC, in-

dicating that the volume increases with decreasing temperature, which is in accordance with

the density anomaly mentioned earlier. The physical origin of these anomalies has not been

completely understood yet. However, it is commonly accepted that anomalous behavior of

various properties of water must be related to specificities in hydrogen bonding network of

water.[19, 21, 47, 49, 121, 156, 91] This is precisely why water has been the subject of numer-

ous studies recently. In this work, water is important because it is the simplest representative

of hydrogen bonding species, consisting only of oxygen and hydrogen atoms. In this context,

water can be seen as a crossover between simple liquids, which do not form hydrogen bonds,

and more complex associative liquids, like alcohols, which consist of additional alkyl group of

atoms covalently bound to hydrogen bonding hydroxil groups. Hence, understanding dynamics

of water is a precursor for understanding dynamics of associative species in general.

In this subsection, well-known static structural properties of water, which are essential for

understanding dynamics, will be presented and discussed. Structure factor, which is the main

observable in experiments, will be taken as the starting point. Structure factors obtained by

X-ray diffraction experiments and by SPC/E water model is presented on Figure 10 (taken

from Ref.[131]). Since X-rays mostly interact with electron clouds around nuclei of atoms,

hydrogen atom of water is nearly invisible in this type of experiments. [69] This means that
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the total structure factor obtained by experiments (represented by circles on Figure 10) mainly

describes structural arrangement of O atoms in the liquid. This explains why the experimen-

tal data shows fairly good agreement with OO partial structure factor (red line on Figure 10)

obtained in computer simulations.

Figure 10: Structure factor of water obtained by experiments (circles) and partial structure
factors of OO (red), OH (green) and HH (blue) contributions obtained by SPC/E model of
water. Figure taken from Ref.[131]

Structure factor of water is characterized by the split-peak feature (indicated by the arrows in

Figure 10), consisting of the inner (smaller) peak at k ≈ 2 Å−1, and the outer (taller) peak

at k ≈ 3 Å−1. The inner peak, which would correspond to r ≈ 3.14 Å, has been interpreted

as the main diffraction peak. [127, 160, 158] Indeed, for simple liquids, like Lennard-Jones

(LJ) liquid for example, the main diffraction peak is always centered at k ≈ 2π
σ , where σ is the

atomic diameter of LJ particle [131]. However, the diffraction patterns of simple liquids do not

exhibit split-peak feature, which poses the question about the nature of the split-peak found in

structure factor of water. In order to further discuss the differences between simple liquids and

water, it would be useful to compare the structures of these two systems by analyzing g(r) and

S(k) functions. Figure 11 shows functions gOO(r) (main panel) and S(k) (inset) of water (blue

lines) and simple LJ liquid (red lines), where the value of LJ parameter σ is equal to 3.16 Å,

the length of diameter of O atom in water.
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Figure 11: (a) Main panel: radial distribution functions gOO(r) of simple LJ liquid (red line)
and water SPC/E (blue line) obtained by molecular dynamics simulations Inset: Structure fac-
tors SOO(k) of simple LJ liquid (red line) and water SPC/E (blue line) obtained by Fourier
transformation of gOO(r) functions from the main panel. (b) 2D illustration of the shell struc-
turing in water. The two-sided arrow indicates the separation between the first two maxima of
radial distribution function gOO(r) of water.

The main panel of Figure 11 shows two marked differences between gOO(r) functions of LJ

liquid and water. The first difference is related the r-position of the the first maximum of g(r),

which is shifted to smaller r-value for water. The second difference is related to the period of

spatial oscillations of g(r), which is smaller for water (∼ 0.6 σ) than for LJ liquid (∼ σ), as

shown in Figure 11. Let us discuss these differences in more details, starting from the observed

shift of the first maximum. In LJ liquid, particles interact with LJ potential. This potential is

strongly repulsive at distances shorter than atomic diameter σ , while it is attractive at higher

distances. In such liquid, the characteristic separation between first neighbours is found at

nearly 1.1 σ , as shown in Figure 12a. This separation corresponds exactly to the r-position of

the first maximum of g(r) for LJ case in Figure 11 a.

The distribution of g(r) around r ≈ 1.1 σ represents a measure of probability of finding first

neighbours at some particular distance. Clearly, this probability is the highest for r ≈ 1.1 σ ,

meaning that the probability of particularly this separation between first neighbours is the high-

est. As slowly shifting from this distance to shorter distances, the probability gradually de-

creases until it finally reaches nearly zero value at r ≈ 0.9 σ . This is the critical separation

at which repulsive LJ force becomes too strong, leading to great majority of particles being

repelled from further approaching. However, in the case of water, this critical distance is some-

what shorter, being at r ≈ 0.75 σ instead of r ≈ 0.9 σ . Moreover, the first maximum appears at

r ≈ 0.85 σ instead at r ≈ 1.1 σ , as in LJ case.
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This shift of the first maximum towards smaller r-value is direct consequence of the fact that

water is a polar molecule, with oxygen atom being negatively charged and hydrogen atom

positively charged. Positively charged hydrogen atom and negatively charged oxygen atoms

of distinct molecules interact with Coulomb interaction, the interaction which is absent in LJ

liquid composed of non-polar particles. At distances r ∼ σ , attractive Coulomb interaction

between unlike charges dominates repulsive LJ potential, leading to the overall shift of first

neighbours shell at shorter distances, as depicted in Figure 12b. Furthermore, we observe that

the distribution of g(r) of water around the first maximum is much narrower than the same

distribution in LJ liquid. This feature demonstrates how Coulomb interaction reduces the pos-

sible distances between first neighbours inside very short interval around first maximum. This

interval is much wider in case of LJ liquid, which is characterized by the absence of Coulomb

potential.

Figure 12: Illustration of the OO average separation between the first neighbours in simple LJ
liquid (a) and water (b)

Let us now discuss the second major difference of gOO(r) functions illustrated in Figure 11,

related to the period of spatial oscillations of these functions. As shown in the figure, gOO(r)

of water is characterized by shorter oscillatory period (∼ 0.6 σ) than LJ liquid (∼ σ), indicat-

ing that the separation between the centers of the first and second coordination shell is shorter

in water than in LJ liquid. At this point, one potentially might ask how it is possible to have

any oxygen atoms of water at separation as small as 0.6 σ . When the main features of the

first maxima were discussed, we stated that the critical value at which first neighbours can be

separated is found at r ≈ 0.75 σ for water, indicating that shorter separations between the first

neighbours, such as 0.6 σ , are highly unlikely. Hence, previous arguments might seem con-

tradictory, since the separation between first and second neighbours seems to be precisely 0.6 σ .

The key point here is that the separation of 0.6 σ does not correspond to the distance between

first and second neighbours, but to the distance between first and second neighbours shells.

Separation of two atoms which are located in shells separated by distance d can be much big-

ger than d. Distance d is the minimum possible distance between the atoms, which realizes

only in the case when both atoms are located along the same radial direction from the origin.

This is illustrated in Figure 11b, where the 2D arrangement of water molecules is presented,
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with the characteristic separation between first and second neighbours shell being 0.6 σ . In

this example, the distance between any oxygen atom within the first shell and any oxygen

atom of the second shell is clearly bigger than 0.6 σ . Although this is a 2D illustration, the

same conclusions can be applied also for real 3D water, which is characterized by well-known

tetrahedral arrangement of molecules, induced by hydrogen bonding. In this type of arrange-

ment, tetrahedral angular restrictions lead to characteristic charge ordering of molecules into

shells spaced by characteristic 0.6 σ distance. This arrangement is manifested as the succes-

sive appearance of peaks separated by 0.6 σ in radial distribution function gOO(r) of water.

Conversely, LJ liquid is characterized by ordinary disorder characteristic to any simple liquid.

In this type of packing, atoms are distributed in shells spaced by characteristic σ separation,

which is manifested as the successive appearance of peaks separated by σ in radial distribution

function gOO(r) of LJ liquid.

However, this analysis would be incomplete without discussing the tail details of both radial

distribution functions shown in Figure 11 (left panel), since oscillatory features of the two func-

tions are preserved even at distances larger than 3.5 σ , which was taken as the upper limit in

the Figure 11. The details of these functions at larger r-values are shown in Figure 13. In the

case of LJ liquid, we note the same spatial period of oscillations (σ ) as in earlier analysis from

Figure 11. However, g(r) of water shows additional feature which was not obvious in Figure

11. On this scale, packing structure of water seems to oscillate with period σ , which is visible

from the fact that both functions exhibit peaks at k ≈ 2.25 σ , k ≈ 3.25 σ and k ≈ 4.25 σ , as

seen from Figure 13. However, we note that the peak at k ≈ 3.25 σ of g(r) of water is split into

two smaller peaks separated by approximately 0.6 σ , which corresponds to the spatial period

deduced earlier by the analysis from Figure 11. Hence, packing structure of water seems to be

dominated by two spatial frequencies, the first being determined with period σ , while the sec-

ond one by period 0.6 σ . The latter seems to dominate the shape of radial distribution function

at shorter distances (see Figure 11) , while the latter one at larger distances (see Figure 13).

Conversely, radial distribution function of simple LJ liquid is dominated by one single spatial

period, σ , at all distances (see 11).
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Figure 13: Zoomed view on g(r) functions from the main panel of Figure 11a

At this point we are in good position to discuss the main properties of structure factors of simple

LJ liquid and water, which are presented in the inset of Figure 11 (left panel). The main diffrac-

tion peak of simple LJ liquid is found at k ≈ 2πσ−1, while the structure factor of water exhibits

split-peak feature mentioned earlier, consisting of the inner (smaller) peak at k ≈ 2πσ−1, and

the outer (taller) peak at k ≈ 3πσ−1. This leads us to the already posed question about the

origin of the split-peak feature. In reciprocal space, the value k ≈ 2πσ−1 corresponds to r ≈ σ

in real space, while k ≈ 3πσ−1 corresponds nearly to r ≈ 2
3σ . One can immediately notice that

the two r-values, σ and 2
3σ , correspond to oscillatory periods of radial distribution functions

discussed earlier. Hence, the split-peak feature of the structure factor of water appears as the

consequence of the fact that g(r) of water oscillates with 2 dominant spatial frequencies, while

g(r) of simple LJ liquid exhibits a single dominant spatial frequency. The description of water

structure in terms of two fundamental spatial frequencies is in agreement with the general idea

of water being a mixture of charge ordered tetrahedral liquid and ordinary disordered liquid

found in the literature [131, 160]. In this context, charge order in water, which is induced

by dominant Coulomb field, is manifested through the appearance of higher spatial frequency

(i.e. lower spatial period 0.6 σ ) in g(r) correlations, whereas the ordinary disordered behav-

ior is manifested through the lower spatial frequency (i.e. larger spatial period σ ). The latter

frequency is also present in g(r) of simple liquids. Consequently, dual behavior of water is

manifested as the split-peak feature of water structure factor.

In the literature, split-peak feature is commonly interpreted as a signature of tetrahedrality

in water.[117, 159, 160] Indeed, the strong sensitivity of the two maxima to variation of tem-

perature has been observed in various works. [127, 158, 117] There, it was shown that the

amplitudes of the two diffraction peaks increase upon cooling, forming two well-defined dis-

tinct maxima in form of two distinct peaks, instead of being merged in almost one single peak

as in higher temperatures. Since it is well-known that tetrahedrality of water structure enhances
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upon decreasing temperature [127, 158, 117], the sensitivity of the split-peak structure on tem-

perature change clearly demonstrates the relation with tetrahedrality and, consequently, with

charge ordering. In our interpretation, the inner peak (IP) of the structure factor reflects the

disordered nature of water structure similar to the structure of ordinary simple liquids, while

the outer peak (OP) reflects the charge ordered nature of the structure, realized through strong

tetrahedral ordering. Moreover, charge ordered structure could be seen as some type of sub-

structure inside globally disordered structure of water. This interpretation is inspired by result

presented in Figure 13, where we see that the peak at r ≈ 3σ appears in form of two distinct sub-

peaks separated by 0.6σ . Hence, these two sub-peaks represent two distinct sub-shells formed

due to charge ordering. These two sub-shells can be seen as part of one big shell centered at

r ≈ 3σ (shown with dotted blue lines in Figure 13), representing globally disordered structure

of water. Interestingly, this big shell is centered at the same r-value as the one corresponding

to simple LJ liquid, which further supports this argument. In this context, structure of water

can be seen as superposition of charge ordered structure and disordered structure. As a conse-

quence of this structure duality, the main diffraction peak appears in form of two sub-peaks, as

shown earlier.

3.1.2 Alcohols

Structure of alcohols has been the subject of research for long time, primarly because scattering

experiments of alcohols show interesting features in low-k interval of the structure factor. These

features are related to the appearance of pre-peak in k-region 0.3 Å - 1.0 Å. Structure factors

from literature obtained experimentally for linear monols are presented in Figure 14 [146].

Figure 14: Structure factors of linear monols obtained experimentally. Figure taken from Ref.
[143]

Figure 14 shows that the k-value at which pre-peak appears (kP) decreases systematically when

going from lower to higher alcohols [146]. We note that the structure factors presented in Figure
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14 are the total structure factors, which means that they contain contributions of all atom-atom

correlations in the liquid.

In order to interpret the shift of the pre-peak to lower k-values when going from lower to

higher alcohols, it is useful to compare particularly g(r) and S(k) functions describing OO cor-

relations in alcohols versus water. Radial distribution functions of water, methanol and ethanol

are shown in the main panel of Figure 15 in black, red and green colors respectively. The in-

sets show show the tail properties of g(r) which are not visible in the scale of the main panel.

RDF-s of alcohols show marked differences in comparison with the RDF of water, namely the

first peak exhibits higher amplitude in case of alcohols, followed by depletion of the first mini-

mum. The amplitude of the first peak increases as going from lower to higher alcohol. Higher

amplitude of the first peak is the consequence of the fact that the bulk density ρ of oxygen

atoms is lower in higher alcohols than in lower alcohols. In this context, it is useful to remind

that g(r) represents the ratio of local density at distance r from the origin (ρL(r)) with the bulk

density (ρ). Hence, if ρL(r) for specific r is the same for both alcohols, the peak corresponding

to higher alcohol will have higher amplitude, since the denominator of the ratio ρL(r)
ρ will be

lower in the case of higher alcohol. Therefore, the large difference in the amplitudes of the first

peaks observed in Figure 15 is mostly the consequence of the difference in bulk density ρ of

the 3 systems. If the amplitude of the first peak happened to represent the measure of purely the

number of first neighbours, the amplitude for water would be the highest, since water molecules

form in average 3-4 hydrogen bonds, while methanol and ethanol form 2 [152, 141, 5].

Figure 15: Radial distribution functions gOO(r) of water SPC/E (black line), methanol OPLS
(red line) and ethanol OPLS (green line) obtained by molecular dynamics simulations. Insets
(a) and (b) show zoomed views on the same functions.

Turning our attention now to the depletion of the first minimum in RDF of alcohols comparing

to water, this feature reflects the nature of linear aggregation, which reduces the number of

second neighbours in chain-like aggregate [133, 143]. This phenomenon is illustrated in Figure

16, where comparison of shell structuring in water (left panel) and ethanol (right panel) is

presented. Clearly, structure of ethanol is characterized by reduced number of neighbours in
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second coordination shell, which is manifested as depletion of the first minimum in RDF.

Figure 16: Illustration of the shell structuring in water (a) and ethanol (b)

Furthermore, we note that the distance between first and second neighbours shell (0.6 σ ) is

nearly the same for water and alcohols, as demonstrated in the main panel of Figure 15 and in

Figure 16. In addition, the distance between second and third neighbours shell is also charac-

terized by the same distance, as shown in the inset (a) of Figure 15. This indicates that short

ranged correlations of both water and alcohols, which describe charge ordering, are character-

ized by the same spatial period of density correlations (0.6 σ ), the value which in reciprocal

space would correspond to k ≈ 3πσ−1. Indeed, all 3 systems exhibit a diffraction peak at pre-

cisely this k−value, as it will be shown later in the discussion.

Now we put focus on the inset (b) which shows long-ranged density correlations of all 3 sys-

tems. This inset illustrates how the period of the density correlations increases when moving

from water (σ ) to methanol (1.5σ ) and ethanol (2.5σ ), the values which in reciprocal space

would correspond to k-values of 2πσ−1,4
3πσ−1and 4

5πσ−1respectively. Let us now put our

attention to OO partial structure factors of all three systems, which are presented in Figure

15b, with the same color convention as in the left panel. Starting from pre-peaks, we note that

the pre-peaks of methanol and ethanol are centered at k ≈ 4
3πσ−1 and k ≈ 4

5πσ−1, which are

exactly the k−values which correspond to the periods of long-ranged density correlations in

methanol and ethanol, as presented in the inset (b) of Figure 15. Therefore, pre-peaks of the

structure factor describe periodicity of long-ranged correlations in a specific system. Previous

works of this group have shown that the period of long-range OO correlations increases when

moving from lower to higher alcohols [143]. This is a reasonable result and can be explained

as follows. Function gOO(r) can be seen as histogram (normalized with 4πρr2) of number of

atoms O at specific distance r from the reference atom O. When r is small, gOO(r) is dominated

by contribution of atoms which are part of the same cluster as the reference atom. This is the

consequence of the fact that OH clusters are mutually separated by alkyl groups, as explained in
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the Introduction. Hence, within close neighbourhood of the reference atom O, gOO(r) is dom-

inated by neighbouring O atoms within the same aggregate. However, when r is sufficiently

large, contribution of O atoms from neighbouring aggregates becomes more significant. These

atoms are not distributed around the reference atom like they would be in simple disordered

liquid, but their distribution is governed by the existence of neutral alkyl groups, which form

barriers between OH aggregates. The size of these barriers depends on the size of alkyl tails

and, consequently, grows with the size of alcohol molecule. Hence, looking from the origin

point of reference atom O, liquid at large distances will be seen as field of varying density of

O atoms, where the density changes radially when going from smaller to larger distances from

the origin.

It is important to note that even simple liquids can be interpreted in this fashion, since long-

range density correlations of simple liquids also appear in form of oscillations around g(r) = 1.

However, the period of these oscillations in simple liquids is governed by atomic diameter σ ,

while, in alcohols, it is governed by the size of alkyl tails. Therefore, the period of long-range

OO correlations in alcohols can be interpreted as an average distance between OH aggregates

in the liquid. Since pre-peaks of alcohols are centered exactly at k-value corresponding to the

period of these oscillations, pre-peaks contain information about the average distance between

aggregates in a liquid, which has been one of the proposed interpretations of the pre-peak in

the literature [185].

Besides the pre-peak, structure factor of both alcohols exhibit the main peak centered at k ≈
3πσ−1, similarly like water. The origin of this peak is similar to the one for water and is caused

by the same short-range periodicity of density correlations in both methanol and ethanol, with

the characteristic period 0.6 σ , as illustrated in the main panel of Figure 15 and in the inset

(a) of the same figure. However, in addition to the pre-peak and the main peak, structure fac-

tors of both alcohols show an intriguing bump in correlations at k ≈ 2πσ−1, centered at the

same k-position as the inner peak of water structure factor. In the context of water, this peak

was interpreted in terms of σ periodicity of long-range density correlations in water. However,

according to results presented in Figure 15, long-range density correlations of alcohols do not

show such periodicity. In order to interpret this intriguing bump in correlations at k ≈ 2πσ−1

of both structure factors of alcohols, we will decompose the total g(r) of both alcohols into 2

components, as presented in the main panels of Figure 17. The first component is sigmoidal

step function, while the second component is oscillatory part. The sum of the two components

gives the total g(r) functions.
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Figure 17: Main panels: Decomposition of the total gOO(r) functions (orange line) of methanol
OPLS (a) and ethanol OPLS (b) into sigmoidal step function (red line) and oscillatory part (blue
line). Insets: Fourier transformations of the functions from the main panels, with the same color
convention.

The main panels of Figure 17 show g(r) functions of methanol (left panel) and ethanol (right

panel) in orange. The sigmoidal step parts are shown in red, while the oscillatory parts are

shown in blue color convention. Fourier transforms of the functions from the main panel are

shown in the insets by using the same color convention. We note that the FT of the step part

produces a peak at k ≈ 2πσ−1 in both cases. In the case of methanol, this peak emerges in the

total S(k) function as small shoulder-peak at k ≈ 2πσ−1next to the pre-peak, whereas, in the

case of ethanol, this peak emerges as plateau around the same k-value. Hence, the intriguing

bumps at k ≈ 2πσ−1 of both structure factors are mathematical consequence of performing FT

of the step function. This function describes sudden jump in density of neighbouring atoms

when moving from close vicinity of the origin (r < 0.75 σ ), characterized by strong repulsive

forces between interacting atoms, to larger distances. The jump of the step function occurs at

r position which corresponds to the distance of the first coordination shell from the reference

atom. Therefore, the bump at k ≈ 2πσ−1 of the structure factors describes first neighbours

contact interactions, similarly like the small inner peak in the case of water which we discussed

earlier.

The main message of this section is that structure of any liquid, usually described by radial

distribution function, can be seen as superposition of density correlations of different spatial

frequencies. High-frequency (i.e. small period) correlations describe the details in the liquid

structure, whereas low-frequency correlations (i.e. large periods) describe the global features

of the liquid. In reciprocal k-space, global trends are manifested as specific features of small-k

part of the structure factor, whereas the details in the packing structure are hidden at higher

k-values. We note that static functions discussed herein do not contain any information about

changes in liquid structure over time. This the point where the importance of dynamics comes

to light. Dynamics provides a direct answer on how long specific structural features are pre-
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served, both globally and locally. In the context of kinetic time, global features of the density

correlations are directly related to aggregation properties which we are particularly interested

herein. Hence, including a temporal description of global static properties is expected to reveal

the timescale of cluster formation and destruction in microheterogeneous liquids, which is one

of the principal goals of this thesis.
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3.2 Dynamics of neat associative liquids by classical hydrogen bonding

model

3.2.1 Motivation

We have previously discussed structural properties of associative liquids through the analysis

of correlations functions. Static density correlations, g(r), statistically describe local density

ρL(r) of neighbouring particles as the function of distance r from a reference particle located

at the origin O (see t = 0 case of Figure 18). In Figure 18, the reference particle is, at t = 0,

located at the origin O, while the other particles are distributed around the origin. Of course,

g(r) is a statistical quantity, meaning that it represents a distribution of particles obtained as an

average over large number of reference particles (origins), and not only over one single origin.

The important point which should be noted is that the choice of origins, around which the

distribution is being averaged, is obviously not arbitrary. One does not perform an average

over a set of randomly chosen set of origins, but precisely around origins occupied by particles

in the system. The obtained distribution of particles, described by g(r), is greatly influenced by

the choice of precisely this set of origins. Hence, one could interpret g(r) as some type of con-

ditional density of particles at distance r from the origin, under the condition that the density

in origin point is non-zero. Therefore, one could say that the presence of a particle at the origin

induces specific distribution of neighbouring particles around the origin. This distribution of

particles around the origin is described with the radial distribution function g(r).

Figure 18: Illustration of temporal evolution of a microstate from t = 0 until t = nΔt. Mi-
crostates are represented with rectangular shapes filled with red circles, which represent parti-
cles.

Although the reference particle, located at the origin at t = 0, will move from the origin very

quickly, the distribution of neighbouring particles, induced by the reference particle’s presence

at the origin at t = 0, will not vanish instantly, but some relaxation time will be required.

The purpose of extending the static study into dynamic one is precisely to appreciate for the
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timescale of this relaxation time. As already noted, dynamics of liquids in real space can be

conveniently described with Van Hove function G(r, t), which, in specific static case, satisfies

Gd(r,0) = ρg(r). Hence, in t = 0 case, Gd(r, t) is equivalent to g(r) up to the density factor. In

t = Δt case, Gd(r, t) represents a mean radial distribution of particles at time t, obtained as an

average of distributions around the same origins as for t = 0 case, regardless of the density in

those origin points being non-zero or not. We remind that this is not the case when static (t = 0)

correlations are accounted for, when statistical average is performed exclusively over the set of

origins characterized by non-zero density of particles. This is depicted in Figure 18, where we

see that, when t = Δt, origin O (representing one of the origins included in statistical average)

is not occupied by any of particles, meaning that the density of particles in origin point is zero

in this case. Therefore, comparing G(r,Δt) with G(r,0) for specific r, describes how much of

density correlations at t = 0, induced by non - zero density of particles at the origin, is preserved

at t = Δt in average.

Figure 19: Illustration of dynamics of propanol cluster. In panels (a) and (b), red circles rep-
resent oxygen atoms, white circles represent hydrogen atoms, and light blue circles represent
atoms within alkyl tails. The reference atom (in the origin at t = 0) is marked with black arrow.
Panel (c) shows Gd(r, t) correlations between O atoms at t = 0 and t > 0.

Let us consider a particular case of Gd correlations between O atoms (represented by red cir-

cles in Figure 19a and Figure 19b), when selected r corresponds to the position of the first peak

(marked with R1 in Figure 19c). In static t = 0 case, the first peak of Gd(r,0), centered around

r = R1, is caused by hydrogen bonded O neighbours being distributed around reference O atom

at distance around r = R1. In dynamic t > 0 case, Gd(r, t > 0) is characterized by decrement

of correlations around r = R1, compared to Gd(r,0). Although the first peak of Gd(r,0) is a

clear indication of hydrogen bonding, the decrement of Gd correlations around r = R1 at larger

t is not the consequence of only hydrogen bond breaking, but also of the collective diffusion of

hydrogen bonded pairs away from their starting position at t = 0. Therefore, the t - decay of the

first peak is not dependent only of the lifetime of typical hydrogen bond, but also of diffusion.
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This is shown in Figures 19a and 19b, which illustrate dynamics of a propanol cluster, centered

at the origin at t = 0 (Figure 19a). In the context of this illustration, the first maximum of

Gd(r,0) would be a consequence of 2 hydrogen bonded O neighbours, distributed around the

reference O atom (indicated with arrows in Figure 19a and 19b). At t > 0 (Figure 19b), the

reference atom may be dislocated from the origin, without breaking hydrogen bonds with its

neighbours. In Figure 19b, the dislocated cluster at t > 0 is shown in high-contrasted colors,

while the cluster shown in low-contrasted colors is the same cluster at t = 0. The decrement

of correlations at r ≈ R1 in Gd(r, t > 0), compared to Gd(r,0), is then not manifestation of

hydrogen bond breaking, but simply of the fact that reference atom is not located at the ori-

gin anymore when t > 0. In general, the decrement of correlations at r ≈ R1 in Gd(r, t > 0),

compared to Gd(r,0), is then combined effect of both hydrogen bond breakings and diffusion.

However, if one wants to study the timescale related to the lifetimes of hydrogen bonded pairs

exclusively, more convenient mathematical tools than density correlations functions should be

used.

In the context of associative liquids, dynamics of hydrogen bonded pairs in classical systems

has been appreciated through, among others, the extensive studies of probability distribution

of hydrogen bonding lifetimes [105, 84, 95, 101, 176, 96, 122]. In classical modeling, hydro-

gen bonding is described as attractive electrostatic interaction between intermolecular pair of

positively charged hydrogen atom, covalently bound to a donor atom, and negatively charged

acceptor atom [60]. In the context of pure hydrogen bonding analysis, it is well-known that

classical models have a very limited value in describing fundamental hydrogen bonding prop-

erties, which are much better described in quantum mechanical context. For example, the length

of majority of hydrogen bonds are shorter than the sum of van der Waals radii of the hydro-

gen bonding atoms, indicating that there must be some orbital overlap and, therefore, covalent

character of the bond [60]. Even quantum-mechanical Hartree-Fock calculations, which neglect

electron-electron correlations, overestimate the lengths of hydrogen bonds [60]. These realiza-

tions led to addition of empirical terms to purely electrostatic models in order to better capture

hydrogen bonding energies and lengths [60]. The need for adding additional restraints to purely

electrostatic model indicates that hydrogen bonding can hardly be considered as purely elec-

trostatic interaction, highlighting the importance of its strong quantum - mechanical character.
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Figure 20: Illustration of stretching vibrations of donor and acceptor atoms (a) and librations of
hydrogen atom (b). Donor and acceptor atoms are represented with red circles, while hydrogen
atom is represented with white circles.

However, from dynamical point of view, the analysis of properties of hydrogen bonding life-

times in classical systems provides information about two timescales which are particularly

interesting for dynamics. Taken a water molecule as an example, the first timescale would be

related to stretching vibrations of oxygen donor and acceptor atoms (illustrated in Figure 20a),

while the second timescale would be related to librational dynamics of hydrogen atoms (illus-

trated in Figure 20b). Both stretching vibrations and librations are the result of interactions of

hydrogen bonded pair of molecules with surrounding liquid. In the case presented in Figure

20a, the increment of O - O distance (denoted with r in Figure 20a) results in weakening of

attractive electrostatic interaction (i.e. hydrogen bond) between O and H atoms, represented

with red dashed lines in Figures 20a and 20b. In Figure 20b, the same weakening of electro-

static interaction occurs due to the increment of H - O - O angle (denoted with θ ). In classical

modeling, the weakening of electrostatic O - H attraction is equivalent to weakening of hy-

drogen bond strength. Therefore, since the strength of hydrogen bond in time depends of O

stretching vibrations and H librations, it is expected that the average lifetime of hydrogen bond

will also be influenced by the same two types of dynamics. Hence, distribution of hydrogen

bonding lifetimes is expected to contain signatures of dynamics of O and H atoms. In addition,

this distribution is expected to provide complementary dynamical information about already

known static picture, accessible through the analysis of static g(r) density correlations func-

tions. However, we emphasize that the dynamical information accessible through this distribu-

tion of lifetimes is different from the information accessible by dynamic density correlations

functions Gd(r, t) because, as explained earlier, the latter functions are dependent of diffusion.

Lifetime distributions (considered in this work) are not dependent of diffusion in sense that the

distribution is not affected by the displacement of hydrogen bonded pair at time t relative to the

position at time origin. Lifetime distributions are affected only by the fact if a selected pair of

molecules is hydrogen bonded at time t or not, regardless of how far from the origin the pair

diffused.
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3.2.2 On the coupling between hydrogen bonding kinetics and diffusion

In previous works [122, 96, 95], lifetime distributions of hydrogen bonds were mainly dis-

cussed in the context of kinetic relaxation of collective hydrogen bonding network. In order to

mathematically describe a hydrogen bond between pair of molecules (i, j), Luzar and Chandler

[96, 95] introduced a hydrogen bonding population operator, hi j. Operator hi j is equal to 1 if

pair of molecules (i, j) is hydrogen bonded and 0 otherwise. In an associative system composed

of N molecules, the average value of the population operator is given by equation (120),

< h >=
∑

N−1
i=1 ∑

N
j=i+1 hi j

1
2N(N −1)

(120)

where the double sum ∑
N−1
i=1 ∑

N
j=i+1 takes into account all possible pairs of molecules in the

system, and 1
2N(N − 1) is the total number of those pairs. Hence, the average number of

hydrogen bonded pairs in the system can be estimated with 1
2N(N − 1) < h >, where < h >

represents the probability that a random pair of molecules in the system is hydrogen bonded.

In the dynamic equilibrium, hydrogen bonds fluctuate in time and these fluctuations can be

described with correlation function C(t):

C(t) =
∑

N−1
i=1 ∑

N
j=i+1 hi j(0) ·hi j(t)

∑
N−1
i=1 ∑

N
j=i+1 hi j(0) ·hi j(0)

=
< h(0)h(t)>
< h(0)h(0)>

=
< h(0)h(t)>

< h >
(121)

For a tagged pair of molecules (i, j), the product hi j(0) ·hi j(t) will be non-zero only if molecules

i and j are hydrogen bonded both at times 0 and t. Therefore, correlation function C(t) repre-

sents the conditional probability that a random pair of molecules is hydrogen bonded at time t,

given the condition that the bond was formed at t = 0, after not existing previously. Therefore,

correlation function C(t) describes relaxation of collective hydrogen bonding network in the

system. Taken a sample of N0 selected hydrogen bonds, just formed at t = 0, function C(t) can

be expressed with equation (122),

C(t) =
N(t)

N0
(122)

where N(t) represents number of hydrogen bonds still existing at time t. We note that equation

(121) is equivalent to equation (122). As explained in work by Luzar [95], there are two

different approaches to account for C(t). One can account for C(t) such that:

(i) Number N(t) includes only the bonds which were uninterrupted in the time interval between

0 and t. This means that those hydrogen bonds did not break and re-form again within this time

interval, but they existed continuously from 0 till t. The negative time derivative of C(t) defined

in this way represents probability distribution of hydrogen bonding lifetimes, L(t), as given by

equation (123). This physical quantity will be addressed in more details later on.

L(t) =−dC(t)

dt
(123)
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However, one can also account for C(t) such that:

(ii) Number N(t) includes all bonds which broke at time t, regardless of them being previously

interrupted between 0 and t or not. Obviously, the time derivative of C(t) defined in such

way does not represent the distribution of lifetimes, since N(t)−N(t +Δt) does not represent

number of bonds with the lifetime between t and t+Δt because, in this case, N(t) includes also

bonds with the lifetime shorter than t. Within definition (ii), number of hydrogen bonds at time

t, N(t) is governed with hydrogen bond breaking and reforming events. This process can be

conveniently described with reaction (124) [95],

A
K

⇆

K
′

B (124)

where A represents reactants (pairs) which are hydrogen bonded, while B represents products

for which the bond is broken. K and K
′

are forward and backward rate constants respectively

(of dimension ps−1), which describe the rate of change from reactants A to products B and vice

versa. At t = 0, population A consists of N0 hydrogen bonds, while population B is empty.

As time increases, population B slowly grows, as bonds from population A are being broken.

However, bonds from population B can reform and return to population A. Number of hydrogen

bonds at time t, represented with C(t) and N(t) in equation (122), is dependent of both breaking

and reforming processes. Temporal distribution of breaking probabilities (K direction in reac-

tion 124) is described with L(t). In order to describe events related to reforming of hydrogen

bonds (K
′

direction in reaction 124), Luzar introduced probability distribution of death times

(denoted with Q(t) in ref [95]), which represents probability that hydrogen bond reforms after

being “dead” for time t. Functions Q(t) and L(t) obtained by Luzar are presented in the main

panel and the inset of Figure 21 respectively. While the t-decay of L(t) is shown to be nearly

exponential, the t-decay of Q(t) exhibits non-exponential behavior [95]. Since C(t) (in the type

(ii) definition) depends both of L(t) and Q(t), the t-decay of C(t) is non-exponential (see k(t)

function in Figure 21, which represents the negative time derivative of C(t): k(t) =−dC(t)
dt

).
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Figure 21: Functions k(t), L(t) and Q(t) obtained by Luzar for SPC/E model of water. Figure
taken from Ref. [95] and adjusted to the current discussion. Function L(t) represents probabil-
ity distribution of hydrogen bonding lifetimes, Q(t) represents the distribution of death times,
while k(t) =−dC(t)

dt
.

The source of non-exponential kinetics of C(t), when definition of type (ii) is considered, was

discussed in the famous work of Luzar and Chandler [96] on hydrogen bonding dynamics in

liquid water. Authors suggested that the origin of this non-exponential kinetics is related to

the coupling between hydrogen bonding dynamics and diffusion dynamics, implying that both

dynamics occur in the same timescale. Therefore, if C(t) depends of L(t) and Q(t), clearly

one of the two latter quantities are affected by diffusion. Non-exponential kinetics of Q(t), in

addition to exponential kinetics of L(t), implies that Q(t) is coupled with diffusion. Since Q(t)

represents the probability of reforming of hydrogen bond after time t, it is reasonable that this

probability is governed by diffusion. Hydrogen bond will reform at time t only if the previ-

ously bonded pair of molecules did not diffuse from each other at separation bigger than 3.5

Å during the time interval between 0 and t, while the bond between the pair of molecules was

broken. Therefore, diffusion influences the kinetic relaxation of hydrogen bonding network

by affecting the probability of hydrogen bond reforming events. In the liquid characterized by

faster diffusion, probability of hydrogen bond reforming events generally decreases.

However, in our work, we put focus on solely L(t), which is characterized by nearly exponential

kinetics above transient regime, as it will be demonstrated later on. Function L(t) considered
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in this work is not affected by diffusion because the impact of hydrogen bond reforming events

has no impact on this distribution. The lifetime of hydrogen bond in this work represents the

time interval between the formation and breaking of the bond. Hence, the distribution is not

affected with events after the bond breaking, which are governed by diffusion.
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3.2.3 Hydrogen bonding criteria in classical simulations

In order to analyze quantitative properties of hydrogen bonding network by computer simula-

tions, it is necessary to choose a criterion which determines whether a random pair of molecules

is hydrogen bonded or not. It is important to understand that, for a hydrogen bonded dimer, all

possible diagnostics of hydrogen bonding (like binding energies, charge transfer or geometri-

cal properties) are continuous [84, 168, 181, 122]. This means that there is no sharp boundary

between hydrogen bonded and non-hydrogen bonded state. Therefore, the choice of hydrogen

bonding criteria is somewhat arbitrary. The most commonly used criteria to check if a random

pair of molecules is hydrogen bonded are energetic criterion, various geometric criteria or com-

binations of both [84, 168, 181, 122].

Energetic criterion states that a pair of molecules (i, j) is hydrogen bonded if the interaction

energy between the pair, Ei j, is lower than chosen critical value EC:

Ei j ≤ EC (125)

The choice of critical value EC is usually inspired by the shape of probability distribution of

pair interaction energies, which appears to be bimodal [84, 168]. This distribution consists of

two peaks: lower peak centered around E ≈ −20 kJmol−1 and higher peak centered around

E ≈ 0. The lower peak represents the contribution of hydrogen bonded pairs, while the higher

peak represents the remaining pairs of molecules which are not hydrogen bonded [84, 168].

The two peaks are separated by a minimum around E ≈−10 kJmol−1, and the position of this

minimum appears to be independent of temperature variation [168]. This position of minimum

thus can be regarded as natural boundary (EC) between energies corresponding to hydrogen

bonded population and non-hydrogen bonded population [84, 168].

The energetic criterion chosen this way is shown not to be completely efficient, since it does

not account for O-H...O alignment. Hence, by using this criterion, it is possible to mistakingly

account for a pair of molecules as hydrogen bonded, even though the H atom is improperly

oriented [168]. This effect is much more enhanced at high temperatures, where it has been

shown that, at T = 573 K, the total hydrogen bonding population, selected by energetic cri-

terion, contained 17% of pairs with improper relative orientation [168]. However, at ambient

temperatures, only 4% of pairs was mistakingly selected [168]. Therefore, the efficiency of

energetic criterion depends strongly of thermodynamic conditions.

Now we turn our attention to various geometric critera. Geometric critera can be single -

conditioned or multi - conditioned. They are based on geometric properties (distances and/or

angles) enclosed by hydrogen, donor and acceptor atoms. The most commonly used geometric

parameters, rOO, rOH and θHOO are depicted in Figure 22, where hydrogen, donor and acceptor

atoms are denoted with H, A and B respectively .
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Figure 22: Illustration of geometric parameters (rOO, rOH and θHOO) commonly involved in
various hydrogen bonding criteria. Donor and acceptor atoms (A and B) are represented with
red circles. Hydrogen atom (H) is represented with white circle.

The simplest example of single - conditioned geometric criterion is based on the distance rOO

between donor and acceptor atoms. Within this criterion, a pair of molecules is considered as

hydrogen bonded if the distance between O donor and acceptor atoms is smaller than selected

critical distance r
(C)
OO [168]:

rOO ≤ r
(C)
OO (126)

where the choice of r
(C)
OO usually corresponds to the center of the first minimum of radial distri-

bution function gOO(r), with the value of 3.5 Å. This minimum represents the natural boundary

between first and second coordination shell. Another single - conditioned geometric criterion

is based on the distance rOH between donor hydrogen H and acceptor atom O [168]:

rOH ≤ r
(C)
OH (127)

where, analogously to the previous case, the choice of r
(C)
OH is determined by the first minimum

of gOH(r) function. It has been shown that both criterion (126) and criterion (127) are not

very accurate. At ambient temperatures, 16% of pairs selected by criterion (126) were interact-

ing repulsively (Ei j > 0), while 28% of pairs had attractive interaction too weak for hydrogen

bonding state ( E >−8 kJmol−1) [168]. Criterion (127) is shown to be more accurate than cri-

terion (126), leading to 3% of selected pairs interacting repulsively and 12% of selected pairs

interacting with weak attractive interaction [168]. Inaccuracies of both criteria are even more

enhanced at higher temperatures [168]. Therefore, single criterions (126) and (127) may not be

the best choice for quantitative analysis.

The rejection of non - bonded (Ei j > 0) and weakly bonded (E > −8 kJmol−1) pairs can

be significantly improved by imposing multi - conditioned geometric critera. One of the

most commonly used set of criteria (containing 2 conditions) is given by equations (128)

[84, 168, 181, 122],
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rOO ≤ r
(C)
OO

θHOO ≤ θ
(C)
HOO

(128)

where θHOO represents hydrogen - donor - acceptor angle. For highly - associated liquids, the

commonly used value of θ
(C)
HOO is 30o[105, 103, 96, 95, 122], as suggested with neutron scatter-

ing data, which show disruption of hydrogen bond when θHOO exceeds 30o [157]. At ambient

temperatures, only 1% of pairs selected by criteria (128) is shown to interact repulsively, and

6% was shown to interact with weak - attraction [168]. Clearly, this is significant improvement

comparing to single - conditioned geometric criteria (126) and (127). Furthermore, applying

more strict geometric criteria, with 3 conditions instead of 2, leads to similar results [168]. In

those criteria, conditions (128) are combined with condition (127), forming a set of geometric

criteria composed of totally 3 geometric conditions. More precise quantitative information than

obtained by applying criteria (128) can be achieved by combination of energetic criterion (125)

with geometric criteria (128). However, for the purposes of the analysis within this work, cri-

teria (128) will be sufficient, since the emphasis is put more on qualitative differences in trends

of hydrogen bonding dynamics across different associative liquids, than on precise quantitative

information about hydrogen bonding lifetime.

In subsequent discussion, parameter r
(C)
OO will be denoted with abbreviate form, rC, because

the specification of A and B is redundant, since donor and acceptor species are identical for all

systems studied herein. The same will be applied in the case of θHOO, where the abbreviated

form θC will be used.

3.2.4 Hydrogen bonding lifetimes in ethanol

Probability distributions of hydrogen bonding lifetimes for typical alcohol, ethanol, is presented

in Figure 23. Lifetime distributions are calculated for different values of rC, which are listed in

the legend box. The selected range of rC values corresponds to the range within the first peak

of radial distribution function, gOO(r), for ethanol, representing all possible donor - acceptor

distances in the liquid. In previous works [105, 84, 95, 101, 176, 96, 122], where the emphasis

was put mainly on kinetic relaxation of hydrogen bonding network, these distributions were

calculated only for rC = 3.5 Å, corresponding to the first minimum of gOO(r). Since here the

focus is put on dynamics and the timescale of characteristic motions of atoms which are part of

hydrogen bonding dynamics, namely oxygen and hydrogen atoms, the variation of critical rC

value will appear to be useful.
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Figure 23: Probability distributions of hydrogen bonding lifetimes for various selected rC val-
ues, obtained by molecular dynamics simulations with OPLS model of ethanol at ambient
conditions.

Figure 23 shows that, for rC = 2.5 Å (black curve), we obtain narrow-peaked distribution of

lifetimes, centered at t ≈ 0.01 ps. As we increase rC value, the distribution shifts towards larger

t values, followed by the appearance of two smaller peaks at t ≈ 0.02 ps and t ≈ 0.05 ps. In

the rest of the discussion, the big peak which dominates the distribution for small values of

rC will be referred to as the primary peak, while the two peaks, at t ≈ 0.02 ps and t ≈ 0.05

ps, which appear for larger rC values, will be referred to as secondary peaks. Clearly, lifetime

distributions are characterized by 3 different timescales, corresponding to 3 different peaks.

The first timescale, described with the main peak, is strongly sensitive on the variation of rC,

while the remaining two timescales, described with the two secondary peaks, are independent

of variation of rC. We have already stated that we expect timescales related to motions shown

in Figure 20 to manifest in the lifetime distribution of hydrogen bonds. Hence, the timescales

related to the main peaks and secondary peaks, shown in Figure 23, must be related to the

motions presented in Figure 20, which cause breaking of hydrogen bond. Since we know that

bonds can break either due to (1) stretching vibrations of O atoms (Figure 20a) or (2) librations

of H atom (Figure 20b), the total lifetime distribution for any rC value, L(t), can be written as

given by equation (131), where L1 and L2 correspond to lifetime distributions of bonds which

break due to motions (1) and (2) respectively. To further clarify the meaning of L1 and L2, let us

assume that a lifetime distribution, for a selected rC, is calculated based on totally N lifetimes,

with N being sufficiently large, such that the obtained distribution is smooth. For arbitrary

value of t, L(t) is obtained with relation (129),

L(t)dt =
N(t)

N
(129)

where N(t) represents number of hydrogen bonds with the lifetime between t and t+dt. N(t) is
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the sum of hydrogen bonds which broke due to violating distance criterion, N1(t), and hydrogen

bonds which break due to violating angular criterion, N2(t). Therefore, one can write:

L(t)dt =
N1(t)+N2(t)

N
(130)

or, equivalently:

L = L1 +L2 (131)

Hence, the total distribution L(t) can be decomposed in two contributions, L1 and L2. L1 is the

contribution of bonds which break due to (1), while L2 is the contribution of bonds which break

due to (2). Distributions L1 and L2 for different values of rC for ethanol are shown in the left

and right panels of Figure 24 respectively.

Figure 24 helps to clarify the origins of the main peaks and secondary peaks in distributions

presented in Figure 23. Figure 24 (left panel) shows that, when only breaking events due to vi-

olating distance criterion are accounted for, the distributions are dominated with the main peak,

with the absence of secondary peaks. Hence, the main peaks represent the lifetime distributions

of hydrogen bonds which break due to violating distance criterion between O atoms, imposed

by choosing specific value of rC. Therefore, the main peaks represent temporal description

of stretching vibrations of O atoms, since particularly this type of dynamics causes breaking

occurences. For small values of rC, the main peak is centered at small values of t. Particularly,

for rC = 2.5 Å, the distribution is centered at t ≈ 0.01 ps. We recall, from the analysis of static

properties of ethanol, that gOO(r)≈ 0 around r ≈ 2.5 Å, meaning that the density at this sepa-

ration from the reference particle is very low in average. This means that the occurences when

two O atoms approach each other at this distance are highly unlikely. An additional informa-

tion which we can extract from the lifetime distribution, particularly when rC = 2.5 Å, (black

curve in the left panel of Figure 24) is that those occurences, apart from being rare, also last

very shortly. According to this lifetime distribution, two O atoms typically spend about 0.01 ps

around this particular separation. The brevity of the time spent at this separation is induced by

strong repulsive forces between O atoms, which make this bonding state unstable, leading to

the two atoms being mutually repelled at larger distances within several femptoseconds. In this

context, lifetime distribution provides complementary temporal information to already known

static properties extracted from gOO(r).
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Figure 24: Decomposition of the total lifetime distributions, presented in Figure 23, into com-
ponent L1(t), which correspsonds to the distribution of lifetime disruptions due to violating
distance criterion (left panel), and component L2(t), which corresponds to the distribution of
lifetime disruptions due to violating angular criterion (right panel). Distributions in the panels
are normalized such that, for a given rC value, equation

R ∞
0 L1(t)dt +

R ∞
0 L2(t)dt = 1 holds.

Furthermore, as rC is gradually increased, the main peak shifts towards larger time values. In

the context of gOO(r), we know that separations higher than 2.5 Å, particularly around r ≈ 2.8

Å, correspond to the r-positions around the first maximum, meaning that particularly those

separations between O atoms are statistically the most probable. They are the most proba-

ble due to enhanced stability of hydrogen bond which occurs particularly around this O - O

separation. Hence, sampling higher values of rC corresponds to sampling more stable O - O

distances. However, we do not know what this stability implies in temporal context by looking

at solely gOO(r). Conversely, by looking at lifetime distribution of hydrogen bonds, particularly

for rC = 2.8 Å (blue curve in the left panel of Figure 24), we can say that a pair of O atoms

typically stays around 0.07 ps within separation of 2.8 Å. Therefore, the lifetime distribution

provides information about the O - O pair stability in temporal context. This information is not

accessible from static density correlations g(r).

Next, in addition to the shift of the main peak, we observe that L
(rC)
1 (t) ≈ 0 over whole time

domain when rC is sufficiently big (i.e. around 3.5 Å). This is the consequence of the fact that,

when rC is sufficiently large, hydrogen bonds break dominantly due to violating angular crite-

rion, instead of distance criterion. This is obvious from the right panel of Figure 24, where, for

rC = 3.5 Å. one can observe L
(rC)
2 in form of two peaks centered at t ≈ 0.02 ps and t ≈ 0.05 ps,

while L
(rC)
1 being nearly zero over the entire time domain in the left panel. The two peaks are

centered at the same time values (0.02 ps and 0.05 ps) independently of the choice of rC. The

two-peak distribution suggests that there are two characteristic lifetimes associated to break-

ings of hydrogen bonds due to violating angular criterion. Since violation of angular criterion

is caused by librational motions of H atoms, the two peaks could mean the existence of two

characteristic times related to such motions, namely 0.02 ps and 0.05 ps. The amplitudes of the

two peaks decrease with decreasing rC simply because the impact of hydrogen bonds which
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break due to violating angular criterion is smaller for lower rC values. For those values of rC,

majority of hydrogen bonds is broken due to violating distance criterion.

To further clarify this, we can consider a hydrogen bonding interaction as superposition of OO

repulsion superposed with OH attraction. OH attraction is the highest when the bonding angle

θ is low (θ ≈ 0). If this is the case, OH attraction compensates for OO repulsion at very short

binding distances, leading to formation of hydrogen bonds even when selected rC is very low.

However, those bonds will be unstable. Even small librational motions of H atoms, which are

far from causing the violation of angular criterion, will lead to breakage of hydrogen bond be-

cause OH attraction cannot compensate for OO repulsion if binding angle is not nearly zero.

Therefore, dominant OO repulsion will rapidly cause the increment of donor - acceptor sepa-

ration at distance above critical distance rC in this case, leading to breaking of hydrogen bond

due to violating distance criterion. Conversely, at larger distances, both OO repulsion and OH

attraction are lower than at short O - O separations. Weaker OH attraction will case H atom

to move more freely, leading to enhancement of librational motions of the same atom. Conse-

quently, hydrogen bonds will break dominantly due to violating angular criterion when rC is

large.

We remind that, for specific value of rC, the total distribution L(rC)(t) is given by the sum

of distributions from the left and right panels. Since, L(rC)(t) is a probability density, the

equation
R ∞

0 L(rC)(t)dt = 1 must hold. Obviously, this does not imply that
R ∞

0 L
(rC)
1 (t)dt = 1

or
R ∞

0 L
(rC)
2 (t)dt = 1, since L(rC)(t) is given by the sum of L

(rC)
1 and L

(rC)
2 . The separation of

L(rC)(t) into the two components was neccessary in order to clarify the origins of peaks in

lifetime distributions. Since these origins have now been determined, only the total lifetime

distribution, L(rC)(t), will be shown in the upcoming chapters.
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3.2.5 Universalities of hydrogen bonding dynamics in water and alcohols

The lifetimes related to primary and secondary peaks, discussed in section 3.2.4, represent the

lifetimes of classical hydrogen bonds between pairs of molecules. However, as discussed in

the Introduction, molecules in associative liquids are organized in form of clusters, due to di-

rectional hydrogen bonding. Statistically, the number of isolated dimers which are not part of

bigger cluster is very small in any of these systems. This conclusion can be easily deduced

from the analysis of the cluster size distribution, which has been performed in various works

for various associative liquids [187, 190, 145, 140]. For example, in one of the recent works

[187], authors have reported number of clusters per 1000 molecules (y - axis) as the function

of cluster size (x - axis) at various temperatures of 2-propanol. At temperature of 280 K, there

are around 15 clusters composed of only 1 molecule (i.e. monomers) and around 6 clusters

composed of 2 molecules (i.e. dimers). Hence, in this example, totally 27 molecules out of

1000 are not part of cluster composed of at least 3 molecules. This results demonstrates that

the microstructure of alcohols is highly dominated by clusters, where monomers and dimers

make statistically insignificant contribution. Therefore, the lifetimes previously discussed are

directly related to the lifetimes of clusters in hydrogen bonding liquids.

Of course, a precise definition of the lifetime of a n-sized cluster would be a time interval be-

tween the moment when all n molecules grouped in a single hydrogen bonding asscoiate untill

the moment of breaking of at least one hydrogen bond which formed this associate. Lifetime

distributions reported herein do not represent these lifetimes, but the lifetimes of hydrogen

bonds between pairs of molecules. However, since all clusters obviously consist of these pairs,

lifetime distributions discussed herein can serve as a fairly good representative of cluster life-

times.

Previously, the distribution of hydrogen bonding lifetimes for ethanol has been shown and

discussed, where we adressed the origin of specific peaks in the distribution. The origin of

the primary peak is shown to be directly related to vibrational dynamics of O atoms, while the

secondary peaks are manifestation of fast librational motions of H atoms. In this section, we

will discuss the properties of hydrogen bonding dynamics for other associative systems (i.e.

water, methanol, propanol, propylamine) and put them in comparison in order to appreciate for

possible differences in O and H dynamics across different molecular species.

In order to put hydrogen bonding dynamics in the context of static properties (i.e. g(r) cor-

relations) discussed earlier, it is convenient to start the analysis with probability distribution of

hydrogen bonding distances, DHB(r), which represents the probability density that the distance

between donor and acceptor atoms, forming a hydrogen bond (which satisfies both distance
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and angular criteria), is r. Since DHB(r) is a probability density, equation (132)

Z 3.5 Å

0
DHB(r)dr = 1 (132)

must hold. The value of 3.5 Å is taken as the upper limit of the integral because this corre-

sponds to maximum possible distance between donor and acceptor atoms. Left panel of Figure

25 shows the DHB(r) functions for different models of different associative systems, whereas

the right panel shows radial distribution functions of the same systems. We note that the distri-

butions shown in the laft panel are broad and centered at r = 2.7 Å, which corresponds exactly

to the center of the first maximum of gOO(r) functions shown in the right panel of Figure 25.

While functions from the right panel exhibit differences in terms of the amplitudes of the first

peaks, which have been discussed in previous chapters, functions in the left panel are nearly

superimposed across different associative species and different models. The origin of this dif-

ference is related to different definitions of the two functions. Given a sample of N hydrogen

bonds, function DHB(r) can be expressed with equation (133),

DHB(r)dr =
ND(r)

N
(133)

where ND(r) represents the number of hydrogen bonds with the O - O distance being between

r and r+dr. However, g(r) is defined with (134),

g(r) =
Ng(r)

4πρr2dr
(134)

where Ng(r) represents the average number of O neighbours at distance between r and r+ dr

from the reference O atom, whereas ρ is the density of particles in bulk. Hence, although

ND(r) and Ng(r) from equations (133) and (134) are almost equivalent, both being directly

proportional to the density of neighbouring particles at separation r from the reference particle,

the height of the first peak of g(r) differs across different associative species (see the right panel

of Figure 25), while this feature is absent from DHB(r) (see the left panel of Figure 25), where

all the functions are nearly superimposed. Variation of amplitudes of the first maximum of g(r)

across different associative species is caused by the bulk density ρ (in equation 133), which

differs across different associative species. Variation of amplitudes is absent from DHB(r),

because its definition is independent of ρ . The near superposition of all the distributions in

the left panel clearly indicates that spatial hydrogen bonding properties are universal across

different associative systems. This universality, which is in agreement with static properties

presented in the right panel of Figure 25, will now be examined in temporal context as well, by

the analysis of probability distributions of hydrogen bonding lifetimes for different associative

systems. We note that small variations in the amplitudes of DHB(r) are attributable to the

differences in partial charges and Lennard-Jones parameters of different classical force fields.
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Figure 25: Probability distribution of donor - acceptor distances for various associative systems
and different models (left panel) versus radial distribution functions of the same systems (right
panel). The inset in the right panel shows the same functions at larger spatial scale.

Probability distribution of hydrogen bonding lifetimes for SPC/E model of water is shown in

the left panel of Figure 26, while the right panel shows the same distributions in larger r-scale.

The general pattern in the left panel is similar to the one already discussed for ethanol, namely

the main peak (marked with filled circles) shifts to the right as rC distance is increased, followed

by the appearance of secondary peaks at t = 20 fs and t = 50 fs, marked with filled squares and

diamonds respectively. We note that the positions of maxima do not differ when compared to

the maxima of lifetime distributions of ethanol, shown in Figures 23 and 24, which indicates

that dynamics of O and H atoms in the two liquids appears to be universal. Right panel shows

the same distributions in kinetic timescale. We note that the t-decay of functions obtained with

large values of rC is significantly slower than the decay of functions obtained for small rC. Fast

decay obtained when rC is very small reflects simply the fact that hydrogen bonds in this case

break very quickly because of the strong repulsion forces between donor and acceptor atoms at

short distances.
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Figure 26: Probability distributions of hydrogen bonding lifetimes for various selected rC val-
ues, listed in the legend box. Results are obtained by molecular dynamics simulations of SPC/E
model of water at ambient conditions. Left panel shows the distributions at smaller timescale
(transient regime), while right panel shows the same functions in log scale, at larger timescale
(kinetic regime).

This universality is further supported with the lifetime distributions of hydrogen bonds in

methanol and propanol, presented in the left and right panels of Figure 27 respectively, which

exhibit the same features already discussed above.

As already stated, lifetimes related to the main peaks and secondary peaks are directly re-

lated to clusters. The main peaks contain the details of the O atom dynamics inside clusters,

whereas the secondary peaks describe the timescale related to librations of H atoms inside the

same clusters. The main question which naturally rises at this point is: why are there exactly

two secondary peaks and what do they correspond to? In our interpretation, these peaks could

correspond to different cluster topologies. It is well-known that linear monols are characterized

by linearity of molecular aggregates, which can appear in form of linear chains, loops or lassos

for example [171, 177]. Therefore, two distinct secondary peaks could be attributed to two

different cluster topologies.
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Figure 27: Probability distributions of hydrogen bonding lifetimes of methanol (left panel) and
propanol (right panel), for various selected rC values, listed in the legend box. Results are
obtained by molecular dynamics simulations of OPLS models of methanol and propanol at
ambient conditions. Both panels show the distributions at the timescale of transient temporal
regime. Results in the kinetic timescale are omitted because they show the same trends as the
one presented in the right panel of Figure 26 for SPC/E model of water.

It is important to note that the lifetimes discussed herein are not inside kinetic temporal regime.

This means that these lifetimes are not representatives of the timescales related to structural re-

laxation processes at level of aggregates. This statement may sound contradictory, since earlier

we related the maxima of lifetime distribution of hydrogen bonded pairs to cluster lifetimes.

However, the timescales of cluster lifetimes and structural relaxation processes at level of clus-

ters are not the same. Cluster lifetimes are influenced by fast dynamics of hydrogen bonding

O and H atoms. This dynamics causes the same hydrogen bond to constantly break and reform

while being part of the same aggregate. The timescale related to these breaking and reform-

ing occurences are described with characteristic peaks of the lifetime distribution of hydrogen

bonds (i.e. main peaks and secondary peaks). Although hydrogen bonds which form specific

aggregate constantly break and reform within short period of time (∼ 0.1 ps), the structure im-

posed by specific arrangement of molecules within the aggregate changes much slower, within

the timescale much bigger than 0.1 ps. This is illustrated in Figure 28, which shows time

evolution of an aggregate composed of ethanol molecules, obtained with molecular dynamics

simulations with OPLS model of ethanol. We observe that the arrangement of molecules which

form the aggregate remains similar to the initial arrangement (which corresponds to t = 0 case

in Figure 28) even at t = 40 ps. Therefore, although hydrogen bond breaking and reforming

occurences happen within very short period of time, the structural relaxation processes at the

scale of aggregates, illustrated in Figure 28, occur at much slower timescale. We refer to this

timescale as kinetic timescale. Structural relaxation processes inside kinetic temporal regime

will be discussed in upcoming chapters, within the formalism of correlations functions.
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Figure 28: Time evolution of ethanol cluster composed of 12 molecules of ethanol. Oxygen
atoms are shown in red, hydrogen atoms in white and alkyl groups in transparent grey color
convention. Results are obtained by molecular dynamics simulations of OPLS model of ethanol
at ambient conditions.

While previous works were mainly concerned about the properties of kinetic relaxation of

hydrogen bonding network, our work shows that the relaxation within transient time interval

also exhibits interesting and unexpected features, particularly from the context of dynamics.

The analysis of the lifetime distribution of hydrogen bonds for various associative systems,

within transient temporal regime, shows that hydrogen bonding dynamics appears to be univer-

sal across different molecular species in this timescale. This universality is manifested through

the appearance of peaks centered at identical t-values of the lifetime distribution of hydrogen

bonds, regardless of which system is considered. The differences between the system become

more apparent in kinetic timescale (see Figure 29), where, for rC = 3.5 Å, one can observe dif-

ferent (nearly-exponential) decays of water, methanol and ethanol. Water exhibits faster decay

in comparison with methanol and ethanol, which suggests that kinetic relaxation of hydrogen

bonding network in water is faster than in alcohols. This conclusion is in alignment with the

conclusion reported by Padro, Saiz and Guardia [122], who came up with the same conclusion,

based on the analysis of C(t) for water, methanol and ethanol in kinetic regime. In context

of both C(t) or L(t), slower decay of the function implies greater percentage of long - living

hydrogen bonds, with the lifetime within kinetic timescale.

However, we note that the differences in kinetics of water, methanol and ethanol can be consid-

ered as negligible if put in the same context with propylamine (see Figure 29), whose kinetics

differs significantly when compared to kinetics of the three systems previously mentioned. The

origin of this large gap in kinetics of propylamine when compared with water or alcohols may

be hidden in the fact that kinetics of systems with different functional groups (amino group

in propylamine versus hydroxil group in alcohols) differs significantly. Hydrogen bonding re-

laxation of propylamine differs significantly from the rest of systems studied herein also in

transient regime (not shown here), indicating that universality proposed herein could be re-

stricted only to systems containing OH functional groups. This would imply that hydrogen

bonding dynamics essentially depends only of donor and acceptor atomic species, and is less

sensitive on the existence of neutral groups. Interestingly, the differences in kinetic relaxation
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of water, methanol and ethanol become negligible for small values of rC, as demonstrated in

Figure 29 for rC = 2.7 Å.

Figure 29: Long timescale behavior of probability distributions of hydrogen bonding lifetimes
for SPC/E model of water and OPLS models of methanol, ethanol, propanol and propylamine.
Two cut-off values are accounted for, rC = 2.7 Å and rC = 3.5 Å, corresponding to the r-range
within the first peak of radial distribution functions of water, methanol, ethanol and propanol.
In case of propylamine, rC = 4.0 Å is accounted for, since this value corresponds to the center
of the first minimum of radial distribution function in this case.
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3.2.6 Weak water model - test of the impact of Coulomb association on atomic dynamics

in associative liquids

We have previously discussed atomic dynamics of O and H atoms in the context of classical

hydrogen bonding model. In classical models, hydrogen bonding is mimicked by Coulomb as-

sociation, where the attractive force between donor and acceptor atoms is caused by Coulomb

interaction between positively charged H atom and negatively charged acceptor atom. Since

the basic properties of the dynamics of O and H atoms were herein discussed by the analysis of

lifetime distributions of classical hydrogen bonds, based on electrostatic interaction, it would

be instructive to examine how big is the impact of Coulomb association on the total lifetime

distribution of hydrogen bonds or, equivalently, on the dynamics of O and H atoms.

The question posed above can be conveniently addressed by the analysis of previously in-

troduced “weak-water” model [79]. This model is based on the SPC/E model of water, where

the partial charges on the oxygen and hydrogen atoms are scaled by a parameter λ (0 ≤ λ ≤ 1),

allowing tuning of the hydrogen bonding from the original model (with λ = 1) to a simple

Lennard-Jonesium (with λ = 0). It was found that. for λ ≤ 0.6, the influence of partial charges

and hydrogen bonding were not relevant and the model was structurally similar to a simple

Lennard-Jones liquid. Here, this model appears to be a useful way to measure the impact of

Coulomb force on hydrogen bonding dynamics.

In the order to preserve the liquid state for small λ values and under ambient conditions, it

was found necessary to increase the Lennard-Jones energy parameter ε = ε(λ ) according to

the decrease in λ . In the present test, we have bypassed this procedure by doing the test sim-

ulations in the NVT canonical ensemble, hence keeping the volume fixed at that of the real

liquid water.

Since the structure of the weak-water liquid is strongly affected by the decrease of the par-

tial charges, the binding distance criteria must be adjusted appropriately. Figure 30.a shows the

various gOO(r) data for different λ values we have used here, namely λ = 0.8, 0.5 and 0.2. The

selected binding distances depend on the position of the maximum and differ quite a bit from

that of the initial SPC/E water, ranging from 2.7 to 4.5 Å. It is important to note that, while we

vary the binding-distance criteria, we keep the angular criterion the same as that for pure water,

which is that the angle θC ≤ 30o. Therefore, even though the weaker water model has weaker

hydrogen bonding tendencies, we are keeping angular criterion fixed in order to examine how

significant angular bias becomes when λ decreases.

For λ = 0.8 (Figure 30.d), the general behavior is similar to the original λ = 1 case, with

the main difference being the fact that there is only one secondary peak (at t ≈ 0.02 ps), instead
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of two, which were observed for original λ = 1 case. Since secondary peaks are related to libra-

tional motions of H atoms, this result shows that even small decrement of λ causes significant

changes in the stability of O-H...O alignment. For λ = 1, attractive forces between positively

charged H atom and negatively charged O atom cause H atom to be, in average, more aligned

along OO line. However, as λ decreases, H atom rotates more freely, which causes hydrogen

bonds to break more easily when λ = 0.8 than for λ = 1. This effect of weakened OH attraction

manifests as the appearance of a single secondary peak (for λ = 0.8) instead of two secondary

peaks (for λ = 1). Weakening of OH attraction is even more pronounced for smaller values of

λ , where we note that the contribution of the main peak (attributed to the breaking of bonds

due to violating distance criterion) gradually decreases as λ decreases. For λ = 0.2 , the main

peak is almost invisible, meaning that lifetime distributions in this case (for all values of rC)

are completely governed by dynamics of H atoms. We remind that this was not the case for

λ = 1, where these distributions were completely governed by O dynamics for small values of

rC, while H dynamics governed the shape of distribution only for larger values of rC. Therefore,

in weak water with significantly weakened Coulomb interaction, hydrogen bonding lifetime is

principally determined by dynamics of H atoms, which rotate more freely in the system with

weakened Coulomb force.

Figure 30: Probability distributions of hydrogen bonding lifetimes of weak SPC/E model of
water, with λ = 0.2 (b), λ = 0.5 (c) and λ = 0.8 (d). Radial distribution functions of the
weak-water model with different values of λ are shown in panel (a).

The analysis discussed above demonstrates the influence of Coulomb association on the lifetime
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distributions of hydrogen bonds. Secondary peaks at t = 20 fs and t = 50 fs appear only for

λ = 1, when Coulomb interaction is not weakened. Conversely, for smaller values of λ , double-

peak feature is absent from lifetime distribution, which exhibits only one peak at t ≈ 0.02

ps. This indicates that the double-peak feature of lifetime distribution is a direct signature of

associative systems only, where Coulomb interaction is dominant. Since it is well-known that

associative systems are, on molecular level, organized in form of clusters, this analysis indicates

that the appearance of two secondary peaks in lifetime distribution of hydrogen bonds could be

interpreted as a direct signature of aggregation in these systems. Conversely, in systems with

weak Coulomb interaction, these aggregates are not well-defined, which is manifested with the

absence of double-peak feature in lifetime distribution.
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3.3 Dynamics of associative mixtures by classical hydrogen bonding model

3.3.1 Universalities of hydrogen bonding dynamics

It has been confirmed experimentally that molecular dynamics in the mixtures of alcohols

with water differs from the dynamics in neat systems. Infrared and Raman spectroscopies

[112, 85, 118, 18, 39, 44, 116, 115] have been used to study vibrational modes of ethanol

molecules and clusters in water. Kuttenberg, Scheiber and Gutmann [85] performed an in-

frared spectroscopic study on several different alcohol–water mixtures and discovered that the

addition of water causes significant changes in the absorption bands of the IR alcohol spectra

due to the changes in OH stretching and bending. In addition, dielectric relaxation experiments

are used to study the orientational dynamics of molecules [139, 154, 155] and provide results

for dielectric relaxation time, which is the interval for the reorientation of a single molecule.

These times were evaluated for mixtures of monohydroxyl alcohols with water by Dzida and

Kaatze [42], where it was shown that reorientational motion of water molecules becomes slower

in the mixtures with alcohols. The differences related to dynamics of mixtures in comparison

with neat systems have been reported also in the case of mixtures of alcohols with non-polar

solvents, where it has been observed a marked distinction in methanol vibration by the evolu-

tion of the OH stretching band in methanol–hexane and methanol–acetone mixtures [107, 108].

These reportings indicate that dynamics of O and H atoms in mixtures differ compared to their

dynamics in neat liquids.

So far in this work, this dynamics has been discussed in the context of classical hydrogen bond-

ing model, where the main features of probability distributions of hydrogen bonding lifetimes

have been addressed for neat systems. In this chapter, we will extend this study to different

types of mixtures of alcohols with polar and non-polar solvents in order to account for possible

differences in dynamics which occur upon mixing. These results have also been previously

published in one of our recent works [76].

Water - methanol (WM) mixtures:

Figure 31 shows probability distributions of hydrogen bonding lifetimes for the water–methanol

(WM) mixtures, and for several rC cutoff values, corresponding to different color codes (dis-

played in the legend box). Upper panels (a, b and c) show the distributions of lifetimes for rC

values in range 2.5 - 3.0 Å, while the lower panels (a’, b’ and c’) show the distributions for rC

values in range 3.0 - 3.5 Å. The 3 hydrogen bonding possibilities between the oxygen atoms are

shown in 3 separate columns, namely those involving the oxygens of water (OW −OW) in pan-

els (a) and (a’), the cross oxygens bonds (OW −OM) in panels (b) and (b’) and those between

methanol oxygens (OM −OM) in panels (c) and (c’). For each rC specifically colored curve, 3

methanol concentrations are shown with thick line (x = 0.2), thin line (x = 0.5) and dotted line
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(x = 0.8). The upper panels (a,b and c) highlight primary peaks, while the lower panels (a’, b’

and c’) highlight the secondary peaks.

The first interesting feature is unmistakable similarity between all 3 columns of panels, highly

suggesting that that the L(t) features are nearly insensitive to the type (OM −OM, OW −OM

or OW −OW) of hydrogen bond. The second interesting feature is that there is a very small

concentration dependence of the lifetimes L(t), as can be seen by the proximity of different

line types (thick, thin or dotted) for a given color.

Figure 31: Probability distributions of lifetimes of hydrogen bonds in water - methanol (WM)
mixtures for various selected rC values, listed in the legend box. Dotted lines are obtained
with xM = 0.8, thin lines with xM = 0.5 and thick lines with xM = 0.2, where xM represents
concentration of methanol in the mixture. Upper panels show the distributions for rC values in
the range 2.5 - 3.0 Å, while lower panels show the same results for rC being in the range 3.0 -
3.5 Å.

Regarding observed concentration dependence of peak amplitudes, we remind that, for any

value of rC, equation
R ∞

0 L(t)dt = 1 holds, since L(t) is a probability density. The increment

of primary peak amplitude represents the growth of probability of bond breaking due to O -

O stretching vibrations. Similarly, the increment of secondary peaks amplitudes represents the

growth of probability of bond breaking due to librations of H atom. From Figure 31, we note

that the variation of the concentration dependence of the primary peaks for water–water clus-

ters (OWOW) is opposite of that for methanol–methanol clusters (OMOM). This is highlighted

in Figure 32, which shows zoomed view on panels (a’) and (c’) from Figure 31. Namely, in

Figure 32, primary peaks (marked with letter P), for OMOM case, exhibit the increment of
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the amplitude with the increment of methanol concentration. Conversely, in OWOW case, the

amplitude of the primary peak is the highest at low water concentrations. Higher amplitude

of OWOW primary peaks upon low concentrations of water, followed by lower amplitude of

secondary peaks (marked with S), shows that the lifetime of water - water bonds is more af-

fected by oxygen stretching vibrations in mixtures with low water content than in mixtures

with high water content. Equivalently, it can be said that, upon low water concentrations, water

bonds break less often due to fast librations of HW atom than in the case when water concen-

tration is high. Therefore, reorientational (or librational) dynamics of water molecules is faster

when concentration of water in the mixture is high. Upon the addition of alcohol, reorienta-

tional dynamics of water slows down. Conversely, reorientational dynamics of methanol slows

down upon high methanol concentrations, which is manifested by lower amplitudes of OMOM

secondary peaks upon high methanol concentration. Upon low methanol concentrations, wa-

ter imposes fast reorientational dynamics on methanol, which manifests as the increment of

OMOM secondary peaks and decrement of OMOM primary peaks in the lifetime distribution of

methanol - methanol hydrogen bonds.

Figure 32: Enlarged view on panels (a’) and (c’) presented in Figure 31, in linear y - scale.
Arrows marked with xW and xM indicate the direction of growing water and methanol concen-
trations respectively. Primary peaks are marked with the letter “P”, while secondary peaks are
marked with letter “S”.

Water - ethanol mixtures (WE):

Next, we examine water–ethanol (WE) mixtures. We expect here to see how the extension

of the alkyl tail influences the data observed in Figure 31 for methanol. The equivalent of Fig-

ure 31 is shown in Figure 33 for the case of water ethanol mixtures. Figure 33 show trends

very similar to Figure 31, indicating that there are very little lifetime distribution differences, if

we neglect the small L(t) curve shapes differences between methanol and ethanol. It tends to
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further confirm the idea of universal features introduced for pure liquids.

Figure 33: Probability distributions of lifetimes of hydrogen bonds in water - ethanol (WE)
mixtures for various selected rC values, listed in the legend box. Dotted lines are obtained
with xE = 0.8, thin lines with xE = 0.5 and thick lines with xE = 0.2, where xE represents
concentration of ethanol in the mixture. Upper panels show the distributions for rC values in
the range 2.5 - 3.0 Å, while lower panels show the same results for rC being in the range 3.0 -
3.5 Å.

Water - DMSO (WD) mixtures:

While both water-methanol and water-ethanol mixtures show very similar features, water-

DMSO mixture shows a feature absent previous aqueous mixtures. Lifetime distributions of

hydrogen bonds between water molecules (OWOW) and between water and DMSO molecules

(OWOD) are presented in Figure 34. The case of mixture with high water concentration (x =

0.8) is represented with dotted lines, while the case intermediate concentration (x = 0.5) and

low concentration (x = 0.2) is shown in thin and thick lines respectively. Indeed, while water

oxygen–oxgen (OWOW) dimer lifetimes appear to follow patterns similar to that observed in

previous aqueous mixtures, the cross oxygen dimers (OWOD) exhibit a split - peak feature of

the primary lifetimes (see the black curve on panel (b) of Figure 34, corresponding to rC =2.5

Å). This split - peak feature is absent from the primary lifetimes shown for previous mixtures.

From previous studies of aqueous–DMSO mixtures [136, 135], we assume that this duality of

primary lifetimes could be directly related to the large positively charged sulfur atom of DMSO,

which is known to have strong impact on the microstructure of the mixture. This impact is vis-
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ible through the appearance of the double - peak feature of the first maximum of various atom -

atom density correlations in the mixture (see Figure 35). In addition, we note, from Figure 34,

that there is a more noticeable concentrational dependence of the secondary peaks amplitudes,

while the t - positions seem to obey the same universality as that observed in previous mixtures,

with the peaks centered at t1 ≈ 0.02 ps and t2 ≈ 0.05 ps.

Figure 34: Probability distributions of lifetimes of hydrogen bonds in water - DMSO (WD)
mixtures for various selected rC values, listed in the legend box. Dotted lines are obtained
with xW = 0.8, thin lines with xW = 0.5 and thick lines with xW = 0.2, where xW represents
concentration of water in the mixture. Upper panels show the distributions for rC values in the
range 2.5 - 3.0 Å, while lower panels show the same results for rC being in the range 3.3 - 3.5
Å.

Figure 35 shows SOW(S - sulfur atom of DMSO, OW−oxygen atom of water) and OO den-

sity correlations (O - oxygen atom of DMSO) for various concentrations of water in aqueous

DMSO mixture. Both types of correlations exhibit the first maximum which is split into two, as

indicated by black and red arrows in Figure 35. In the case of SOW correlations, the maximum

at r ≈ 4 Å is the indication of hydrogen bonding between water and DMSO. As marked with

black arrows in the left cartoon inset of Figure 35, up to two water molecules are hydrogen

bonded to O atom of DMSO. The oxygen atom of these water molecules is typically located at

4 Å separation from the reference sulfur atom, denoted with S in the left panel of Figure 35.

In contrast, non - hydrogen bonded water molecules (marked with red arrows) are distributed

around the S atom at larger distances, leading to marked peak at r ≈ 5 Å in SOW correlations.
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These molecules are distributed around the S atom at larger distances than hydrogen bonded

water molecules, with their distribution being significantly governed by the size and charge of

the sulfur atom. In the context of OWOD hydrogen bonding lifetimes presented in Figure 34,

we assume that precisely the positive charge of the sulfur atom is at the origin of the double

- peak feature of OWOD curve for rC = 2.5 Å. When the two oxygen atoms (OW and OD) of

hydrogen bonded water and DMSO molecules approach at small separations (as 2.5 or 2.6 Å),

the hydrogen bonding dynamics of OW and HW atoms of the water molecule is governed by

interactions with both O and S atoms of DMSO. While the impact of the sulfur atom on OW

and HW dynamics is strong at short OW - OD separations, it weakens as the OW - OD distance

increases, which could explain why OWOD curves in Figure 34 look similar to OWOW curves

when rC is sufficiently large.

Regarding the split of the first maximum of OO correlations presented in the right panel of Fig-

ure 35, the first peak (r ≈ 4 Å) is the result of DMSO neighbours being hydrogen bonded to the

same water molecule, as illustrated in the cartoon inset of the right panel. Reference O atom of

DMSO (marked with O in the cartoon inset) is hydrogen bonded to the water molecule (marked

with W), which simultaneously forms hydrogen bond to another DMSO molecule (marked with

black arrow). Hence, water molecule W forms the bridge between two DMSO molecules. The

distribution of distances between O first neighbours bridged by water molecules is described

with the peak centered at r ≈ 4 Å of OO density correlations. Similarly, the distribution of non

- bridged O first neighbours is described with the peak centered at r ≈ 6 Å.

Figure 35: Radial distribution functions gSOW(left panel) and gOO (right panel), for water -
DMSO mixtures with different concentrations of water, listed in the legend boxes. Cartoon
insets illustrate the distribution of water molecules around reference S atom of DMSO (left
panel) and the distribution of DMSO molecules around reference O atom of DMSO (right
panel).
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Ethanol - hexane (EH) and methanol - acetone (MA) mixtures:

Finally, we examine the case of mixing alcohols with non-polar solutes. Figure 36 shows the

distributions of lifetimes of hydrogen bonds in methanol–acetone (MA) mixture and ethanol–hexane

(EH) mixtures. In the case of MA mixture, both hydrogen bonds between methanol molecules

(OMOM), and those between methanol and acetone (OMOA) can be accounted for, since ace-

tone is an acceptor of hydrogen bonds. However, for the EH mixtures, ethanol is the only

hydrogen bonding specie (OEOE). Once again, all three panels of Figure 36 show the same 3

peak characteristics observed for the 2 previous mixtures.

However, it is interesting to account for methanol (OMOM) and ethanol (OEOE) self-bonding

in presence of the solutes. We note that secondary peaks do not show any noticeable concen-

trational dependence, while the primary peaks show concentrational dependence similar to the

one found in WM and WE mixtures. The same conclusions are also valid for OMOA case. But

the most important point here is that, even the hydrogen bonding between an associating and

non-associating species obeys the universality of lifetime distribution. This finding confirms

once more that these distributions are really about atomic species involved in hydrogen bonding

interaction (i.e. oxygen and hydrogen atoms), which are a permanent feature of the mixtures

examined here. Finally, we note that ethanol (OEOE) hydrogen bonding lifetime distribution

is nearly the same in water as in hexane, despite the very different properties of the two latter

liquids.
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Figure 36: Probability distributions of lifetimes of hydrogen bonds in methanol - acetone (MA)
mixtures and ethanol - hexane mixtures (EH) for various selected rC values, listed in the legend
box. Dotted lines are obtained with x = 0.8, thin lines with x = 0.5 and thick lines with x = 0.2,
where x represents concentration of alcohol in the mixture. Upper panels show the distributions
for rC values in the range 2.5 - 3.0 Å, while lower panels show the same results for rC being in
the range 3.0 - 3.5 Å.

Hydrogen bonding dynamics in kinetic regime

Since earlier works have put emphasis mainly on long-t properties of the distribution of hy-

drogen bonding lifetimes, considering that this temporal regime should be more relevant to the

kinetic relaxation of hydrogen bonding network, it would be instructive to examine the features

of the lifetime distribution in terms of both cutoff rC and concentrational dependence inside

this time regime. This analysis is presented in Figure 37, where we show lifetime distributions

ethanol - ethanol bonds (OEOE) for different concentrations of water in the mixture, listed in

the legend box. For reference, lifetime distribution of water - water bonds (OWOW) in pure

water (xE = 0) is shown in black color. Left panel shows lifetime distributions for rC = 2.5 Å,

while the right panel shows the same distributions when rC = 3.5 Å

We note that, for rC = 2.5 Å (see left panel of Figure 37), there is negligible concentrational

dependence of OEOE lifetime distributions, since all the curves seem to be nearly superposed.

Lifetime distribution of OWOW bonds is slightly shifted towards smaller t values, which is the

consequence of the difference between partial charges of oxygen and hydrogen sites of ethanol
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when compared with partial charges of the same sites in water case. However, for rC = 3.5 Å,

we notice differences in the t - decay of OEOE lifetime distributions across different ethanol

concentrations in the mixture. The decay is the fastest when concentration of water is high,

which indicates that hydrogen bonding network of ethanol has the fastest kinetics in aqueous

mixtures with high water content. However, as concentration of water decreases, kinetics of

ethanol - ethanol bonds slows down. In the case when there is no water in the mixture (xE = 1),

ethanol - ethanol bonds exhibit slowest kinetics. Therefore, results presented in the right panel

indicate that the addition of more water in WE mixture causes faster kinetics of ethanol - ethanol

bonds.

Comparison of results from the left and right panel of Figure 37 shows that concentrational

dependence of OEOE lifetime distributions grows with the increment of rC cut - off distance.

We remind that, for low values of rC, lifetime distributions are governed by stretching vibra-

tions of hydrogen bonded oxygen atoms of ethanol. Conversely, for large values of rC, lifetime

distributions are mostly governed by librations of hydrogen atoms of ethanol involved in hy-

drogen bonding. Therefore, we conclude that the addition of water in ethanol mostly affects

reorientational (librational) dynamics of H atoms of ethanol, while O dynamics is not signifi-

cantly affected.

Figure 37: Long - t decay of lifetime distributions of ethanol - ethanol hydrogen bonds in
ethanol - water mixture, for two selected rC values (2.5 Å and 3.5 Å) and different concentra-
tions of ethanol (xE) in the mixture. Pure water case (xE = 0) is shown in black color and pure
ethanol case (xE = 1) in magenta color. Left panel shows the distributions for rC = 2.5 Å, while
the right panel shows the distributions for rC = 3.5 Å.

We note that the results shown in Figure 37 are in agreement with work by Cardona et al.

[21], who discussed the kinetic properties of the probability distribution of hydrogen bonding

lifetimes in ethanol-water mixtures in the context of dielectric relaxation. Namely, a dipole

relaxation in these mixtures is described by dominant relaxation times τ1 (8 - 200 ps) and τ2 (0

- 2 ps). Time τ1 represents the time needed for the reorganization of the hydrogen bonded net-
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work in the system. Time τ2 describes the processes related to fast formations and breakages of

individual hydrogen bonds. In the context of the discussion within this work, time τ1 would be

related to the long - t decay of lifetime distributions, while time τ2 is related to the disruptions

of hydrogen bond within transient regime. While relaxation time τ2 is nearly independent of

concentrations changes in these mixtures (similarly like t - positions of primary and secondary

peaks are unaffected), time τ1 changes significantly upon changing concentration (similarly

like long - t decay in the right panel of Figure 37 changes upon changing concentration). Since

higher concentration of water in the system increases the number of hydrogen bonding possi-

bilities, time τ1 decreases upon increasing water concentration. This happens due to the fact

that molecules “switch” hydrogen bonding partners more often when there is more water in the

system. This affects reorientational dynamics of hydrogen bonding molecules, making it faster

in systems with high water concentration. This effect is manifested as faster t - decay of the

lifetime distributions in kinetic regime presented in Figure 37 and in work reported by Cardona

et al [21] for mixtures with higher concentration of water.

To conclude, we note that the invariance of the characteristic time τ2 to concentration changes,

demonstrated by Cardona et al. [21], is in agreement with the idea of universality inside tran-

sient temporal regime which is proposed herein. Within this work, this invariance is supported

by the concentrational independence of t - positions of primary and secondary peaks within

transient temporal regime.

3.3.2 Power spectrum of atomic vibrations in associative mixtures

Dynamics in liquids can be examined by the analysis of the power spectrum, ZPS(ω), which is

related to the velocity autocorrelation function, Z(t), by simple Fourier transform, as given by

equation (135) [56]:

ZPS(ω) =
Z ∞

0
Z(t)exp(−iωt)dt (135)

The definition of normalized velocity autocorrelation function is given by equation (136).

Z(t) =
< v (t)v(0)>
< v(0)v(0)>

(136)

Function Z(t) describes relaxation of particle’s velocity in time. Brackets <> represent sta-

tistical average, which can be conveniently described with <>= ∑
i

∑
j

, where ∑
i

represents

summation over the ensemble of different microstates, while ∑
j

represents summation over all

particles in a given microstate. Therefore, function Z(t) describes how correlated is, in average,

a particle’s velocity at time t with the particle’s velocity at time 0. Velocity relaxation in time

domain, described with Z(t), occurs with specific frequencies, which are characteristic of every
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system. These frequencies are given by vibrational power spectrum, ZPS(ω), introduced ear-

lier by equation (135). This physical quantity is measurable also in spectroscopic experiments,

providing a direct comparison between results obtained by experiments versus computer simu-

lations.

Figure 38 presents vibrational power spectrum of oxygen (O) and hydrogen (H) atoms of

ethanol in water - methanol mixtures (panel (a)), water - ethanol mixtures (panel (b)) and

ethanol - hexane mixtures (panel (c)), for various concentrations of alcohols (xALC), obtained

by computer simulations. These results have been also published in the recent works of our

group [75, 92].

Figure 38: Power spectrum of oxygen (O) and hydrogen (H) vibrations in methanol - water
(a), ethanol - water (b) and ethanol - hexane (c) mixtures. Alcohol concentrations (xALC) are
listed in the legend box. Results are obtained by molecular dynamics simulations, with OPLS
models of methanol and ethanol, OPLS model of hexane and SPC/E model of water, at ambient
conditions.

As shown in Figure 38, the power spectrum of O atoms has a distinct first peak at 30 cm−1 in all

three systems. This peak is attributed to the cage effect of neighbouring molecules on reference

O atom [53, 54] and is observed also in the spectrum of non - associative liquids [148]. Next, we

observe a shoulder between 200 cm−1 and 250 cm−1 in all three spectra, which has previously

been associated with the existence of hydrogen bonds [122, 102, 152]. This vibrational mode is

usually attributed to the stretching vibration of an oxygen atom along the hydrogen bond with

another oxygen atom (already introduced earlier in the context of primary lifetimes in lifetime

distribution of hydrogen bonds). Spectroscopic measurements found this peak at 110 cm−1 in

pure ethanol [44, 174], at 130 cm−1 in pure methanol [174]. We note that the amplitude of this

peak in power spectrum is nearly independent of the alcohol concentration in both methanol -
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water (see panel (a)) and ethanol-water (see panel (b)) mixture. However, we observe that this

is not the case for ethanol-hexane mixture (see panel (b)), where shoulder-peak around 200 -

250 cm−1 gradually evolves into a distinct peak as ethanol concentration decreases.

Results obtained by molecular dynamics simulations by Guardia et al. [53] have shown that the

amplitude of the peak at ω ≈200 cm−1in the power spectrum increases as the mean number of

hydrogen bonds per ethanol molecule increases. In the case when calculations were performed

exclusively over ethanol molecules which participate in only 1 hydrogen bond, power spectrum

with shoulder - peak was obtained. However, when only ethanol molecules with 2 hydrogen

bonds were accounted for, a well – defined distinct peak at ω ≈200 cm−1 instead of shoulder -

peak was observed. This indicates that the amplitude of this peak is strongly correlated with the

degree of ethanol - ethanol self bonding in the mixture. In ethanol - hexane mixture, ethanol self

bonding is more pronounced than in pure ethanol, leading to larger the number of molecules

with 2 hydrogen bonds and smaller number of molecules with only 1 hydrogen bond, resulting

in the appearance of a marked distinct peak around 200 - 250 cm−1 in the power spectrum.

We note that the frequencies around 200 - 250 cm−1 correspond to the frequencies of 6 - 7.5

ps−1. These frequencies describe vibrations with the period 1.33 - 1.67 ps. It is interesting to

note that this time period matches with the t - position of the main peak in lifetime distribution

of ethanol - ethanol hydrogen bonds in ethanol - water mixture, for rC ≈ 3.5 Å, as demon-

strated in Figure 33. This is another indication that the main peaks in lifetime distribution of

hydrogen bonds are directly related to stretching vibrations of O atoms involved in hydrogen

bonding, which further supports our previous arguments. The fact that the same shoulder peak

(200 cm−1 and 250 cm−1) appears also in power spectra of other associative liquids (water and

methanol, as also shown in ref [103]and [53]), supports the idea of universality of hydrogen

bonding lifetimes across different associative species within transient temporal regime.

Let us now consider the power spectra of hydrogen (H) atoms in the three mixtures. As seen on

the left panel of Figure 38, the hydrogen power spectra have a broad peak centered at around

600 cm−1, which is attributed to the librations of ethanol molecules [53]. We note that this

frequency describes vibrations with the time period of about 0.05 ps, which corresponds to the

t - position of the right secondary peak in all lifetime distributions of hydrogen bonds presented

earlier. This is another indication that secondary peaks in the lifetime distribution of hydrogen

bonds are directly related to librations of H atoms.

As alcohol concentration decreases, we observe a small shift of the librational peak to higher

frequencies in aqueous mixtures (see panels (a) and (b) in Figure 38), while this shift does not

occur in the mixture with hexane (see panel (c)). This suggests that, upon the addition of water,

librations of alcohol molecules becomes faster than in neat alcohols. This trend has also been

observed in the results published by Hazra and Bagchi [59] for the case of ethanol - water mix-

ture. Vibrational changes induced by the addition of water in ethanol have been also observed
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experimentally in the infrared spectrum of ethanol [85]. It has been shown that water modifies

the spectra of monohydric alcohols causing an extension of the OH intramolecular bond and a

reduction of the OO intermolecular bond. Our results for the hydrogen spectra of both alcohols

clearly indicate that the addition of water speeds up the hydrogen libration. However, as seen

from the right panel of Figure 38, the librational band for ethanol hydrogen remains at about

the same position for all ethanol concentrations in hexane, which, as expected, suggests that

hexane does not alter the local molecular vibrations of ethanol as much as water.

Figure 39 shows the vibrational spectra of water oxygen (OW) and hydrogen (HW) atoms in

methanol - water (a) and ethanol - water (b) mixtures. We observe a sharp peak at about 50

cm−1 and a shoulder at about 200 cm−1 in the oxygen spectra for all concentrations, similarly

like in the oxygen spectra of alcohols presented in Figure 38. These peaks have been previously

found for pure water by several authors [179, 68, 53]. The trends observed in Figure 39 are

in agreement with results published by Palinkas, Bako and Heinzinger [123], who showed that

that the peak positions in the vibrational O spectra of both methanol and water do not change

greatly as concentrations are varied. In addition, they observe that the water librational band

at 400 cm−1 becomes more pronounced with the decrease of the water concentration, which

is also supported by our results for the hydrogen spectra in both water - methanol and water -

ethanol mixtures.

Figure 39: Power spectrum of water oxygen (OW) and water hydrogen (HW) vibrations in
methanol - water (a), ethanol - water (b) and ethanol - hexane (c) mixtures. Alcohol concentra-
tions (xALC) are listed in the legend box.

To conclude, dynamics of both water and alcohols modifies upon mixing conditions, as indi-

cated by various experimental works mentioned earlier. For example, the differences in reori-

entational dynamics of aqueous alcohols versus neat alcohols are manifested by differences in
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characteristic relaxation times obtained by dielectric relaxation experiments [139, 154, 155].

In this chapter, we showed that these differences are also manifested through the shape of the

probability distribution of hydrogen bonding lifetimes, when these distributions are compared

for mixtures with varying concentration of the solute. As demonstrated earlier, these distri-

butions contain signatures of both stretching vibrations of O atoms and librations of H atoms,

through the appearance of the primary peaks and secondary peaks respectively. The changes in

O and H dynamics, which occur upon mixing conditions, manifest through variation of ampli-

tudes of primary peaks and secondary peaks in lifetime distributions of hydrogen bonds over

transient temporal regime. While the universality of peak positions in transient regime indicates

that, in terms of vibrational frequencies, O and H dynamics is universal across different mix-

tures and different concentrations, the variation of amplitudes implies the differences in speed

of reorientational dynamics across different concentrations of a solute in a mixture. Faster re-

orientational dynamics manifests through the increment of the amplitudes of secondary peaks,

indicating higher percentage of short - living hydrogen bonds which break within characteris-

tic librational period (0.05 ps). For example, considering the distribution of alcohol - alcohol

hydrogen bonding lifetimes in aqueous alcohol mixtures, the amplitude of secondary peaks is

higher at higher concentrations of water, implying that, in mixture with high water content,

the percentage of short - living bonds (~0.05 ps) is larger. In this context, the analysis of the

distribution of hydrogen bonding lifetimes leads to the conclusions which are in qualitative

agreement with experimental findings. In addition, results are in quantitative agreement with

the results obtained by power spectrum analysis (see Figure 38).

3.3.3 Rotational dynamics in associative mixtures

Reorientational dynamics of molecules in liquids can be described with reorientational corre-

lation function Cl(t), defined with [56]:

Cl(t) =
< Pl(e(t) · e(0)))>
< Pl(e(0) · e(0)))>

(137)

where Pl is the Legendre polynomial of rank l, while e(t) is the unit vector parallel to the

inter-nuclear axis of the molecule at time t. Functions C1(t) can be experimentally obtained by

dielectric relaxation experiments, while C2(t) can be obtained with NMR and Raman measure-

ments [12]. In this work, we will consider C2(t) functions, with e(t) being paraller to the OH

vector of either alcohol or water molecule.

In the large - t limit, C2(t) has a Debye - like behavior, C2(t) ∼ exp(−t/τ2), where τ2 is the

reorientational correlation time. Integral reoreintational correlation time < τ2 > is the average
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time measured in NMR experiments. It is defined with:

< τ2 >=
Z ∞

0
C2(t)dt (138)

The calculated C2(t) functions are usually fitted to double - exponential function of the form

f (t):

f (t) = a · exp(−t/τ1)+(1−a) · exp(−t/τ2) (139)

where the shorter time τ1 corresponds to fast librational motions, whereas the larger time τ2

corresponds to the relaxation (rearrangement) time of collective hydrogen bonding network.

Functions C2(t), obtained by molecular dynamics simulations, when e(t) is taken to be par-

allel to the alcohol OH vector, are presented in Figure 40, for methanol - water (left panel),

ethanol - water (middle panel) and ethanol - hexane (right panel) mixtures. Concentrations of

alcohol in the mixtures are listed in the legend boxes. Results related to reorientational dynam-

ics of water and alcohols in these mixtures have also been published in recent works of our

group [92, 75].

Figure 40: Reorientational correlation functions, C2(t), of the alcohol OH vector in water -
methanol (left panel), water - ethanol (middle panel) and ethanol - hexane (right panel) mix-
tures. Concentrations of alcohol in the mixtures are listed in legend boxes.

All three panels presented in Figure 40 show similar trends, with C2(t) exhibiting slower t -

decay as concentration of alcohol increases. We conclude that reorientational dynamics of al-

cohols speeds up with the addition of both water or hexane in the liquid. This conclusion is in

agreement with the analysis of Skarmoutsos and Guardia [164], who analyzed the rotational dy-

namics in supercritical ethanol and discovered that reorientational correlation functions C2(t)

decay faster in time if the molecules are less hydrogen bonded. If we focus particularly on

xALC = 0.2 alcohol concentrations (shown in red), we conclude that in methanol - water, alco-

hol molecules rotate faster than in ethanol - water, as expected, since it is known that in pure

liquids, molecular reorientation of methanol is faster than that of ethanol [152].
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In Table 1 we show the reorientational correlation times τ1 , τ2 and < τ2 > for all three con-

centrations and mixtures. The trend for all three mixtures is the same: time constants related

to the reorientation of the OH alcohol vector increases as alcohol concentration increases, as

expected from the results seen in Figure 40. NMR experiments for pure alcohols have shown

that the rotational correlation times of methanol is smaller than that of ethanol [94], which is

consistent with our results where the methanol time constants are smaller.

Table 1: Short reorientational correlation times τ1, long reorientational correlation times τ2 and
integral reorientational correlation times < τ2 > of the alcohol OH vector in methanol - water,
ethanol - water and ethanol - hexane mixtures, for different concentrations of alcohol xALC.

Reorientational correlation functions C2(t) with e(t) taken to be parallel to water OH vector

are shown in Figure 41, whereas the time constants are given in Table 2. We observe in Figure

41 that, in both water - methanol and water - ethanol mixtures, C2(t) decays faster as alcohol

concentration decreases, meaning that reorientation of water is faster when there is more water

in the mixture. NMR relaxation study of alcohol-water mixtures by Ludwig [93] found that

a small addition of alcohols (methanol. ethanol and 1-propanol) causes an increase in the

rotational correlation times of water. Previous computer simulation studies of methanol-water

[45] (with OPLS methanol [73] model and TIP4P water model [72]) found that, for xALC = 0.5

, < τ2 >= 5 ps, which is comparable to our value of 3.686 ps.
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Figure 41: Reorientational correlation functions, C2(t), of the water OWHW vector in water -
methanol (left panel) and water - ethanol (right panel) mixtures. Concentrations of alcohol in
the mixtures are listed in legend boxes.

Table 2: Short reorientational correlation times τ1, long reorientational correlation times τ2 and
integral reorientational correlation times < τ2 > of the water OWHW vector in methanol - water
and ethanol - water mixtures, for different concentrations of alcohol xALC.

To conclude, we note that reorientational trends observed in Figure 40 and Figure 41 can be also

confirmed by the analysis of the lifetime distribution of hydrogen bonds in transient regime.

This is illustrated in Figure 42, which shows the lifetime distributions of OO, OOW and OWOW

bonds in methanol - water mixture, for concentrations listed in the legend box. The distribu-

tions are calculated with the choice rC = 3.5 Å.

Figure 42 shows that, in the context of the lifetime distribution of hydrogen bonds, faster re-

orientational dynamics manifests through the growth of the amplitudes of secondary peaks in

the distribution of hydrogen bonding lifetimes. Taken methanol as an example, slower reori-

entational dynamics of methanol in pure liquid, compared to the same dynamics in acqueous

mixture, is visible through lower amplitudes of secondary OO peaks in xM = 1 case, compared

to xM < 1 cases (see left panel of Figure 42). Lower amplitudes indicate lower probability of the
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lifetimes within librational period, which is expected for a system with slower reorientational

dynamics.

Figure 42: Lifetime distributions of OO (left panel), OOW and OWOW hydrogen bonds in water
- methanol mixtures. Alcohol concentrations are listed in the legend boxes for each panel. All
distributions are calculated with the choice rC = 3.5 Å.
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3.4 Correlations in simple and complex disordered liquids

Previously, in section 3.2.1, dynamic density correlation functions have been discussed in the

context of hydrogen bonding dynamics in associative liquids, while formal mathematical defi-

nition has been given in the section Theory. In this chapter, the detailed comparative analysis of

time - dependent density correlations for different types of simple and associative liquids will

be presented and discussed.

3.4.1 Simple Lennard - Jones liquid

Before considering more complex systems, it is convenient to start the analysis with time -

dependent density correlations of simple Lennard - Jones liquid, since this system is a good

representative of ordinary, simple disordered liquids. Hence, comparison of these functions

for simple liquids versus complex liquids is expected to highlight specificities in dynamics of

associative systems when compared with simple ones. Self and distinct Van Hove functions,

G(s)(r, t) and G(d)(r, t), for several selected t values, listed in the legend box, are presented in

Figure 43.

Figure 43: Time dependent self (left panel) and distinct (right panel) density correlations,
Gs(r, t) and Gd(r, t) of simple LJ liquid. The y - axis of the main left panel is shown in log
scale, while the inset shows the same functions in linear scale. Functions are shown for several
selected t values, listed in the legend box in the right panel.

Left panel of Figure 43 shows G(s)(r, t) functions for different time values t in logarithmic y -

scale (main panel) and linear scale (inset). In linear scale, G(s)(r, t) , for fixed t, has a gaussian

- like shape, centered at r = 0. At short times, the distribution is very narrow, with the high

amplitude around r = 0. At larger times, the distribution is broader, with the amplitude around

r = 0 monotonically decreasing with time.

We recall that G(s)(r, t) represents a probability that a particle diffuses the distance between r
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and r+dr within time interval t. For short time values, narrow distribution of G(s)(r, t) around

the origin reflects the fact that particles do not diffuse large distances within very short time

intervals. However, at large times, broadening of the distribution around the origin indicates

that the probability of diffusing at larger distances increases with increasing time.

Right panel of Figure 43 shows G(d)(r, t) functions for the same time values. One can see

that all peaks in the distribution are becoming less defined as time increases, ultimately leading

to perfectly homogenous distribution at large times, when G(d)(r, t)≈ 1 over entire r - domain.

The decay of peak amplitudes with increasing time describes the loss of density correlations at

specific r distances as t increases. For instance, the first peak of G(d)(r, t = 0) (see the black

curve in the right panel of Figure 43), centered at r ≈ 3.5 Å, describes the spatial distribution of

first neighbours around a reference particle, located at the origin. As time increases, the refer-

ence particle diffuses from the origin, as implied by broadening of G(s)(r, t) as time increases.

The diffusion of the reference particle induces the weakening of density correlations around the

first peak, since the neighbouring particles will be more and more randomly distributed around

the origin as the reference particle diffuses away. In the limit t → ∞, neighbouring particles are

perfectly randomly distributed around the origin, meaning that the average local density in the

vicinity of the origin is equal to the density in bulk.

Another interesting feature visible from the right panel of Figure 43 is that the second peak

of G(d)(r, t = 0), centered at r ≈ 7 Å, clearly decays slower in time than the first peak. Also,

second peak of G(d)(r, t = 0) is characterized by lower amplitude, relative to the first peak.

Lower amplitude of the second peak indicates that the density within second coordination shell

is much less correlated with the density at the origin, than the density within first coordination

shell is. In addition, slower t - decay of the second peak implies that the density around sec-

ond coordination shell is much less affected by the diffusion of the reference particle from the

origin.
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3.4.2 Simple liquids - acetone and carbon tetrachloride

We start this section by discussing dynamical correlations in acetone and carbon tetrachloride

(CCl4), which are good represntatives of simple disordered liquids. Both acetone and CCl4
are modeled with OPLS models [41, 74]. Although both liquids are polar, they do not exhibit

micro-heterogeneities, as the ones seen for alcohols. This is the reason why these liquids are

not considered as complex liquids, but simple liquids. For each liquid, we present the self and

distinct Van Hove functions G(s)(r, t) and G(d)(r, t), together with the self and total intermediate

scattering functions F(s)(k, t) and F(t)(k, t), and the self and total dynamical structure factors

S(s)(k,ω) and S(t)(k,ω). Time - dependent functions will be shown in r - space or k - space, for

29 selected time values (0 ps, 0.1 ps, 0.2 ps, ..., 1 ps, 2 ps, ..., 10 ps, 20 ps, ..., 100 ps). Since

the decay of the curves is monotonic, we will not label all the curves, but merely few selected

ones for reference (typically 0 ps, 0.1 ps, 1 ps, 10 ps and 100 ps).

Self Van Hove functions for acetone, G
(s)
OO and G

(s)
OC, are presented in the left and right pan-

els of Figure 44 respectively, while corresponding functions in k - space, F
(s)
OO and F

(s)
OC, are

shown in the insets. For reference, functions corresponding to the time values 0 ps, 0.1 ps, 1

ps, 10 ps and 100 ps are shown in thick lines, with black, red, green, blue and orange colors

respectively. First, we observe the delta functions (thick black vertical lines), centered at r = 0

for OO correlations, and at r ≈ 1 Å for OC correlations. Generally, if atoms a and b form the

same molecule, ρG
(s)
ab (r, t)dr, represents the probability at time t of finding atom b at separation

r from where atom a was located at t = 0. At t = 0, this probability will be zero everywhere

except at r = dab, with dab representing intramolecular distance between atoms a and b. This

explains why the delta function is centered at the origin for OO correlations, while it is shifted

at larger r for OC correlations.

For t > 0, G(s) functions have parabolic appearance in log-scale, which would correspond to

gaussian form in linear scale. Formally, in the textbooks, we can find: [56]

G(s)(r, t) =
1

ρ (4πDt)
3
2

exp(− r2

4Dt
) (140)

with D representing the diffusion constant, and normalization factor ρ−1 (4πDt)−
3
2 being de-

termined with normalization condition:

Z
G(s)(r, t)dr =

1
ρ

(141)

,where molar volume is equal to ρ−1. However, our tests have shown that G(s) exhibits gaussian

form (from equation 140) only for large t values (∼ 10 ps), while, for lower t - values, it devi-

ates significantly from the gaussian form. More details about the agreement between D from
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equation (140) and the diffusion obtained by experiments will be discussed later on. For now,

we return to the insets presented in Figure 44. From the left inset we note that F
(s)
OO(k,0) = 1 for

all k - values (thick black line), which is the mathematical consequence of performing spatial

Fourier transform of the delta function δ (r) from the main panel. In addition, the oscillating

F
(s)
OC(k,0) function from the right inset is obtained from the Fourier transform of δ (r− dOC),

with dOC denoting intramolecular OC distance.

Figure 44: acetone: Main panels show self Van Hove functions, G
(s)
OO(r, t) and G

(s)
OC(r, t), in the

left and right panels respectively. Corresponding scattering functions are shown in the insets.
All plots are shown in logarithmic y-scale, for the visibility purpose. Time values of 0 ps, 0.1
ps, 1 ps, 10 ps and 100 ps are highlighted and presented with thick black, red, green, blue and
orange lines respectively.

Figure 45 presents self CC and CCl correlations for CCl4 in the same manner they are pre-

sented in Figure 44 for acetone. General trends appear to be similar to the ones observed in

Figure 44. However, we note that the loss of self - correlations in time is faster for acetone than

for CCl4, which is visible through lower values of G
(s)
OO(r = 0, t) and G

(s)
OC(r = 0, t) of acetone

when compared with correlations in CCl4, G
(s)
CC(r = 0, t) and G

(s)
CCl(r = 0, t) respectively. Faster

decay of acetone correlations, compared to correlations in CCl4, could be attributed to larger
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dipole moment of acetone molecule. Namely, the magnitude of partial charges on O and C sites

of acetone, within the OPLS (united-atom) model [74], is 0.47, while the same magnitude in

the case of CCl4, within the OPLS (all-atom) model [41], is 0.248. Larger values of charges on

acetone lead to stronger intermolecular interactions of the central molecule with the surround-

ing, which could lead to faster decay of self - correlations in time. In addition, we note that

functions in k - space (see insets of Figures 44 and 45) confirm the trends observed in r - space.

Figure 45: CCl4: Main panels show self Van Hove functions, G
(s)
CC(r, t) and G

(s)
CCl(r, t), in the

left and right panels respectively, while corresponding scattering functions are shown in the
insets. We use the same conventions as in Figure 44.

Now we turn our attention to distinct Van Hove functions of acetone and CCl4. Figure 46 shows

G
(d)
OO and G

(d)
OC correlations in acetone in the left and right panels respectively, while G

(d)
CC and

G
(d)
CCl correlations of CCl4 are presented in Figure 47. The main differences between the two

figures are related to the peak amplitudes of G(d)(r, t = 0) correlations in acetone versus CCl4,

followed by the different decorrelation trends. For example, lower first peak of G
(d)
OO correla-

tions in acetone, compared to G
(d)
CC correlations in CCl4, indicates that correlations between the

first neighbours are more pronounced in CCl4 than in acetone. In addition, we observe faster

decorrelation of acetone in time, compared to CCl4. This is in agreement with the trend ob-

served when G(s) correlations between the two liquids were compared, where we equally found

that acetone decorrelates sooner than CCl4 .
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Figure 46: acetone: Distinct Van Hove functions, G
(d)
OO(r, t) and G

(d)
OC(r, t), are shown in the left

and right panels respectively. Higlighted time values are presented with thick lines, with the
color convention shown in the legend box.

Total intermediate scattering functions F(t)(k, t), corresponding to correlations discussed above,

are shown in Figure 48 for acetone and Figure 49 for CCl4. From Figure 48, we note that

F
(t)
OO(k, t = 0) function (left panel) goes asymptotically to 1, while F

(t)
OC(k, t = 0) goes asymp-

totically to 0 in large r limit. This asymptotic difference is caused by the difference between

the self parts, F
(s)
OO(k, t = 0) versus F

(s)
OC(k, t = 0), as demonstrated in the insets of Figure 44.
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Figure 47: CCl4: Distinct Van Hove functions, G
(d)
CC(r, t) and G

(d)
CCl(r, t), are shown in the left

and right panels respectively. Highlighted time values are presented with thick lines, with the
color convention shown in the legend box.

In addition, from Figure 48, the main peaks of F
(t)
OO(k, t = 0) and F

(t)
OC(k, t = 0) are observed at

k ≈ 1.2 Å−1 in both cases. This value corresponds to r ≈ 5 Å in real space, which nearly cor-

responds to the first peaks of G
(d)
OO(r, t = 0) and G

(d)
OC(r, t = 0), as seen from Figure 46. Similar

observations can be found also in the case of CCl4 (see Figure 49).

Comparative analysis of Figures 48 and 49 leads to similar conclusions obtained from the

analysis of correlations in r - space, where we found that acetone decorrelates faster than CCl4.
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Figure 48: acetone: Total intermediate scattering functions, F
(t)
OO(k, t) and F

(t)
OC(k, t), are shown

in the left and right panels respectively. Higlighted time values are presented with thick lines,
with the color convention shown in the legend box.

Figure 49: CCl4: Total intermediate scattering functions, F
(t)
CC(k, t) and F

(t)
CCl(k, t), are shown

in the left and right panels respectively. Higlighted time values are presented with thick lines,
with the color convention shown in the legend box.

Finally, we show the total dynamic structure factors S(t)(k,ω) in the main panels and its self

parts S(s)(k,ω) in the insets of Figures 50 and 51, for acetone and CCl4 respectively. Functions

are shown in k - space, for various ω values. For reference, we highlight particularly ω =
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0.05 ps−1 (thick black line), ω = 1 ps−1 (thick red line), ω = 10 ps−1 (thick green line) and

ω = 30 ps−1 (thick blue line).

Figure 50: acetone: Main panels show total dynamical structure factors, S
(t)
OO(k,ω) and

S
(t)
OC(k,ω), in the left and right panels respectively. Corresponding self parts, S

(s)
OO(k,ω) and

S
(s)
OC(k,ω), are shown in the insets. Frequency values of 0.05 ps−1, 1 ps−1, 10 ps−1 and 30 ps−1

are highlighted and presented with thick black, red, green and blue lines respectively.

First, we note that the main peaks of all S(t)(k,ω) functions coincide with the main peaks from

corresponding F(t)(k, t) functions. Secondly, the negative parts of S
(t)
OO(k,ω) and S

(t)
OC(k,ω)

around k ≈ 0 are attributed to numerical artifacts, coming from the fact that F
(t)
OO(k, t) and

F
(t)
OC(k, t) are negative around k ≈ 0 (see Figures 48 and 49). This is caused by the well-known

problem when g(r) is calculated in simulations. Namely, the asymptote of g(r) slightly differs

from 1, tending to value below 1 [86]. This is also a known problem in the evaluation of KBI

integrals from computer simulations [34, 111, 129, 82, 50].

By comparing the structure factors of acetone and CCl4, we see that the biggest difference

is the absence of the peak at k ≈ 2.5 ˚A−1of acetone S
(t)
OO(k,ω), compared to S

(t)
CC(k,ω) dynam-

ical structure factor of CCl4 . Apart from this, the dynamical structure factors between the two

liquids look very similar.
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Figure 51: CCl4: Main panels show total dynamical structure factors, S
(t)
CC(k,ω) and

S
(t)
CCl(k,ω), in the left and right panels respectively. Corresponding self parts, S

(s)
CC(k,ω) and

S
(s)
CCl(k,ω), are shown in the insets. Frequency values of 0.05 ps−1, 1 ps−1, 10 ps−1 and 30

ps−1 are highlighted and presented with thick black, red, green and blue lines respectively.
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3.4.3 Complex liquids - water and ethanol

We will examine correlations in water and ethanol, taken as representatives of complex disor-

dered liquids. Comparison of these results with the previous ones, related to acetone and CCl4,

is expected to reveal the differences between correlations in simple liquids versus complex dis-

ordered liquids. Recently, dynamic correlations functions of various models of water have been

compared with experimental data [106]. We note that our data obtained for SPC/E model of

water quantitatively matches with functions obtained in reference [106].

Self Van Hove functions, corresponding to OO and OH correlations in water, are presented

in Figure 52. We can note immediately that correlations in r - space vanish faster in water than

in both acetone and CCl4. However, in k - space, decorrelation in acetone and water seem to

be very similar. This difference between the trends observed in r - space versus k - space can

be explained with the following arguments. As given by equation (140), the self Van Hove

function, for a fixed value of t, is determined with the slope of the function, (4Dt)−1 and the

normalization factor Gs(r = 0, t), which depends of both molar volume of the liquid and the

diffusion properties of the liquid:

G(s)(r = 0, t) =
1

ρ (4πDt)
3
2

(142)

Hence, the loss of correlations around r = 0 in time, aside being dependent of diffusion, also

depends of molar volume ρ−1. This is important to keep in mind when comparing the loss of

self - correlations between two different liquids in r - space, as it has been done in this section

for OO correlations between water and acetone. The ratio of values obtained for the two liquids

is:
G
(s)
A;OO(r = 0, t)

G
(s)
W ;OO(r = 0, t)

=
ρW

ρA

�

DW ;OO

DA;OO

� 3
2

(143)

,where G
(s)
A;OO(r = 0, t) and G

(s)
W ;OO(r = 0, t) denote OO self Van Hove functions of acetone and

water respectively. This implies that condition DA = DW does not necessarily imply identical

loss of correlations in both liquids (i.e. it does not imply G
(s)
A;OO(r = 0, t) = G

(s)
W ;OO(r = 0, t)).

It is possible that acetone decorrelates slower than water, even if diffusion D in both liquids is

the same. This will occur if the molar density of acetone is smaller than the molar density of

water, as it is the case in reality.

In textbooks, the corresponding scattering function related to the self Van Hove function is:

[56]

F(s)(k, t) = exp(−Dtk2) (144)
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,implying that, for fixed value of t, gaussian given in the last equation depends only of diffu-

sion D. Hence, the decay of F(s)(k, t) correlations in k - space is governed purely by diffusion.

Since, at short times (∼ 0.1 ps), F
(s)
OO(k, t) functions look nearly the same for both liquids (see

thick red curves in the insets of Figures 44 and 52), we conclude that diffusion in both liquids

is nearly the same at this short timescale. The differences in speed of decorrelation of the two

liquids, which we observed in r - space at short times, are caused by different molar densities

of the two liquids.

Next, we show OO and OH self correlations of ethanol in Figure 53. We observe that cor-

relations in r - space are lost significantly slower than for water. In addition, comparison of the

insets from Figures 52 and 53 indicates that the diffusion of ethanol and water is nearly similar

at short timescales (∼ 0.1 ps - thick red curves in the insets).

Figure 52: water: Main panels show self Van Hove functions, G
(s)
OO(r, t) and G

(s)
OH(r, t), in the

left and right panels respectively. Corresponding scattering functions are shown in the insets.
All plots are shown in logarithmic y-scale, for the visibility purpose. Time values of 0 ps, 0.1
ps, 1 ps, 10 ps and 100 ps are highlighted and presented with thick black, red, green, blue and
orange lines respectively.
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Figure 53: ethanol: Main panels show self Van Hove functions, G
(s)
OO(r, t) and G

(s)
OH(r, t), in

the left and right panels respectively, while corresponding scattering functions are shown in the
insets. We use the same conventions as in Figure 52.

Distinct OO and OH Van Hove correlations are presented in Figures 54 and 55 for water and

acetone respectively. We observe similar trends as in the case of self correlations shown above:

water decorrelates faster than ethanol. For example, for t = 1 ps (thick green curves), cor-

relations around the first peak (r ≈ 2.8 Å) are dead in the case of water, while they are still

preserved in the case of ethanol. In addition, both water and ethanol decorrelate faster than

CCl4.
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Figure 54: water: Distinct Van Hove functions, G
(d)
OO(r, t) and G

(d)
OH(r, t), are shown in the left

and right panels respectively. Higlighted time values are presented with thick lines, with the
color convention shown in the legend box.

Faster decorrelation between the first neighbours in associative liquids, compared to simple liq-

uids, might seem counter-intuitive at first, since the attractive interaction between first neigh-

bours in associative liquid is expected to be stronger than in simple liquids, potentially leading

to longer lasting correlations between the first neighbours in time. However, strong attractive

interaction between first neighbours has the opposite effect in reality. Since the attractive in-

teraction between first neighbours in associative liquid is stronger than attractive interaction

between first neighbours in simple liquid, atoms within the first shell of associative system are

more affected by the diffusion of the reference atom from the origin, than it is the case in simple

liquid, since the mutual attraction between first neighbours is weaker in latter case. Therefore,

as the reference atom in associative system diffuses from the origin in time, it simultaneously

drags the first neighbours out of the first coordination shell, with attractive electrostatic force.

This effect is much weaker in the case of simple liquids, since the attractive interaction between

neighbours is weaker. Consequently, first neighbours are less affected by the diffusion of the

reference atom from the origin in time, leading to slower t - decay of density correlations.
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Figure 55: ethanol: Distinct Van Hove functions, G
(d)
OO(r, t) and G

(d)
OH(r, t), are shown in the left

and right panels respectively. Higlighted time values are presented with thick lines, with the
color convention shown in the legend box.

We show total intermediate scattering functions, F
(t)
OO and F

(t)
OH in Figures 56 and 57, for water

and ethanol respectively. The origin of peaks at k ≈ 2 ˚A−1 and k ≈ 3 ˚A−1 of F
(t)
OO(k, t = 0)

function for both water and ethanol (left panels of Figures 56 and 57) has been discussed

in section 3.1. Here, we note that the time decay of both peaks appears to be similar in both

liquids. This indicates that the structural features associated to the two k - values relax similarly

in time. In addition, the pre - peak of F
(t)
OO correlations of ethanol, located at k ≈ 1 ˚A−1, decays

significantly slower in time. The same conclusion is valid also for F
(t)
OH correlations in ethanol,

where the pre - peak is centered around the same k - value as for F
(t)
OO case. This is expected,

since the formation of the pre - peak in the structure factor is related to the formation of supra-

molecular aggregates in associative liquids, as discussed in section 3.1. The time - decay of

the pre - peak describes the timescale at which correlations between aggregates are lost. Our

results show that these long - ranged correlations decay much slower in time than short - ranged

correlations, attributed to larger k - values.
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Figure 56: water: Total intermediate scattering functions, F
(t)
OO(k, t) and F

(t)
OH(k, t), are shown

in the left and right panels respectively. Higlighted time values are presented with thick lines,
with the color convention shown in the legend box.

Figure 57: ethanol: Total intermediate scattering functions, F
(t)
OO(k, t) and F

(t)
OH(k, t), are shown

in the left and right panels respectively. Higlighted time values are presented with thick lines,
with the color convention shown in the legend box.

Finally, we show dynamic structure factors S
(t)
OO(k,ω) and S

(t)
OH(k,ω) in Figures 58 and 59. We

note that the k- values at which peaks appear in S(t)(k,ω) coincide with the peak positions in

F(t)(k, t), for each type of correlations. However, in the case of S
(t)
OO(k,ω) of water (left panel
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of Figure 58), we observe an additional peak at k ≈ 0.5 ˚A−1, which we do not observe in the

case of F
(t)
OO(k, t) for the same liquid. This peak could imply the existence of the structure at the

lengthscale of ∼ 10 Å in the microstructure of water. The peak appears only at low frequencies,

namely for ω = 0.05 ps−1 (thick black curve ), but already disappears at ω = 1 ps−1 (thick red

curve). This suggests the slow relaxation process attributed to this structure. Interestingly, at

the distance r ≈ 10 Å, the periodicity of gOO(r) correlations in water shifts from ∼ 2 Å (ear-

lier denoted with 0.6 σ ) to ∼ 3 Å (earlier denoted with σ ). This could imply that the peak at

k ≈ 0.5 ˚A−1 of S
(t)
OO(k,ω) corresponds to charge ordered local structure of water, characterized

by periodicity of ∼ 2 Å, which relaxes slowly in time. In addition, this peak could be inter-

preted as dynamical equivalent of the static pre - peak, observed earlier in the structure factors

of alcohols.

Figure 58: water: Main panels show total dynamical structure factors, S
(t)
OO(k,ω) and

S
(t)
OH(k,ω), in the left and right panels respectively. Corresponding self parts, S

(s)
OO(k,ω) and

S
(s)
OH(k,ω), are shown in the insets. Frequency values of 0.05 ps−1, 1 ps−1, 10 ps−1 and 30

ps−1 are highlighted and presented with thick black, red, green and blue lines respectively.

In the case of ethanol (see Figure 59), the equivalent peak appears at k ≈ 1 ˚A−1, which coincides

with the position of the pre - peak of the structure factor of ethanol. However, the height of

the peak is significantly larger in the case of ethanol, implying that slow relaxation processes

(i.e. low ω) are mainly associated with relaxation of correlations between supramolecular

aggregates in the alcohol. Conversely, in water, low frequencies are almost equally associated
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with both short - ranged and long - ranged correlations (both small k and large k wavevectors).

Figure 59: ethanol: Main panels show total dynamical structure factors, S
(t)
OO(k,ω) and

S
(t)
OH(k,ω), in the left and right panels respectively. Corresponding self parts, S

(s)
OO(k,ω) and

S
(s)
OH(k,ω), are shown in the insets. Frequency values of 0.05 ps−1, 1 ps−1, 10 ps−1 and 30

ps−1 are highlighted and presented with thick black, red, green and blue lines respectively.
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3.4.4 Self Van Hove function and diffusion

In this section, we put focus on the diffusion properties of simple and complex liquids, which

can be extracted from self part of Van Hove correlation function. Previously, we compared

G(s)(r, t) functions for different liquids, highlighting the differences in the speed of decorre-

lation between different systems. We noted that faster diffusion does not imply faster decor-

relation, since decorrelation depends also of molar density of each system. This is why we

observed somewhat different trends when we accounted for G(s)(r, t) self - correlations, com-

pared to trends observed for F(s)(k, t). While the loss of G(s)(r, t) correlations depends strongly

of both diffusion and molar density, loss of F(s)(k, t) correlations is governed only by diffusion.

In this section we wish to examine the differences in diffusion, instead of correlations, be-

tween different types of liquids. Again, we take acetone and CCl4 as representatives of simple

liquids, together with water and ethanol, as representatives of complex liquids. We plot the self

Van Hove functions weighted by molar density ρ , since the decay of this form is not affected

by the density of the liquid. Hence, the decay of this function is governed solely by diffusion.

Therefore, the equation:

4π

Z
ρG(s)(r, t)r2dr = 1 (145)

is valid for every ρG(s)(r, t) function which we show below. Figure 60 shows ρG(s)(r, t) func-

tions for water (thick lines), ethanol (dotted thick lines), acetone (dashed thick lines) and CCl4
(thin full lines) in the main panel. Functions are shown for different values of t, where each

time value corresponds to specific color: 0.1 ps (black), 1 ps (green), 10 ps (blue) and 100

ps (orange). The inset shows corresponding scattering functions F(s)(k, t) with the same color

conventions. In the cases of water, ethanol and acetone, we consider OO correlations, while

CC correlations are considered in the case of CCl4.

When weighted ρG(s)(r, t) are considered instead of non - weighted G(s)(r, t), we notice that

the trends observed in r - space (main panel) match perfectly with the trends in k - space (inset).

We remind that this was not the case in the previous section. At short times (black curves - 0.1

ps), CCl4 (thin black line) exhibits slowest diffusion than the other liquids, which diffuse very

similarly in this short timescale. Namely, water, ethanol and acetone show similar behavior,

which is visible by near superposition of thick full, dotted and dashed black curves, in both

panels.
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Figure 60: Self Van Hove correlations of water (thick full lines), ethanol (thick dotted lines),
acetone (thick dashed lines) and CCl4 (thin full lines). Each color corresponds to different time
value: black - 0.1 ps, red - 1 ps, green - 10 ps, blue - 100 ps. Main panel shows correlations in
r - space, while the inset shows the same correlations in k - space.

At larger times, the curves differentiate more clearly, highlighting the differences between self

- diffusion close to diffusive temporal regime across different types of liquids. Our results sug-

gest that acetone (thick dashed curve) exhibits fastest diffusion, while the diffusion of ethanol

is the slowest at large times (100 ps - blue lines).

It is also instructive to examine the differences in diffusion of different atoms within the same

liquid. For example, in the case of ethanol, we can compare OO, HH, C1C1 and C2C2 self -

correlations, in order to account for possible differences between different atomic sites. Self

Van Hove correlations for acetone and CCl4 are presented in Figure 61, while those correspond-

ing to methanol and ethanol are shown in Figure 62. Types of correlations are specified in the

legend boxes of each panel. In case of ethanol, C1 represents the carbon site covalently bound

to the O atom, while C2 represents the carbon site at the edge of the molecule, according to the

OPLS model. For acetone, C1 represents one of the two methyl groups bound to the central C

atom. Every color in the plot corresponds to specific time value: 0.1 ps - black, 1 ps - green, 10

ps - blue, 50 ps - orange.
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Figure 61: Self Van Hove correlations of acetone (left panel) and CCl4(right panel), for differ-
ent atomic sites (see the legend boxes). Each color corresponds to different time value: black -
0.1 ps, red - 1 ps, green - 10 ps, blue - 100 ps.

For simple liquids (see Figure 61), we observe that the differences in diffusion are more en-

hanced at short times (0.1 ps, 1 ps and 10 ps) than at large times (50 ps), implying that these

differences vanish in diffusive temporal regime. In addition, at short times, atoms at the center

of molecules (i.e. C atoms in both acetone and CCl4) exhibit slower diffusion than the atoms

at the edge of molecules. Similar trends are observed also for methanol (see Figure 62). How-

ever, for ethanol, the differences between curves are visible even at large times (t = 50 ps -

orange color). This indicates that larger amount of time is required for ethanol to reach diffu-

sive regime than it is required for other liquids shown here. Slower relaxation of ethanol into

diffusive regime is the consequence of slower kinetics of ethanol, when compared with kinetics

of simple liquids or methanol, which is simpler alcohol. Slower kinetics is the consequence of

the formation of microheterogeneities, which grow with the size of alkyl tails in alcohols. The

enhancement of microheterogeneity with the growth of alkyl tails is proved by the shift of the

pre - peak of the structure factor towards smaller k - values when shifting from lower to higher

alcohols, as shown in section 3.1.2. In addition, slower kinetics of higher alcohols, compared

to lower ones, will be demonstrated in section 3.4.6.
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Figure 62: Self Van Hove correlations of methanol (left panel) and ethanol (right panel), for
different atomic sites (see the legend boxes). Each color corresponds to different time value:
black - 0.1 ps, red - 1 ps, green - 10 ps, blue - 100 ps.

To confirm quantitatively the trends discussed above, we list in Table 3 the diffusion coefficients

obtained by fitting of self Van Hove functions (t = 100 ps) to gaussian from equation (140).

With D(GX
s ) we denote the diffusion constant obtained by gaussian fitting of G

(s)
XX(r, t = 100 ps)

function to the equation (140), with X denoting the atomic specie for which correlations are

accounted for. With DEXP we denote the experimental value of self - diffusion constant from

references [43, 78, 52, 110] for water, reference [83] for methanol and ethanol, reference [29]

in the case of CCl4 and reference [58] for acetone. Blank fields, denoted with *, indicate non -

existing correlations.

Table 3 shows that the obtained diffusion coefficients qualitatively match with corresponding

experimental values. We note that our results are in good agreement with previously reported

values of self - diffusion coefficients of SPC/E model of water [87, 100] and OPLS models of

methanol [83] and ethanol [83], at room temperature, obtained by the application of Einstein

relation [56]. However, in these works, diffusion coefficients have not been calculated for each

atomic sites individually, like it is done in this work. Although quantitative experimental val-

ues, are not reproduced perfectly, qualitative trends are preserved, as shown in table 3,. For

example, ethanol shows the slowest diffusion both from experiments and from our data, while

acetone has the largest diffusion coefficient in both cases. Also, we observe that the differences

between different types of ethanol self - correlations (OO, HH, C1C1 and C2C2) are much more
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enhanced than the differences between different acetone correlations (OO, C1C1 and CC) for

example, which is in accordance with qualitative analysis written above, where we attributed

this effect to slower relaxation of ethanol to diffusive regime, due to microheterogenous struc-

ture.

Table 3: Diffusion constants obtained by gaussian fitting of G(s)(r, t = 100 ps) functions to
gaussian of the form G(s)(r, t) ∼ exp(− r2

4Dt
). Self correlations for specific atomic specie X is

denoted with GX
s . With DEXP we denote the experimental value of self - diffusion constant from

the literature.
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3.4.5 Time decay of Gd(r, t) correlations at the first peak

In the last section we observed that the loss of correlations around the first peak of G(d)(r, t)

occurs slower for simple liquids (i.e. acetone and CCl4) than for complex associative liquids

(i.e. water and ethanol). Here, we demonstrate this in more details by showing G(d)(R, t)

functions in time domain, instead of space domain (i.e. we put t instead of r on the x - axis),

with keeping R fixed. We choose the value of R such that it corresponds to the position of the

first peak for each case.

Figure 63: Time decay of various G(d)(R, t) functions, with R corresponding to the position of
the first peak of G(d)(r, t) in each case.

Figure 63 shows the time decays of various G(d)(R, t) functions of water, methanol, ethanol,

acetone and CCl4. Particularly, we show CC correlations for all four liquids, including also OO

correlations in case of water, methanol and ethanol. We can immediately confirm the trends

observed in previous section: OO correlations of associative liquids decay significantly faster

than correlations corresponding to simple liquids. While OO correlations in associative liquids

fall below 0.1 already within nearly 1 ps, those in simple liquids are more persistent. Namely,

correlations fall below 0.1 within 4 ps in case of acetone and around 8 ps in case of CCl4. Also,

we observe that CC correlations of the two alcohols decay slower than OO correlations. In fact,

the decay of CC correlations in ethanol is similar to the decay of CC correlations in acetone.

This suggests that the dynamics of alkyl groups of alcohols reminds of dynamics observed

in simple liquids, and differs from the dynamics of atoms within hydroxil groups, which are
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influenced by charge order. In addition, we observe that OO correlations exhibit higher initial

values G(d)(r, t = 0), which is in alignment with the high first peak of static gOO(r) correlations

observed earlier.

3.4.6 Dynamic and kinetic aspect of correlations in (k,t) space

Now we will put focus on the time decay of density correlations in k - space, namely the decay

of F(k, t) function. Prior to performing similar analysis as the one from the previous section,

we will discuss the physical meaning of the time evolution of F(k, t) and its relationship with

the trends observed in Gd(r, t). Figure 64 shows Gd(r, t) correlations between OO intermolec-

ular pairs in water (left panel), together with corresponding Fd(k, t) functions (right panel).

Functions are calculated for selected t - values, which are listed in the legend box. The inset in

the left panel shows the zoomed view on Gd(r, t) functions shown in the main panel.

As shown in Figure 64, Gd(r, t = 0) functions (shown in black color in the left panel) exhibit

oscillatory behaviour, with oscillations being characterized by two dominant spatial periods:

0.6 σ and σ (see the inset of the left panel). The distance 0.6 σ corresponds to the typical

separation between first and second shell of Gd(r, t = 0) function, while the distance σ repre-

sents spatial period of long - ranged oscillations (see r > σ interval in the left panel). These

two spatial periods give rise to the diffraction pattern of water being characterized by the split

- peak feature (see Fd(k, t = 0) function in the right panel), with the two dominant peaks found

at k ≈ 2πσ−1(marked with red arrow) and k ≈ 3πσ−1(marked with black arrow). The former

peak is related to σ spatial period of Gd(r, t = 0), while the latter is related to 0.6 σ .

Figure 64: Left panel shows G
(d)
OO(r, t) correlations for water, while corresponding F

(d)
OO (k, t)

functions are shown in the right panel.

Larger times (t > 0) are characterized by weakening of density correlations, as visible from the

left panel, where we note lowering of the peak amplitudes as time increases. At sufficiently

large times (t ∼ 1 ps), the first and second peak of Gd(r, t) merge into one single peak (see
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the red curve in the left inset, corresponding to Gd(r, t = 2 ps)), with correlations now being

characterized by one single dominant spatial period - σ , over whole r - domain. In k - space

(see the right panel), this is visible through disappearance of the peak at k ≈ 3πσ−1 (marked

with black arrow), leaving Fd(k, t) being dominated by single peak centered at k ≈ 2πσ−1 (see

the red curve in the right panel).

Previously, we related the existence of two spatial frequencies in the microstructure of wa-

ter to previously suggested picture of water by other authors, where water is considered to be a

mixture of tetrahedrally ordered liquid and ordinary disordered liquid [131, 160]. In this con-

text, the existence of σ periodicity in the microstructure of water reflects the disordered nature

of water, while the existence of shorter 0.6 σ periodicity reflects its charge ordered nature. The

right panel of Figure 64 suggests that charge ordered component of water microstructure re-

laxes faster than its disordered component. This is visible through the fact that the outer peak

of the structure factor of water (marked with black arrow) decays faster in time than the inner

peak (marked with red arrow). Before focusing on the differences in time decay more thor-

oughly, it would be instructive to make similar analysis, as the one presented in Figure 64 for

water, as well for ethanol, since the structure factor of the alcohol is characterized by the pre -

peak.

Figure 65 shows Gd(r, t) functions for OO intermolecular correlations in ethanol (left panel),

together with corresponding Fd(k, t) functions (right panel). Left panel shows that short time

(t < 1 ps) correlations, similarly like in the case of water, exhibit shorter 0.6 σ periodicity over

small - r domain (r < 2 σ ). However, larger r separations are characterized by 2.5 σ periodicity,

the value which is larger than periodicity (σ ) of long ranged correlations in water (see the left

panel of Figure 64). In the right panel of Figure 65, shorter periodicity of ethanol microstructure

is visible through the peak at k ≈ 3πσ−1 (marked with black arrow in the right panel), as in the

water case. Larger 2.5 σ periodicity manifests through the pre - peak at k ≈ πσ−1 (marked with

red arrow). Right panel indicates that the component of ethanol microstructure, attributed to

larger periodicity, decays significantly slower in time than the component attributed to shorter

periodicity. Similarly like in the case of water, peak at k ≈ 3πσ−1 is attributed to charge ordered

nature of ethanol microstructure, while the peak at k ≈ πσ−1 is the pre - peak.
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Figure 65: Left panel shows G
(d)
OO(r, t) correlations for ethanol, while corresponding F

(d)
OO (k, t)

functions are shown in the right panel.

In chapter 3.1.2, we addressed the relationship between k - position of the pre - peak with the

characteristic separation between nearest OH aggregates in alcohols. Namely, a pre - peak cen-

tered at k = 2π
D

implies that a characteristic separation between two such aggregates is equal

to D. In the context of OO dynamic structure factor of ethanol, presented in the right panel of

Figure 65, the pre – peak (marked with red arrow) represents a typical separation between two

O atoms forming two such aggregates. The average separation between two such atoms will

clearly be governed by by the size of alkyl tails, which form hydrophobic barriers between OH

aggregates in the liquid. This explains why the position of the pre - peak shifts to lower k -

values (indicating larger inter - aggregate separations) when moving from lower to higher al-

cohols [143, 16, 185, 171]. However, the main peak of the structure factor (marked with black

arrow) is related to characteristic separation between first and second shells of OO correlations

in r - space (see the left panel of Figure 65) and is, therefore, a signature of charge order in the

liquid. This characteristic separation is universal for both water and alcohols studied herein,

which explains why the peak centered at k ≈ 3πσ−1 is common feature of all associative sys-

tems considered in this work. In addition, the bump in correlations at k ≈ 2πσ−1 is related

to characteristic contact distance between first hydrogen bonded O neighbours, as already ex-

plained.

Prior to the comparative analysis of the t - decay of OO, OH and HH correlations in k - space

for water, methanol and ethanol, we show total OO, OH and HH structure factors of water,

methanol and ethanol in Figure 66. Left panel shows OO structure factors of the selected sys-

tems (water in black, methanol in red and ethanol in green lines), while OH and HH structure

factors are shown in the central and right panels respectively, with the same color convention

as for the left panel. All structure factors are in agreement with previously published OO, OH

and HH partial structure factors by other authors [185, 166, 131, 165].
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Figure 66: Static structure factors OO (left panel), OH (central panel) and HH (right panel) of
water (black lines), methanol (red lines) and ethanol (green lines). Pre - peaks are marked with
PP, charge ordering peaks with COP and peaks corresponding to long - ranged correlations in
r - space with LR.

Structure factors (OO) presented in the left panel have been already discussed. Here, we shortly

remind of the main features. In the case of water (black line), the peak at k ≈ 2 Å−1 (marked

with “LR”) is the manifestation of characteristic periodicity of gOO(r) correlations over large

- r interval (“LR” stands for “long - ranged” correlations). In methanol and ethanol, this peak

is shifted to lower k - values, forming a pre - peak, marked with “PP”. This shift is the conse-

quence of the increment of spatial period of gOO(r) over large - r domain, when moving from

water to the alcohols. Both LR peak and PP peaks reveal the details of long - ranged OO cor-

relations in the liquid. In addition, similar shift of LR peak to PP peak is observed also in the

case of OH (central panel) and HH (right panel) structure factors of the three liquids.

Peak marked with “COP” (where “COP” stands for “charge - ordering peak”) is caused by

the distribution of atoms in close vicinity of the reference atom, and is the signature of charge

ordering. Particularly, in the case of OO correlations (left panel), this peak represents char-

acteristic separation between first and second shell of gOO(r), as previously discussed. In the

case of OH structure factor (central panel), COP peak represents a characteristic contact dis-

tance between nearest OH intermolecular pair. The peak is centered at k ≈ 4 Å−1, indicating

that the characteristic separation between OH intermolecular pairs should be around r ≈ 1.6 Å.

This separation can be confirmed from Figures 54 and 55 (see the case of OH correlations). In

the case of HH structure factor (right panel), COP peak represents nearest intermolecular HH

separation.

Let us now consider the time relaxation of OO, OH and HH correlations in k - space through the

t - decay of F(k, t) functions. Particularly, we will examine the decay of PP peaks for alcohols,

LR peaks for water and COP peaks for all the three liquids and all three types of correlations.

In Figure 67, the decay of OO (full lines), OH (dotted lines) and HH (dashed lines) correlations
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is shown in black color for water, red for methanol and green for ethanol. Thin lines show the

decay of COP peaks, while thick lines show the decay of PP peaks for alcohols and LR peaks

for water. Left panel shows the t - decay of correlations in linear y - scale, while the right panel

shows the same decay in log y - scale.

Figure 67: Time decay of marked peaks from Figure 66 in linear scale (left panel) and logarith-
mic scale (right panel).

First feature visible from Figure 67 is that all COP peaks (for all three types of intermolecular

correlations and all three liquids) decay very similarly in time. This feature indicates that small

- r correlations, governed by charge order, decays similarly in all three selected liquids. Hence,

time relaxation of charge ordered component of microstructure is similar for all selected liquids.

However, more noticeable differences are present when PP peaks of alcohols and LR peaks

of water are considered. We remind that the meaning of the LR peak of water is essentially

equivalent to PP peak of any of the two alcohols, since both peaks describe the periodicity

characteristic for large - r correlations. In this context, LR peak can be considered as the pre

- peak of water, although, in the literature, pre - peaks are commonly attributed exclusively to

other types of liquids, such as alcohols [188, 161, 162, 133, 146, 138, 51, 142] or ionic liquids

[30, 161, 186, 20, 151]. These liquids contain neutral groups of atoms (i.e. alkyl tails) attached

to charged groups. In alcohols, the existence of neutral groups induces the increment of the spa-

tial period of OO large - r correlations, when compared with OO correlations of water, which

does not have these groups. The increment of the spatial period increases as the size of alkyl

tails increases. Hence, the LR peak of water describes the periodicity of large - r correlations

in special case when there are no neutral groups attached to charged groups. In this sense, LR

peak could be considered as pre - peak of water.

Results presented in Figure 67 show that the t - decay of long - ranged correlations (repre-

sented with the LR peak of water and PP peaks of the alcohols) slows down as the size of alkyl

tails increases. Earlier, in the context of alcohols, we explained that PP peaks represent cluster
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- cluster correlations (where the term cluster refers to OH aggregates). Hence, the temporal

relaxation of cluster - cluster correlations becomes slower with the increment of alkyl chain

legth. We note that the decay of PP peaks is nearly independent of the choice of intermolecular

correlations (OO, OH or HH) for specific liquid, which is visible from the superposition of dif-

ferent thick lines (full, dotted or dashed) for a given color. This indicates that the t - decay of PP

peak describes the structural relaxation at the spatial scale of aggregates, where the choice of

the atomic species (O or H) does not have significant impact. The characteristic time attributed

to the decay of PP peak for each liquid is what we call kinetic time. Therefore, we conclude,

from Figure 67, that kinetics of the three liquids differs significantly, while the dynamics of

charge order is nearly the same in all three systems.

In experiments, structural relaxation at PP and COP can be probed by QuasiElastic Neutron

Scattering (QENS). Total scattering functions F(k, t) at the PP and COP have been measured

and it was found that the dynamics at the PP is slower than that at the COP [162, 14, 13, 184],

which is in agreement with our findings. Similar findings have also been observed for room -

temperature ionic liquids [81].

The study of kinetic aspect of water and monohydroxy alcohols is shown to have significant im-

portance in understanding the relationship between microscopic and macroscopic properties of

these liquid [188, 186]. Particularly, neutron scattering experiments of 1-propanol have shown

that the temperature dependence of characteristic decay times at the pre - peak exhibit Arrhe-

nius dependence (τ(T )∼ exp(−EA/RT )) over the tested temperature range 170 - 280 K, with

the activation energy EA being similar to the activation energy of viscosity [188]. This result

highlights the influence of mesoscopic cluster dynamics on rheological properties of liquids.

The coupling between viscosity and clustering has also been confirmed by molecular dynamics

simulations of methanol and ethanol performed by Yamaguchi [185].
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3.4.7 Memory function - simple approximation

In section 2.3.3 we introduced the simplest approximation of the memory function:

M(k, t) = M(k) ·δ (t) (146)

We have shown that, within this approximation, the solution of Mori - Zwanzig equation for

the time evolution of F(k, t) is given with:

F(k, t) = S(k) · exp [−t ·M(k)] (147)

with S(k) representing the static structure factor, while M(k) is the memory function, which is

independent of time. The last equation implies that, for fixed k, F(k, t) decays as single expo-

nential in time, with the decay rate being dependent of k through M(k).

However, we have shown in section 3.4.6 (see Figure 67) that the time decay of F(k, t) does

not decay as single exponential, which already indicates that approximation (146) is not good

enough for describing the dynamics of realistic liquids. However, it would be instructive to

examine how close one can get towards realistic description of liquids within this simple ap-

proximation. First, we note that, within approximation (146), the dynamical structure factor is

given with the time Fourier transform of equation (147):

S(k,ω) = S(k)
Z +∞

−∞
exp [−t ·M(k)] · exp [−iωt]dt (148)

which ultimately leads to:

S(k,ω) =
2M(k)S(k)

ω2 +M2(k)
(149)

Therefore, in order to test the quality of approximation (146), one can compare the S(k,ω)

from equation (149) with S(k,ω) obtained from simulations. In order to obtain S(k,ω) from

equation (149), one needs to know M(k) and S(k). We obtain M(k) by performing exponential

fit of F(k, t) in the time interval 0 - 1 ps for large series of k-values. We note that 1 ps is ap-

proximately the time by which correlations around the charge ordering peak of F(k, t) decay to

0 (see Figure 67).

The main panel of Figure 68 shows the inverse of M(k) functions, obtained by exponential

fitting of FOO(k, t) correlations for simple LJ liquid, water, methanol and ethanol. The in-

set shows the same figure in logarithmic y-scale. We first observe that positions of peaks of

M−1(k) coincide with the ones of dynamical structure factor S(k,ω) for each system (see sec-

tion 3.4.6). In addition, we observe the divergence of M−1(k) in k → 0 limit, which is the

consequence of the slow time decay of FOO(k, t) for small k-values.
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Figure 68: Main panel shows time - independent approximations of memory functions M(k),
corresponding too OO correlations in simple LJ liquid (black line), water (blue line), methanol
(red line) and ethanol (orange line). The inset shows the same plot in logarithmic y-scale.

In order to obtain the approximation of S(k,ω), we insert the memory functions from Figure

68 into equation (149). Figures 69 and 70 show the comparison of S(k,ω) obtained from sim-

ulations (left panel) with the S(k,ω) obtained from approximation (right panel), for water and

methanol respectively.

We observe that S(k,ω) from the left and right panels differ quite significantly. However,

we note the best agreement between the approximative and realistic structure factors for very

small ω values. Overall, the speed of decay in ω space is significantly overestimated when ap-

proximation (146) is used. This is the consequence of the fact that the time evolution of F(k, t)

is not well described with equation 147 in reality. Therefore, in order to obtain the memory

function of realistic liquids, one has to rely on Mori - Zwanzig formalism.
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Figure 69: Comparison of S(k,ω) structure factor of water (OO correlations), obtained with
simulations (left panel) versus S(k,ω) obtained from equation (149) (right panel), when the
Markovian approximation of memory function is applied.

Figure 70: Comparison of S(k,ω) structure factor of methanol (OO correlations), obtained
with simulations (left panel) versus S(k,ω) obtained from equation (149) (right panel), when
the Markovian approximation of memory function is applied.
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To conclude, approximation (146) is a type of Markovian approximation [56], where the state

of the system at time t is assumed to be independent of the past. This type of approximation

can be applied when the timescale of random force fluctuations (i.e. the timescale of atomic

collisions in the liquid) is significantly faster than the timescale at which the momentum of the

reference particle changes. For example, this is the case with the dynamics of large brown-

ian particle in a bath consisting of much smaller particles. In this case, the dynamics of such

particle is described with Langevin equation (64), where the memory function (here equivalent

to the friction coefficient ξ ) is assumed to be independent of the past, ξ (t) = ξ0δ (t). This

type of Markovian approximation is used widely in soft matter, specifically in Coarse Grain-

ing [70, 80, 88, 89, 97, 32, 31], where one attempts to solve the Mori - Zwanzig equation in

order to solve for the dynamics of mesoscopic coarse - grained system, and is not interested

in the details of microscopic dynamics, which occurs at much smaller timescale than meso-

scopic dynamics. However, we demonstrate here that simple Markovian approximation is not

useful for describing the dynamics of molecular liquids. Our tests, presented in Figures 69

and 70, demonstrated this for the cases of water and methanol. In addition, even exponential

approximation of the memory function, developed by Chong and Hirata [25, 26, 27], does not

suffice to reproduce various dynamical observables obtained by experiments, specifically time

- dependent correlations in a liquid. Therefore, in order to obtain the memory function capable

of describing the dynamics of realistic liquids, one needs to rely on Mori - Zwanzig formalism.
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4 Conclusion

The main goal of this thesis was to study the specificities in the dynamics of micro - heteroge-

neous liquids [145, 128, 142, 134], when compared with other types of liquids which do not

exhibit this type of micro - structure. The formation of micro - heterogeneity is realized through

formation of supramolecular aggregates [145, 142, 134, 138] on the scale of several molecu-

lar sizes. In associative liquids, such as alcohols, aggregation is the consequence of hydrogen

bonding between OH hydroxil groups [14, 13, 138, 16, 76, 118, 126]. Hence, in addition to

regular molecular dynamics, characteristic for any liquid, micro - heterogeneous liquids have

kinetic aspect of dynamics, which is related to dynamics of molecular aggregates, instead of

individual molecules. In general, micro - heterogeneous liquids belong to class of complex

liquids [134]. The division of liquids into simple versus complex is inspired by significant dif-

ferences in static and dynamic properties of these two types of systems, which are caused by

different intermolecular interactions which each type exhibits.

In typical simple liquids, like liquid argon for example, interactions are governed by weak

Van der Waals forces, characteristic for non – polar species, which are typically modeled by

Lennard – Jones potential in classical simulations [56]. The micro - structure of this type of liq-

uid, or any other type, can be described with radial distribution function g(r), which describes

the mean radial distribution of density around particle in the system, obtained as an average

over all particles and all microstates (ensemble average) [56]. It has been shown that g(r) of

typical simple liquid oscillates around the asymptote g(r) = 1, with characteristic period of

oscillations being equal to σ , denoting atomic diameter, and the first peak positioned at r ≈ σ .

The structure factor S(k) of such liquid, mathematically equal to the spatial Fourier transform

of g(r), is characterized by the main diffraction peak at the wave-vector k = 2πσ−1 [56], in-

dicating that the liquid disorder of this system is fully governed by σ inter-particle separation.

This is the simplest form of liquid disorder, which is the reason why we refer to these liquids

as simple disordered liquids.

In the case when liquid is composed of globally non-neutral species, interactions become more

complex, due to the addition of Coulomb interaction to the existing Lennard – Jones interac-

tion. If we take an example of simple ionic liquid, composed of positively charged atomic

species A and negatively charged atomic species B, with both species having the same atomic

diameter, the micro-structure of this liquid is shown to differ from the previous case. Namely,

the disorder in this type of system is characterized by the formation of charge order [133], with

positively and negatively charged species being arranged in +−+−+− sequence, governed

by Coulomb interaction. Charge order is shown to leave trace in radial distribution functions

of these liquids, by observed anti-phase oscillations of cross gAB(r) correlations, compared to

gAA(r) or gBB(r) [133]. Similar anti-phase behavior can be observed also in k–space. If the
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species A and B are not charged, all distribution functions are equivalent, leading to simple

case when gAA(r) = gBB(r) = gAB(r). Hence, the structure of simple ionic liquids is obviously

characterized by higher level of complexity, compared to regular simple liquids. However, al-

though being more complex, the micro - structure of this type of system is not heterogeneous.

Situation with ionic liquids becomes more interesting as neutral groups of atoms are bound

to positively and negatively charged groups. Building units of such systems are molecules,

composed of neutral groups, covalently bound to charged groups. These types of liquids are

called complex ionic liquids [133, 137]. In this type of system, Coulomb interactions be-

tween charged groups again induce charge ordering. However, charge - ordered chains are

now mutually separated by neutral groups, which act as barriers between them. This leads to

the formation of heterogeneities, with the density of charged groups not being homogeneously

distributed across space. The formation of these heterogeneities, which we call micro - hetero-

geneities, significantly affects the global microstructure of the liquid and, consequently, leaves

marked trace in both radial distribution functions and corresponding structure factors.

Before discussing the effect of micro - heterogeneity on static observables g(r) and S(k), it

is important to adress the similarity of complex ionic liquids with alcohols [133], which are

also considered as complex liquids. Although molecules of alcohols are globally neutral and

molecules of complex ionic liquids are not, the micro - structure of the two systems is similar,

both exhibiting charge order in similar fashion. Although positively charged O and negatively

charged H atoms in alcohols are bound in one single molecule, charge order is realized in

similar fashion like for complex ionic liquids, with formation of O-H...O-H...O-H alternating

chains, ultimately leading to alternation of positive and negative charges along the chain. Alkyl

groups of alcohols play similar role as neutral groups in complex ionic liquids, causing the

formation of micro - heterogeneities, where neighbouring OH chains are mutually separated by

alkyl domains. The formation of OH aggregates in this way is visible in both g(r) and S(k),

meaning that the formation of micro - heterogeneities can clearly be observed from these two

static quantities.

The most apparent difference between gOO(r) correlations of alcohols versus simple liquids

is in the first peak, which is narrowed and shifted to lower r for alcohols, indicating strong

association between OO intermolecular pairs, due to charge ordering. In addition, the first peak

is followed by the depletion of correlations [138, 143], which reflects the formation of linear

OH aggregates in alcohols, which reduces the number of neighbours in second coordination

shell from the central atom . We have shown that the characteristic separation between first and

second shell of gOO(r) is fixed for water and all alcohols examined herein, being nearly equal to

0.6 σ (with σ being the diameter of O atom), indicating that the mechanism of charge ordering

is similar in both water and alcohols. This characteristic separation is manifested in k-space
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through the main peak of the OO structure factor, centered at k = 3πσ−1 for all three systems,

which we conveniently refer to as charge ordering peak. Less apparent differences between

gOO(r) of alcohols, compared to simple liquids, are related to long – ranged features, where

we observed that the periodicity of gOO(r) increases with the size of alkyl tails. In the case of

water, this periodicity was found to be equal to σ , while it is equal to 1.5 σ and 2.5 σ in the

case of methanol and ethanol. We demonstrated that this long – ranged periodicity in r – space

manifests in k – space through the appearance of the pre – peak of the structure factor at low

k–region. The pre-peak is centered at k = 2πD−1, with D being equal to the periodicity of long

– ranged correlations in r-space (i.e. σ for water, 1.5 σ for methanol and 2.5 σ for ethanol).

Physical meaning of D is the average distance between neighbouring OH clusters [185]. In the

case of water, this periodicity manifests as the “inner-peak” or the “shoulder-peak” of the OO

structure factor, centered at slightly lower k than the charge ordering peak. Shoulder - peak of

water could be seen as special case of pre-peak, realized in scenario when there are no neutral

groups attached to charged groups. In this context, shoulder - peak of water can be seen as pre -

peak of water, which has not been proposed in the literature yet. In case of OH or HH structure

factors, pre - peaks appear at the same k-value as for the OO case, which further confirms the

fact that this k-value represents the average distance between OH clusters. The average OO

distance between two atoms belonging to neighbouring clusters will be the same as the OH or

HH distance. However, the position of charge ordering peak is not the same for OO, OH and

HH structure factors. This is because charge order represents local ordering of atoms in close

vicinity of the central atom. Clearly, nearest intermolecular OO distance will not be the same as

the OH or HH distance (as visible when comparing gOO, gOH and gHH distribution functions),

which explains why the position of charge ordering peak varies with the choice of correlations.

Moreover, we note that the effects of micro - heterogeneity are less apparent in CC correlations,

where we observed that correlations between atoms behave similarly as in simple liquids, both

in r-space and in k-space.

In order to study the time evolution of static g(r) and S(k), we analyzed time – dependent

correlation functions in both r-space and k-space. Dynamic equivalents to static g(r) and S(k)

are given with Van Hove correlation function G(r, t) and intermediate scattering function F(k, t)

respectively [56]. In addition, the power spectrum of F(k, t) is given with dynamic structure

factor S(k,ω) [56]. Our results have shown that dynamic correlation functions allow to clearly

distinguish between dynamics and kinetics in micro - heterogenous liquids, as discussed below.

The analysis of time – dependent density correlations in r-space has shown that the character-

istic decorrelation time is significantly larger in the case of simple liquids, than it is for selected

associative liquids. Particularly, when correlations between first neighbours are considered,

faster decorrelation of associative systems is the consequence of charge ordering, where near-

est neighbours interact with strong Coulomb attractive interaction. Due to this interaction,
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particles within first coordination shell are strongly affected by the diffusion of the central par-

ticle from the origin, leading to faster decorrelation of the density around first shell, compared

to simple liquids. Generally, the speed of decorrelation is observed to grow with the incre-

ment of partial charges on molecules, indicating that stronger intermolecular interactions lead

to faster decorrelation of the density around central particle. However, although this aspect

of correlations is instructive, it does not directly allow to distinguish between dynamic versus

kinetic aspect of liquids. This differentiation becomes more straighforward in k-space.

As explained above, k-dependent structure factors reflect both short -ranged and long - ranged

features of density correlations in r-space. For example, structure factors of methanol and

ethanol are shown to exhibit two main features: charge ordering peak (i.e. manifestation of

short-ranged correlations between nearest atoms) and the pre-peak (i.e. manifestation of long-

ranged correlations between OH aggregates). This means that time - dependent structure fac-

tors, F(k, t), represent convenient observable for the differentiation between dynamics versus

kinetics in micro - heterogeneous liquids. While dynamics can be conveniently accessed by the

time evolution of F(K, t), with K being fixed to the k-position of charge ordering peak, kinetics

can be similarly accessed by the time evolution of the same function, but with K corresponding

to the position of the pre - peak. Our results have shown that the t-decay of charge ordering

peak is universal for both water and alcohols considered herein, regardless of OO, OH or HH

correlations being considered. This means that the dynamics of charge order appears to be uni-

versal across different associative species. However, when the time evolution of the pre - peak

has been considered, significant differences between kinetics of different associative species

were found. Namely, we found that kinetics depends on the size of alkyl groups, such that it

slows down as the size of alkyl tail increases. Therefore, structural relaxation of heterogeneous

microstructure is governed by the size of neutral groups.

The universality of the dynamics of charge order has been further supported with the analysis

of the probability distribution of hydrogen bonding lifetimes for different associative liquids

presented herein. Although classical hydrogen bonding model is known to have limited value

for studying hydrogen bonding interaction, which is essentially quantum - mechanical phe-

nomenon, it serves as useful tool for studying the dynamics of charge order. Particularly, by

considering a classical hydrogen bonding lifetime of bonded O-H...O intermolecular pair, one

essentially accounts for the vibrations of charge - ordered microstructure. Our results [75, 76]

have found the universality of these vibrational modes across different associative species, sug-

gesting that the dynamics of charge order could be universal across different associative systems

containing OH groups. This universality is then confirmed more rigorously by the analysis of

correlation functions.

One can also account for k-dependent correlations in frequency space, instead of time space,
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by considering dynamical structure factor S(k,ω). We have shown that S(k,ω) of water and

alcohols, for fixed value of ω , has marked peaks at k-positions corresponding to the pre-peak

and charge ordering peak of static structure factor S(k). For small values of ω , the amplitude

of S(k,ω) is significantly higher at the pre - peak, compared to charge ordering peak, implying

that slow relaxation in time (ω ≈ 0) is mainly related to the kinetics and much less for dynam-

ics of the liquid. For larger ω frequencies, the amplitude of S(k,ω) at the pre - peak is close

to 0, showing marked amplitudes only around charge ordering peak at higher k-values. This

shows that larger frequencies (i.e. faster relaxation in time) are mainly related to the dynamics

of charge ordered microstructure, and are not related to the kinetics of the liquid, which relaxes

significantly slower.

In addition, our analysis of S(k,ω) of water has led to surprising result. We found that dy-

namical structure factor of water, for small ω , has an additional marked peak which is absent

from static structure factor, namely around 0.5 Å−1, which is lower than the position of the

shoulder-peak (2 Å−1). This peak could imply slow relaxation mode related to the microstruc-

ture of water of the lengthscale of ∼ 10 Å. Interestingly, 10 Å is precisely the distance where

the shift of periodicity from 0.6 σ to σ occurs in gOO(r) of water. This means that this addi-

tional peak in the dynamical structure factor of water could also be related to the relaxation of

charge order in the microstructure of the liquid. This topic requires more investigation in order

to be developed further.

In order to study the time evolution of dynamical correlations by the application of Mori-

Zwanzig formalism [62, 56, 89, 191], which puts the memory function in the center of investi-

gation, one needs to perform the inversion of the S(k,ω) matrix, in order to obtain the memory

matrix. Our research revealed that the memory matrix is characterized by ambiguous diver-

gence over small - k region, whose origin appears to be related to irregularities related with the

S(k,ω) matrix, particularly by the manner in which S(k,ω) converges to 0 in small - k limit,

when ω is fixed. These irregularities cause big numerical problems when the inversion of this

matrix is supposed to be performed, in order to obtain the memory matrix. Since the origin of

these unexpected anomalies is still unknown, it stopped us from further progress in obtaining

the memory function. At precise moment, it seems that further development of the theory is

essential step in order to overpass current obstacles. Then, these obstacles are expected to be

treated and overpassed analytically. Nevertheless, significant progress has been made, particu-

larly in sense that dynamic structure factors have been extracted “by hand” for several selected

ω-values, which enabled us to observe interesting trends in frequency domain, and show part of

interesting features. Particularly, we have demonstrated how close to the description of realistic

liquids one can get by applying simple Markovian approximation of the memory function to

realistic liquids. Our results show that, although these approximations are widely used in soft

matter for solving Mori - Zwanzig equation for mesoscopic dynamics of coarse - grained sys-
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tems [70, 80, 97, 98, 88, 89], they are unuseful for describing the time - dependent properties

of realistic molecular liquids, such as dynamic correlations. This was desmonstrated by com-

paring simple Markovian S(k,ω) with S(k,ω) obtained directly from simulations, where we

observed that Markovian approximation undoubtedly fails to reproduce realistic correlations in

the liquid. In addition, we highlight the discovery of unexpected peak of dynamical structure

factor of water at k = 0.5 Å−1, both in the case of OO and OH correlations, which is expected

to represent important starting point of future research works. Interestingly, this peak shows

up also within Markovian approximation. Furthermore, the importance of the observed univer-

sality of the probability distribution of hydrogen bonding lifetimes [75, 76], within transient

temporal regime, should not be left out. While previous research works were mainly focused

on the kinetic aspect of this distribution [96, 95, 105, 122], we have shown here that the prop-

erties within transient regime have important connection with the dynamics of charge order,

suggesting its universality across different associative species with OH functional groups. This

universality has been confirmed both in the context of classical hydrogen bonding model and

in the context of correlation functions. Finally, we demonstrated how k-dependent correla-

tion functions allow to differentiate between dynamics and kinetics in micro - heterogeneous

liquids, which was also one of the main aims of this thesis.
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Sažetak:

Mikro - heterogene tekućine karakterizira specifična heterogena mikro - struktura,

koja sadrži labilne supra - molekularne agregate. Tipični primjeri takvih tekućina su

alkoholi, ionske tekućine i razne tekućine meke tvari. Osim uobičajene molekularne

dinamike,  zajedničke  svim  tekućinama,  dinamiku  ovih  sustava  karakterizira  i

kinetički aspekt, koji je povezan s dinamikom labilnih supra - molekularnih agregata,

uz uobičajenu dinamiku individualnih atoma i  molekula.  Cilj  ovog rada je otkriti

specifičnosti u dinamici mikro - heterogenih tekućina, vezane upravo uz spomenuti

kinetički  aspekt.  Dinamika  se  proučava  analizom  različitih  dinamičkih  veličina

dobivenih  simulacijama molekularne  dinamike,  kao  što  je  van  Hove  korelacijska

funkcija G(r,t), funkcija raspršenja F(k,t) i dinamički strukturni faktor S(k,ω). Pokazat

će se da heterogena mikro-struktura ostavlja trag u ovim dinamičkim veličinama, što

omogućuje direktno razlikovanje dinamike i kinetike u istim sustavima. Pokazat će se

i da je,  za razliku od dinamike, kinetika pod jakim utjecajem prisustva neutralnih

atomskih  grupa  i  veličinom istih  grupa.  Istraživanje  se  provodi  za  različite  vrste

tekućina, uključujući jednostavne tekućine, kao što je aceton, te složene tekućine, kao

što  su  voda  i  mali  monoli.  Svrha  rada  je  razviti  teorijski  i  računalni  okvir  za

istraživanje složenosti u tekućinama.



Abstract:

Micro - heterogeneous liquids are characterized by particular heterogeneous micro -

structure,  which  contains  labile  bonded  supra  -  molecular  aggregates.  Typical

examples of such liquids are alcohols, ionic liquids and various soft - matter liquids.

In addition to the usual molecular dynamics, common to all liquids, the dynamics of

these systems is characterized by kinetic aspect, which is related to the dynamics of

labile supra - molecular aggregates, instead of individual atoms or molecules. The

aim  of  the  thesis  is  to  reveal  the  specificities  in  the  dynamics  of  micro  -

heterogeneous  liquids,  which  are  attributed  precisely  to  this  kinetic  aspect.

Particularly, dynamics will be studied by extraction of various dynamical quantities

from computer  simulations,  such as the van Hove correlation function  G(r,t),  the

associated scattering function F(k,t) and the dynamical structure factor S(k,ω). It will

be  shown  that  heterogeneous  micro  -  structure  leaves  marked  signature  in  these

observables, which enables to directly distinguish between dynamics and kinetics in

these systems. While dynamics is shown to be governed by the time evolution of

charge order, which determines the arrangement of charged species in the system,

kinetics  is  governed  by  the  existence  of  neutral  species  and  their  size.  Study  is

performed for several types of liquids, ranging from simple disordered liquids, such

as carbon tetrachloride or acetone, and complex disordered liquids, such as water and

small  monols.  The  purpose  of  the  thesis  is  to  elaborate  the  theoretical  and

computational framework for exploring complexity in liquids.








