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Introduction

General relativity has, so far, undoubtedly been the most successful theory describing the
phenomenon of gravity. Nevertheless, there are still solutions permitted by the theory
that one should probably not take too seriously. For example, the interior solution of the
Kerr black hole would allow for time travel to both future and past. One is therefore
tempted to simply discard the interior solution. This, however, is not ideal for the reason
that some trajectories in the exterior solution eventually enter the interior. We are thus
interested in a maximal solution of sorts, so arbitrarily cutting off a piece of spacetime
should not be permitted.

Traditionally, to reach ”all possible regions” allowed by the solution, one does an
”analytic extension”1. It is this process that then leads to parallel universes and regions
that generally violate causality. But, it is not clear why one should analytically extend
anything - it is the Einstein equations that we are interested in, not analyticity.

A more satisfactory resolution to the problem is provided by the notion of global
hyperbolicity. This is, roughly speaking, the type of spacetime one can get by evolving
some initial data (via the Einstein equations). Here causality holds in its strongest form
and no time travel or parallel universes are allowed.

In globally hyperbolic spacetimes, one then proves the singularity theorems which
guarantee that some trajectories end in finite time (if certain energy conditions hold).
This is relevant to cosmology and black hole physics, as it guarantees that singularities
which form under very symmetric conditions remain there even under slight deviations
from that symmetry.

It is important to keep in mind that global hyperbolicity is one of the assumptions of
the singularity theorems, so trajectories may be extended past the singularities in certain
cases, but the extended spacetime then must fail to be globally hyperbolic. The key
point is the following: even though some trajectories might exit the globally hyperbolic
region (as in e.g. the Kerr solution), Einstein equations tell us nothing about their fate
afterwards. It would be nice then (for the theory) if, generically speaking (i.e. for most
initial data), the trajectories indeed just end like the singularity theorems tell us they do.
All other cases are then to be considered too special to be realistic. This is essentially the
philosophy behind the strong cosmic censorship conjecture.

We should mention though, that not all spacetimes a physicist might find useful are
covered by globally hyperbolic ones (anti-de Sitter space being one prominent example).
Nevertheless, one may take this as the most conservative starting point.

The thesis may be roughly divided into four parts; each culminates in some Hauptsatz :

1It should immediately be mentioned that extensions are not necessarily unique (so ”all possible
regions” is really ill defined). Sometimes though, one can find the unique maximal analytic extension of
some spacetime, but that doesn’t mean it is unique among the smooth ones.
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1. First part is concerned with symmetries and culminates in the proof of Birkhoff’s
theorem. This result shows that spherical symmetry restrict the possible set of
solutions drastically.

2. The second part is concerned with causality and global hyperbolicity. Here we prove
a characterization of global hyperbolicity due to Geroch.

3. The third part is concerned with incompleteness and singularities, which culminate
with Hawking’s and Penrose’s singularity theorems.

4. The fourth part is concerned with the so-called ”no hair theorem”, but I have opted
to forgo the proofs here, as they tend to get quite involved.

Next, in order to make the main text more accessible and self-contained, let us intro-
duce some preliminary notions having to do with basic differential geometry.

Topology

A topology on a set X is a collection τ of its subsets which are closed under unions
and finite intersections (i.e. for Ui ∈ τ ,

⋃
i Ui ∈ τ and for U, V ∈ τ , U ∩ V ∈ τ). One

also requires that X and ∅ be in τ . The idea is to capture a notion of an open set
(also called an open neighborhood). Since X is a priori only an amorphous collection of
points, designating certain sets as open allows us to establish which points are close to
each other. The smaller the open set which contains both points, the better we know the
relative position of those points.

Consider Rn with open balls Br(x) = {y ∈ Rn | |y − x| < r}. Taking arbitrary
unions of such sets (for different x and r) gives a topology on Rn - the standard euclidean
topology.

To illustrate how topology reflects relative nearness of points, take one point from
B1/n(x) for each n ∈ N. We thus get a sequence xn with a following property: no matter
how small of an open set around x we take, we will always find all but finitely many
chosen points in there. We say xn converges to x.

As another example take the notion of a limit point: x is a limit point of set A if
any open set containing x intersects A. x need not be in A, just very close to it (consider
some point of norm 1 and the open ball B1(0)).

One can also put a discrete topology on Rn by proclaiming every subset of Rn be
open. Now, this isn’t terribly interesting because sets containing only one point are open
as well, so we can perfectly distinguish points. Thus no sequence can converge to x but
the eventually constant ones (those equal to x after a certain point) and every limit point
of A must be contained within A.

A set is closed if it contains all of its limit points. It is not hard to show that closed
sets are precisely complements of open sets. One gets the closure of A, which we write as
A, by adding all limit points of A to A. Interior is the largest open set contained within
A, and we may define the boundary of A, denoted by ∂A, as the difference between the
closure and the interior.

Every subset A of a topological space X becomes a topological space in its own right
by considering U ∩ A to be open in A for any U open in X.

A map φ : X → Y between two topological spaces is continuous if it maps nearby
points in X to nearby points in Y . More precisely, if for any (no matter how small) open
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neighborhood U around f(p), f−1(U) is open neighborhood of p. A continuous function
with a continuous inverse is called a homeomorphism.

Compactness and Connectedness

A subset K of a topological space is said to be compact if every open cover of K has a
finite subcover. Thus, for example, if one can prove some property P in a neighborhood
around any point of K, compactness guarantees the existence of a finite cover whose
open sets also satisfy P . It is not difficult to show that any infinite set in compact K
must have a limit point. Intuitively, infinitely many points in K cannot be spread out
homogeneously (they accumulate somewhere). It is also easy to see that a continuous
map sends compact sets to compact sets.

A topological space X is said to be disconnected if we can find two disjoint (nonempty)
open sets (U, V ) whose union is X; if we cannot find such open sets, it is said to be
connected. Note that U and V are complements of each other so they must be open
and closed. Conversely, if the only open and closed sets are the trivial ones (namely X
and ∅), then it is easy to see that such a space must be connected. As an example, any
interval in R is connected.

Continuous function will again map connected sets to connected sets.
A space X is said to be path connected if any two points p, q ∈ X can be connected

by some continuous curve γ : [a, b] → X. It is readily seen that a path connected set must
be connected (the interval is connected, so a separation (U, V ) would also separate Im γ
if γ goes from p ∈ U to q ∈ V , giving a contradiction).

For spaces we are interested in (namely manifolds) these two notions of connectedness
turn out to actually be equivalent.

Smooth Manifold

By a smooth manifold (of dimension n) we mean a space M equipped with charts, i.e.
bijective mappings ϕi : Ui → Rn, where Ui ⊂ M cover M and φi(Ui) is an open set in
Rn. We can then pull the topology from Rn, by proclaiming each φ−1

i (U) to be an open
set in M , thereby making each φi a continuous map. Furthermore, we require that any
transition map φi ◦ φ−1

j : φj(Ui ∩ Uj) → φi(Ui ∩ Uj) be smooth.
This way, if one chart measures a curve γ : [a, b] → M to be smooth (i.e. φ ◦ γ is

smooth), then any other chart will do the same. A collection of such charts is (unsurpris-
ingly) called an atlas. We shall require our atlases to be maximal (w.r.t. inclusion).

Charts are usually written as an n-tuple of functions ϕ = (x1, . . . , xn), each providing
one coordinate to points in U ⊂M .

We shall generally employ two more restrictions on the global topology of M :

1. M should be a Hausdorff space, meaning that any two points p, q ∈ M , p ̸= q
can be separated by some disjoint open sets p ∈ U , q ∈ V . It is easy to show that
this condition guarantees the uniqueness of limits. Note that a euclidean space Rn

is Hausdorff, so a manifold (locally homeomorphic to Rn) will be locally Hausdorff,
but will generally fail to be globally Hausdorff. This assumption gets used when
proving the existence of maximal flows of vector fields.
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2. M should be second-countable. This means that there should exist a countable
collection of open sets such that any other open set can be obtained as a union of
these.

This property gets used when proving the existence of partitions of unity.

Manifolds generalize surfaces and curves to higher dimensions, but notice that we use
an intrinsic definition; we chart the manifold, instead of describing it as an embedded
subset of some higher dimensional space.

Tangent Space

A tangent space to a manifold is intuitively obvious; it should generalize a tangent plane
at a point of some surface. Things become slightly more complex because we need a way
to intrinsically characterize tangent vectors. We do this by considering curves through p:

Let p ∈ Rn. We say two curves γ and α starting at p (γ(0) = p and α(0) = p) represent
the same direction at p if γ′(0) = α′(0) (note that magnitude, i.e. the length of the vector
matters as well).

For curves on a manifold M , we say γ and α represent the same direction at p if they
represent the same direction on some chart ((φ◦γ)′(0) = (φ◦α)′(0)). The equivalence class
of all curves representing the same direction at p is called a tangent vector. Collection
of all tangent vectors at p is called a tangent space at p, denoted TpM . One then pulls
the vector structure from Rn and gets a vector space.

Derivative of a Function

Just as with curves, one can check whether a function is smooth by passing to charts:
f : M → N is smooth at p ∈ M if we can find charts φ and ψ around p and f(p)
respectively such that ψ ◦ f ◦φ−1 : φ(U) → ψ(U) is smooth (as a map between euclidean
spaces). A smooth bijection f : M → N with a smooth inverse is commonly known as a
diffeomorphism.

A derivative of a smooth function f : M → N between smooth manifolds, can now be
defined as follows. Since f maps curve γ to curve f ◦ γ, the derivative of f at p should
map the tangent vector to γ at p to the tangent vector to f ◦ γ at f(p). In other words,
dfp : TpM → Tf(p)N, dfp(γ

′(0)) = (f ◦ γ)′(0). One then checks this is well defined (i.e.
does not depend on the choice of curve γ representing a tangent vector v ∈ TpM).

In particular, if φ = (x1, . . . , xn) is a chart containing p, there is a standard basis on
TpM induced by this chart. Note that, since φ is a bijection, dφ is a bijection as well,
thus we can find a basis on TpM which dφp : TpM → Rn maps to the standard basis
ei = (0, . . . , 1, . . . 0). These are coordinate vectors (or coordinate frame) of this chart.

Tangent Bundle

We can now collect the tangent spaces into one object called the tangent bundle TM =⋃
p∈M TpM . It can be shown that TM itself has the structure of a smooth manifold, its

charts being induced by the coordinate vectors of some chart on M : if ei ∈ TpM denotes
the coordinate vectors and Xp =

∑
i a

iei, then ϕ(Xp) = (φ(p), a1, . . . an) defines a chart
for TM .
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Vector fields are sections of the tangent bundle, i.e. mappings X : M → TM , such
that Xp = X(p) ∈ TpM . The space of all vector fields on M will be denoted by Γ(TM),
or X(M).

Note that a vector field may be identified with a differential operator, namely with
f 7→ df(X) (directional derivative of f in direction X). We often write just Xf . One
can even define tangent vectors as differential operators on functions obeying linearity
and Leibniz rule; but to prove this gives the same construction requires some work. For
vector fields X and Y , by XY we shall mean the composition of X and Y as differential
operators and by [X, Y ] = XY − Y X their commutator.

The coordinate vectors of some chart now simply become standard partial derivatives
on that chart: ∂i.

An integral curve of vector field X is a curve γ solving γ′(t) = Xγ(t). A (local) flow
φ : U×R 7→M of vector field X parametrizes the integral curves by their initial positions:
φt(p) = γp(t), where γp is the integral curve through p.

Dual Space

Recall that a dual of a real vector space V is the space of all of its linear functionals
f : V → R, which we denote by V ∗. If ei is a basis on V , we can define the dual
basis ei ∈ V ∗ by ei(ej) = δij, in other words, if v =

∑
i v

iei, then ei(v) = vi. We write
coordinates of dual vectors in the basis ei using lower indices: v =

∑
i vie

i ∈ V ∗. This is
the essence of index notation. When the same index appears both as a subscript and a
superscript, we shall omit the summation sign. Thus, for example v = viei.

A vector in V may act on V ∗ as well. Indeed, V ∗∗ and V are isomorphic: v(f) = f(v).
We can now form the dual bundle T ∗M =

⋃
p∈M T ∗

pM . Sections of this bundle are
called covector fields or, more commonly, 1-forms. The space of 1-forms is denoted by
Γ(T ∗M).

Notice that on a chart φ = (x1, . . . , xn), dxi map each p ∈M to dxip : TpM → R; thus
dxi are 1-forms. It is not difficult to check dxi(∂j) = δij, so dxi are dual to the standard
coordinate frame.

Metric Tensor

By taking tensor products TM ⊗ TM =
⋃

p∈M TpM ⊗ TpM we get even more objects.
A metric on M is a smooth mapping g : M → TM ⊗ TM assigning to each point p
a scalar product on TpM . By this we mean a symmetric nondegenerate bilinear map
gp : TpM×TpM → R. By nondegenerate we mean that if g(Xp, Yp) = 0 for all Xp ∈ TpM ,
then Yp = 0.

Non degeneracy can be seen to amount to the mapXp 7→ g(Xp, ·) being an isomorphism
between TpM and T ∗

pM (non degeneracy means precisely that this linear map is injective;
but V and V ∗ have the same dimension, so it is bijective).

We shall regularly write ds2 for the quadratic form X 7→ g(X,X).
By employing the metric we can lower or raise indices: for a vector field X, define

a 1-form X♭ = g(X, ·). The inverse of ♭ : X 7→ X♭ is denoted by ♯. We then have
Xj = ej(X

♭) = X♭(ej) = g(X iei, ej) = X ig(ei, ej) = X igij. Thus the matrix gij maps
(X1, . . . , Xn) to (X1, . . . , Xn). Inverting this relation (and writing gij for the inverse
matrix) we get gijXj = X i.
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Lorentzian Metric

One can generally prove (via Gram-Schmidt procedure) that any nondegenerate scalar
product admits an orthonormal basis, i.e. a basis ei for which g(ei, ej) = 0 if i ̸= j and
g(ei, ei) = ±1. In other words, the matrix of g in this basis is just ±1 on the diagonal.
In fact, a stronger result (so called Silvester’s law of inertia) shows that in any other
orthonormal basis g will have the same number of −1s on the diagonal. Thus the number
of −1s is an invariant called the signature of the metric (what Silvester called ”inertia”).
We shall be interested only in metrics of signature (−,+, . . . ,+), i.e. with only one −1.
Such metrics are called Lorentzian.

For a Lorentzian metric g, we say a vector X ∈ TpM is:

1. timelike if g(X,X) < 0

2. spacelike if g(X,X) > 0

3. null or lightlike if g(X,X) = 0

Since in orthonormal coordinates ei metric g is a diagonal matrix with ±1 on the
diagonal, we see that (in Lorentzian signature) g(X,X) = −(X0)2 + (X1)2 + . . . (Xn)2,
so g(X,X) = 0 defines an hourglass shaped cone in TpM . Null vectors lie on the cone,
while timelike vectors lie (strictly) within the cone. Since the interior of the cone consists
of two connected components, we may chose one and label it future. Thus future oriented
timelike vectors fall into that component and past oriented ones fall into the opposite
component.

Physically, particles/observers are constrained to move on trajectories γ whose veloc-
ities γ′(t) at each t lie within the null cone of Tγ(t)M , i.e. γ′(t) are timelike or null and
future oriented. This constraint reflects the fact that no signal should travel faster than
light (or backwards in time). For a timelike curve

∫ b

a
|γ′|ds =

∫ b

a

√
|g(γ′, γ′)|ds is called

its proper time. The metric thus provides us with null cones, but also a way of measuring
the elapsed time for any given observer (as measured by that observer).

Levi-Civita Connection

Generally one cannot compare a vector Xp ∈ TpM and a vector Yq ∈ TqM ; they do not live
in the same vector space. Nevertheless, it would be desirable if we could establish a way
of transporting vectors from one tangent space to the other. This is achieved by an affine
connection (or covariant derivative); this is a mapping ∇ : X(M) × X(M) → X(M)
satisfying:

1. ∇XY is F -linear in X, a R-linear in Y . In other, words: ∇fXY = f∇XY for all
smooth f : M → R and ∇X(αY ) = α∇XY for all α ∈ R, we of course must also
have ∇X(Y + Y ′) = ∇XY + ∇XY

′ and ∇X+X′Y = ∇XY + ∇X′Y .

2. Leibniz rule holds for ∇ in Y : ∇X(fY ) = (Xf)Y + f∇XY for each smooth f :
M → R

We now say Y is parallel if ∇XY = 0 for all X.
Consider a vector field along curve γ : [a, b] →, i.e. V : [a, b] → TM such that

V (t) ∈ Tγ(t)M . We cannot directly apply ∇ as V is not defined on M . However, we can
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define a unique analogue induced by ∇. Indeed, one shows that there is a unique operator
D
dt

which is linear, satisfies the Leibniz rule and is also compatible with ∇ in the following
sense: if X is a vector field on M , then Xγ(t) = Xγ(t) is a vector field along γ and we

must have DXγ

dt
(t) = ∇γ′(t)X. A field V is parallel along γ if DV

dt
= 0

Let ∇ be some connection and γ : [a, b] → M a smooth curve on M . For a given
v ∈ Tγ(a)M there exists a parallel vector field V : [a, b] → TM along γ with V (a) = v. By
varying v we get a linear map τ : Tγ(a)M → Tγ(b)M , called the parallel transport map.

For a vector field X we can now show:

DX

dt
= lim

ε→0

1

ε

(
τ−1
ε X(ε) −X(0)

)
So the intuition is that the covariant derivative looks at how X changes during parallel
transport. Generally, we shall write ∇γ′(t)X instead of DX

dt
.

A celebrated theorem by Riemann states that given a nondegenerate metric g on M ,
there exists a unique connection ∇, the so-called Riemann or Levi-Civita connection,
satisfying:

1. ∇ is metrically compatible: Zg(X, Y ) = g(∇ZX, Y ) + g(X,∇ZY ) for all X, Y, Z ∈
X(M).

This is equivalent to parallel transport being an orthogonal transformation (pre-
serving the metric) between tangent spaces.

2. Torsion T (X, Y ) = ∇XY −∇YX − [X, Y ] of ∇ vanishes.

Geodesics

By a geodesic γ we always mean an affinely parameterized one, i.e. the solution to

0 =
Dγ′

dt
= ∇XX,

where X = γ′. Writing this out in some local coordinates, we get:

ÿk +
∑
ij

Γk
ij ẏ

iẏj = 0,

where Γk
ij are Christoffel symbols defined by ∇∂i∂j = Γk

ij∂k.
Denote by γv a geodesic with initial velocity v ∈ TpM . The exponential map at

p ∈M is a map defined on some open subset of 0 ∈ TpM by

expp(v) = γv(1).

expp sends straight lines in TpM to geodesics going through p. One actually proves this is
a diffeomorphism on a sufficiently small open neighborhood 0. If ei is a basis on TpM and
ri are coordinates in that basis, then we may define normal coordinates: xi = ri◦exp−1

p .
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Curvature Tensors

We define the Riemann curvature tensor as

R(X, Y )Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z.

Roughly speaking, if we parallel transport Z along some infinitesimal parallelogram
spanned by X, Y , thus going in a loop and returning to the initial tangent space, then
R(X, Y )Z is the difference between the transported vector and the original vector Z.
More precisely, we have:

lim
s,t→0

Zp − TZp

st
= R(Xp, Yp)Zp = [R(X, Y )Z] (p),

where T = ψ̃−1
s φ̃−1

t ψ̃sφ̃t is the parallel transport along the flows φt and ψs of vector fields
X and Y .

Assume U ⊂M is a neighborhood and ei ∈ X(U) is a local frame on U , i.e. that (ei)p
form a basis for TpM at each p ∈ U . We write Rk

lij = (R(ei, ej)el)
k, i.e. Rk

lijek = R(ei, ej)el.
Lowering an index gives R(W,Z,X, Y ) = g(R(X, Y )Z,W ), i.e. Rklij = gmkR

m
lij.

The Ricci tensor is the a contraction of the Riemann tensor: Rij = Rk
ikj.

Intuitively, the Ricci tensor Ric(X,X) = RijX
iXj measures the difference in volume

of a narrow cone of geodesics emanating from p going in the direction X and the volume
of the flat (euclidean) cone (in normal coordinates (x1, . . . , xn)). More precisely, we have
the following formula for the volume form in normal coordinates:

ω =
√

| det gij|dx1 ∧ · · · ∧ dxn =

(
1 − 1

6
Ricp(x, x) +O(|x|3)

)
dx1 ∧ · · · ∧ dxn.

Spacetime

In what follows we will mostly deal with some 4-dimensional connected Lorentzian man-
ifold M with metric g of signature (−,+,+,+) and an induced Levi-Civita connection
∇. We assume further the existence of a global nonvanishing timelike vector field, which
gives a smooth choice of future timecone at each TpM . As usual, we shall refer to M as
spacetime.

On M matter is represented by some symmetric 2-tensor Tµν called the stress-energy
tensor. The system evolves according to the Einstein field equations:

Gµν = 8πTµν ,

where Gµν = Rµν − 1
2
Rgµν is the Einstein tensor and R = Rµ

µ is the scalar curvature.

Alternatively, Einstein field equations may be written as Rµν = 8π
(
Tµν − 1

2
Tgµν

)
, where

T = T µ
µ . In vacuum Tµν = 0, so the Einstein equations reduce to Rµν = 0.

8



Chapter 1

Spacetime Symmetries

Since Einstein’s equations are so difficult to solve in general, to make the problem tractable
one either linearizes1 the theory or imposes certain symmetries. Symmetries, in particular,
allow us to simplify the metric before solving the Einstein equations. In this chapter we
review some elementary notions from group theory, define certain types of spacetime
symmetries and prove a result on the splitting of the metric under the action of some
(compact connected Lie) group.

1.1 Foliations

An immersion is a smooth function f : M → N whose derivative dfp : TpM → Tf(p)N is
injective at every point p ∈M . This allows one to embed the tangent space of one manifold
into the tangent space of the other. Immersion theorem then guarantees a coordinate
system φ around p and ψ around f(p) so that f (or more accurately ψ ◦f ◦φ−1) has form
(x1, ..., xn) 7→ (x1, ..., xn, 0, ..., 0) in these coordinates. One can think of f as embedding
sufficiently small pieces of M into N , where it will look like an n-dimensional plane in a
properly chosen coordinate system. We then say that M is an immersed submanifold
of N . Of course, one can additionally require that M be globally embedded in N , i.e.
that f also be a homeomorphism between M and its image so that, in particular, M
inherits the topology of N . In this case we will say that M is an embedded/regular
submanifold of N (or sometimes simply that M is a submanifold of N).

Definition 1 (Locally trivial collection). The definition given is the same one found in
e.g. Lee [15]. Let F be a collection of immersed k-dimensional submanifolds of M . If
every point p ∈M has a coordinate neighborhood (U,φ) = (U, x1, ..., xn) such that every
element of F either doesn’t intersect U or intersects it in a (at most) countable union of
manifolds of the form xk+1 = ck+1, .., xn = cn for some constants ck+1, ..., cn ∈ R, then we
say that F is locally trivial.

In other words, in a appropriately chosen coordinate system, a locally trivial collection
F will look like a stack of k-dimensional planes, all of them parallel to Rk×{0}. One can
think of each manifold F ∈ F as repeatedly going in and out of the neighborhood U (at
most a countable number of times), but looking like a set of (at most countably many)
parallel planes on U itself.

1In general, one may use higher order perturbation theory.
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Definition 2 (Foliation). Let M be a smooth n-dimensional manifold. A foliation par-
titions M into a (locally trivial) family of connected submanifolds. More precisely, a
k-dimensional foliation F is a collection of immersed k-dimensional submanifolds of M
(called leaves) that are disjoint, connected, locally trivial, and also cover M .

As a trivial example, one can foliate R3 with planes (take for instance all planes
parallel to the XY plane). All 2-dimensional foliations of a 3-dimensional space are
locally modeled on this one. Less trivially (but only slightly less so), one can foliate
R3 \ {0} with spheres (take all spheres centered at 0). In the next section we will give a
completely nontrivial example by foliating a 3-sphere with 2-spheres.

A distribution is simply a vector subbundle D ⊂ TM (a smooth choice of subspace
Dp ⊂ TpM for each p ∈M). We say that a distribution D is integrable if there exists a
submanifold N ⊂ M which is tangent to D, i.e. for which Dp = TpN for all p ∈ N . We
call N an integral manifold (for D).

The following result gives us a nice characterization of foliations:

Theorem 3 (Frobenius)
Let D ⊂ TM be a distribution, then D is integrable iff for any two X, Y ∈ Γ(D) (i.e.
Xp, Yp ∈ Dp for all p ∈ M) we also have [X, Y ] ∈ Γ(D). Furthermore, the collection of
all maximal connected integral manifolds of D forms a foliation of M .

For a proof see Lee [15]. Conversely, for a foliation F , it is trivial that the collection of
all Dp = TpFp forms an integrable distribution. Here Fp is the unique leaf which contains
p ∈M .

1.2 Group of Isometries

Let M be a smooth manifold and denote by diff(M) the set of all diffeomorphisms M →
M . diff(M) obviously forms a group under composition - this group, however, is infinite
dimensional. Assume that M comes equipped with a semi-Riemannian metric g (of a
given signature), then we can restrict our attention to isometries, i.e. diffeomorphisms
φ : M → M which preserve the metric φ∗g = g. Again, collection of all isometries forms
a group under composition, which we denote by I(M).

We now recall some terminology from group theory. A Lie group G is simply a group
with a smooth manifold structure. In particular, this means that the multiplication map
µ : G×G→ G, (g, h) 7→ gh must be smooth. One can show that the group of isometries
I(M) is a Lie group (see Kobayashi [13]).

Generally, a group G can act on a smooth manifold M via diffeomorphisms. In other
words, we can embed G into the group of all diffeomorphisms diff(M) via a (not necessarily
injective) homomorphism G → diff(M) so that every element g ∈ G corresponds to a
diffeomorphism g : M → M . More specifically, one can require that G act on M via
isometries.

Stabilizer (or isotropy group) at p of such a group action is the set of all group
elements that fix p:

Hp = {g ∈ G | gp = p} ⊂ G.

A stabilizer can act on TpM via derivatives because if ϕ fixes the point p ∈ M , then
dϕp : TpM → TpM .
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Orbit at p is the set of all points that can be reached from p by some transformation
in G:

Op = {gp | g ∈ G} ⊂M.

For H ⊂ G we form the set of all left cosets G/H = {gH | g ∈ G}. Orbit-stabilizer
theorem now guarantees that G/Hp ≃ Op, where we have the bijection j : aHp 7→ ap.
An action is called transitive if Op = M for some (and therefore any) p ∈ M . For a
transitive action we then have G/Hp ≃ M and, in fact, can guarantee that j is actually
a diffeomorphism (see Lee [15]).

As an application of these ideas, we have the following:

Example 4 (Hopf Fibration). The 3-dimensional rotation group SO(3) of linear operators
on R3 preserves lengths of vectors and therefore (by restriction) acts transitively on the
2-sphere. To fix a point p on the sphere one can only use rotations that have p lying on
their axis of rotation and so must rotate in the plane orthogonal to that axis. Therefore,
the stabilizer of such action is isomorphic to SO(2) ≃ S1 and we have S2 ≃ SO(3)/SO(2).

On the other hand, SO(3) has a double cover SO(3) ≃ SU(2)/{±I} and that double
cover acts transitively on S2 as well (with the same stabilizer). We thus conclude that
SU(2)/SO(2) ≃ S2. However, SU(2) is diffeomorphic to the 3-sphere so we get a projec-
tion map π : S3 → S2 whose fiber is diffeomorphic to SO(2) ≃ S1. This partitions S3

into disjoint 2-spheres and furthermore gives S3 the structure of a (principal) fiber bundle
that locally looks like a product of a piece of S2 and S1. This proves that S3 can indeed
be foliated by S2.

It is often easier to analyze not the Lie group G, but its algebra g. Let us recall that g
is simply the tangent space at identity TeG, which represents infinitesimal transformations
(small deviations from the identity).

We should note that every Xe ∈ g generates a vector field on G simply by translating,
i.e. Xg = dlgXe. Here lg(h) = gh is left multiplication that translates h by g, and
so dlg translates vectors in TeG to TgM . This vector field is obviously left-invariant, i.e.
dlgXh = Xgh, and is, in fact, the only such vector field that agrees with Xe at the identity.
One can thus conclude that g can be identified with the space of all left-invariant vector
fields and therefore comes equipped with a Lie bracket [X, Y ] = XY − Y X defined for
any two vector fields X, Y .

Integral curves of left-invariant vector fields must run for all times t ∈ R and have a
specific property: c(t + s) = c(t)c(s). In other words, they are simply homomorphisms
between (R,+) and G and are consequently called 1-parameter groups. Conversely, every
1-parameter group must be an integral curve of some left-invariant field (by uniqueness
of solutions to ODE).

We are thus interested not only in isometries themselves, but also in infinitesimal
isometries.

Definition 5 (Killing field). A vector field on M is called Killing if its local flow φt :
U →M is an isometry (for all t for which it is defined).

The flow of a complete Killing field is defined on all of M , i.e. φt : M → M for all
t ∈ R. Therefore, we get a 1-parameter group in I(M) through the identity φ0 = id. The
derivative of this curve at id is precisely the Killing field. We thus conclude that complete
Killing fields are in bijective correspondence with the algebra of group I(M).
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We finish this section with a couple of comments on the structure of the space of Killing
fields. It not too difficult to see that X is Killing iff LXg = 0. This is precisely because the
Lie derivative LX is defined by LXg = limt→0

1
t
(φ∗

tg − g). As we have [LX ,LY ] = L[X,Y ],
it follows that for X and Y Killing, [X, Y ] must be Killing as well. Thus the space of
Killing fields is an algebra.

One can relatively easily show that every isometry φ on a connected manifold is
determined by φ(p) and dφp at some point p ∈ M (this is because isometries preserve
geodesics). Analogously, a Killing field X (on a connected manifold) is determined by Xp

and (∇X)p at some point.

It is not too difficult to show (for a Levi-Civita connection) that LXg = ⟨∇AX|B⟩ +
⟨A|∇BX⟩. Thus X is Killing iff ∇X : A 7→ ∇AX is antisymmetric with respect to metric
g = ⟨·|·⟩. This is the so-called Killing equation.

Knowing that (∇X)p must be antisymmetric with respect to metric g, we see that

it can have at most n(n−1)
2

degrees of freedom. We thus see that the algebra of Killing

vector fields (and consequently the group of isometries) can be at most n+ n(n−1)
2

= n(n+1)
2

dimensional.

1.3 Spacetime Symmetries

We can now define many different kinds of symmetric spacetimes.

Definition 6 (Time symmetries). Let M be a spacetime.

1. We say M is stationary if there exists a timelike Killing vector field (Wald [4]).
This field gives us (generally only locally defined) time translations. As these time
translations are isometries, we interpret this to mean the metric is time independent.

2. In a stationary spacetime, the timelike Killing field X induces the instantaneous
rest spaces Dp = {v ∈ TpM | ⟨v|X⟩ = 0}, which form a distribution D ⊂ TM . If D
is integrable in the sense of Frobenius, then we say M is static (Wald [4]). Math-
ematically, this means precisely that M can be foliated into (connected) manifolds
all tangential to the distribution D, i.e. orthogonal to X. Physically, this means
that the family of observers X can synchronize their clocks in such a way that the
space of simultaneity common to these observers is actually a 3-manifold.

We should comment on the definition of static spacetime. The Frobenius integrability
condition for D, namely that [A,B] ∈ Γ(D) whenever A,B ∈ Γ(D), can be equivalently
stated only in terms of the vector field X. Denote by ξ = X♭ = ⟨X|·⟩ the dual of X. Then
we have ker ξ = D, i.e. D consists of precisely those vectors that ξ sends to 0 (as precisely
these are orthogonal to X). On the other hand, by dξ(A,B) = Aξ(B)−Bξ(A)−ξ([A.B])
we have dξ(A,B) = −ξ([A,B]) for any A,B ∈ ker ξ = D. From here one concludes that
D is integrable iff dξ = 0 on D.

We call dξ the curl of X. In particular, we have curlX(A,B) = ⟨∇AX|B⟩−⟨∇BX|A⟩.
One can see this by going to normal coordinates where curlX(∂i, ∂j) = ⟨∂iX|∂j⟩ −
⟨∂jX|∂i = ∂iXj − ∂jXi = dX♭(∂i, ∂j). Therefore, D is integrable iff curlX = 0 on D
so we can say that a static spacetime is one that has an irrotational timelike Killing field.

It is worth noting that ”dξ = 0 whenever ξ = 0” can be written equivalently as
ξ ∧ dξ = 0. To see this simply compute the expression for ξ ∧ dξ(A,B,C) on some
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orthogonal vectors A,B,C, noting that only one of them can be vertical, i.e. not in ker ξ.
This kills all but one term (the one that contains the product of ξ on the vertical vector
and dξ on the remaining two horizontal ones). By writing ξ ∧ dξ = 0 out in coordinates
we get 0 = ξ[µ∂νξσ] = ξ[µ∇νξσ], where the brackets indicate that we are antisymmetrizing
over all three indices. The last equality follows from the fact that Levi-Civita connection
∇kX

i = ∂kX
i +XjΓi

kj is symmetric (Γk
ij = Γk

ji).

Definition 7 (Space symmetries). Let M be a spacetime.

1. Call M spherically symmetric if I(M) contains SO(3) as a subgroup and orbits
of SO(3) are spacelike 2-spheres (Wald [4]). More generally, one may allow the
orbits to be any spacelike 2-manifold Σ (Hawking & Ellis [3]) because one then
immediately has that Σ must be locally isometric to a sphere (by having SO(3) in
its group of isometries - see theorem 9).

2. We say that M is axisymmetric if there exists a 1-parameter group of isometries
φt whose orbits are closed spacelike curves (topologically speaking these are simply
circles). This implies the existence of a spacelike Killing field with closed integral
curves. In other words, I(M) contains SO(2), whose orbits are spacelike circles
(Wald [4]).

Some authors (Heusler [10]) require that the fixed point set of SO(2) be non empty
as well (so in particular it has an axis of rotation).

For a spacetime that is both stationary and axisymmetric, it is standard to require
that the two Killing fields commute (Wald, [4], Heusler [10]). In particular, this
guarantees that their flows will commute as well.

Definition 8 (Maximally symmetric space). We say that a semi-Riemannian manifold
M is maximally symmetric if its algebra of Killing fields has the highest possible
dimension, namely n(n+1)

2
.

As far as maximally symmetric spacetimes are concerned, one can show the following:

Theorem 9
Let M be a pseudo-Riemannian manifold of dimension n and signature s. Then the
following are equivalent:

1. M is locally maximally symmetric, i.e. every point p ∈ M has a maximally sym-
metric neighborhood.

2. M is a space of constant curvature. This means that the sectional curvature

K(X, Y ) =
⟨R(X, Y )Y |X⟩

g(X,X)g(Y, Y ) − g(X, Y )2

2 is equal to the same constant K ∈ R for any X, Y ∈ TpM and any p ∈M .

3. There exists a constant K such that the Riemann curvature tensor has the following
form in any coordinate system:

Rijkl = K(gikgjl − gilgjk).
2Note that here K is defined only for those X,Y for which g(X,X)g(Y, Y )− g(X,Y )2 ̸= 0, i.e. which

generate a plane Π on which g is non degenerate (has non zero determinant). Also, one can prove that
K depends only on this plane Π and not on any specific choice of X and Y that generate Π.
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4. M is locally isometric to one of the following spaces:

• pseudo-euclidean space Rn
s (this is just Rn with a metric of signature s).

If we denote Os(n) the group of all linear isometries of Rn
s , then any isometry

of Rn
s can be written as a τxR, where R ∈ Os(n) and τx : p 7→ p+ x. As trans-

lations and orthogonal transformations do not commute, the isometry group of
Rn

s is Rn ⋊Os(n) - Rn denoting translations and ⋊ a semidirect product.

• pseudohyperbolic space Hn
s (r) = {p ∈ Rn+1

s+1 | g(p, p) = −r2}, that has Os+1(n+
1) as its group of isometries whenever s > 03.

• pseudosphere Sn
s (r) = {p ∈ Rn+1

s | g(p, p) = r2}, that has Os(n+1) as its group
of isometries whenever s < n4.

In particular, we get the classical theorem that all maximally symmetric Riemannian
manifolds are locally isometric either to a Euclidean space, a sphere, or a hyperbolic space.
On the other hand, for spaces of Lorentzian signature, we find that every maximally
symmetric spacetime must be locally isometric either to Minkowski space (Rn

1 ), de Sitter
space (dSn = Sn

1 ), or anti-de Sitter space (AdSn = Hn
1 ).

Proof. Essentially the proof of all these statements can be found in O’Neill [1], if one is
willing to work through problem 14 of chapter 9.

1.4 Splitting of the Metric Under Symmetries

Because the proof is so cute and instructive (and because I’ve seen so many people butcher
it), let us briefly discuss how one would go about decomposing the metric under a sym-
metry group. This is essentially taken from the lovely paper by B. Schmidt [21].

First we give a preliminary result:

Proposition 10
Assume that a Lie group G of dimension r acts on a smooth manifold M via diffeomor-
phisms. Assume that the orbits Op = {gp ∈ M | g ∈ G} of G are all connected smooth
manifolds of the same dimension k and assume further that Op are closed in M . Then
the orbits form a foliation of M .

For a compact connected group, we automatically get that the orbits Op must be
compact and connected as well (the group action G ×M → M is smooth so sends the
compact connected set G× {p} to a compact connected set Op).

Proof. This is a relatively simple application of the Frobenius theorem. We should note
that it is not (a priori) entirely clear that the orbits form a locally trivial collection.

First we need to prove that Dp = TpOp defines a distribution (so that Dp vary smoothly
with p). For this it is sufficient to prove that for any sufficiently small neighborhood

3Hn
0 has O++

1 (n+ 1) ∪O+−
1 (n+ 1) as its group of isometries, i.e. transformations that preserve time

orientation.
4Sn

n has O++
n (n+ 1)∪O−+

n (n+ 1) as its group of isometries, i.e. transformations that preserve space
orientation.
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U ⊂ M one can find vector fields X1, ..., Xk on U that constitute a basis on each Dp for
all p ∈ U . Indeed, we can choose a basis e1, ..., er for g and define

(Xi)p =
d

dt

∣∣
t=0

(eteip).

Xi generate Dp because the action on each orbit is transitive, but are not necessarily
linearly independent. Now choose only those Xi which are linearly independent at p and
thus form a basis for Dp. It is clear (say by continuity of the determinant) that these
must be linearly independent in a sufficiently small neighborhood around p as well.

We therefore see that this is an integrable distribution (orbits are integral manifolds)
so by Frobenius the maximal integral manifolds Fp form a foliation F of M . What
remains to be seen is that the orbits are the maximal integral manifolds. As each orbit is
connected, we have Op ⊂ Fp (the maximal integral manifold must contain all connected
integral manifolds through p). Once we show that Op is open and closed in Fp, we are
done.

When proving the Frobenius theorem, one proves that Fp ⊂ M is weakly embedded.
This means that every smooth map N → M whose image lies in Fp is smooth as a map
N → Fp as well. This has two consequences:

1. As orbits are closed in M by assumption, they must be closed in Fp as well.

2. The inclusion Op → Fp must be a smooth map and therefore an immersion.

As Op and Fp have the same dimension, Op → Fp is a submersion as well and therefore
(by say the submersion theorem) an open map. So Op ⊂ Fp must be open and closed,
from which it follows that Op = Fp.

Now let us further assume that each orbit (i.e. leaf) is an embedded k-dimensional
semi-Riemannian submanifold of M . In particular, this means that for every F ∈ F and
p ∈ F , the metric must be nondegenerate on the subspace TpF ⊂ TpM or, what amounts
to the same thing, the tangent space to M at p decomposes as TpM = TpF ⊕ TpF

⊥. We
now prove the two main results of this section:

Proposition 11
If the stabilizer Gp of G leaves no tangent vector in TpOp fixed, i.e. (∀v ∈ TpOp\{0})(∃g ∈
Gp)(gv ̸= v), then one can find a family of n− k dimensional surfaces orthogonal to the
orbits.

Proof. Let TpO
⊥
p be the normal space to Op at p so that we have TpM = TpOp ⊕ TpO

⊥
p .

Take an open ball U ⊂ TpM to be such that exp is a diffeomorphism on U . Then exp maps
TpO

⊥
p ∩U to some C ⊂M diffeomorphically so we get a (n− k)-dimensional submanifold

C containing precisely all the geodesics going through p and being normal to Op at p. We
now show that C is orthogonal to every orbit that it intersects (not just Op).

• We first show that Gp fixes C. Note that, in a sufficiently small neighborhood U
around point p, M looks like a product U∩Op×C (this being a tubular neighborhood
of U ∩Op). Therefore a point q ̸= p sufficiently close to p which lies in C cannot lie
in Op. In other words, (at least locally) orbits that go through two different points
of C cannot have points in common.

15



Now Gp fixes every vector in TpO
⊥
p . Otherwise, one could transform two distinct

vectors into one another, but then so could one transform the geodesics that these
vectors generate (isometries preserve geodesics) thereby giving distinct points in C
that lie in the same orbit; a contradiction.

Finally, we see that C must be fixed by Gp because every point on C lies on a
geodesic with initial velocity v ∈ TpO

⊥
p , which is fixed by Gp.

• Let q ∈ C and λ ∈ TqC. Gp fixes vector λ because it fixes the entirety of C.
Decompose λ as λ = λ1 + λ2, where λ1 ∈ TqOq and λ2 ∈ TqO

⊥
q . If we can show that

λ1 = 0, i.e. that λ ∈ TqO
⊥
q , we are done.

Note that λ2 is fixed by Gp. Certainly, it is fixed by Gq by the previous argument.
On the other hand, Gq = Gp because all elements g ∈ G that fix p also fix C (and
vice-versa of course). As both λ1 and λ are fixed, λ1 = λ− λ2 ∈ TqOq must also be
fixed, but by assumption no vector in TqOq can be fixed (excluding the 0 of course).
We conclude therefore that λ1 = 0, i.e. λ = λ2 ∈ TqO

⊥
q .

Proposition 12
Assume that the orbits have orthogonal (n − k)-dimensional surfaces (as in the previous
theorem). Furthermore, assume that in each TpOp there exists a basis B = {e1, ..., ek} on
which Gp acts transitively, i.e. (∀ei, ej ∈ B)(∃g ∈ Gp)(gei = ej). Then the orthogonal
surfaces map the orbits conformally onto one another (i.e. by following the geodesic in
C, one reaches an orbit with a conformally transformed metric).

Proof.

• Let Op and Oq be two different orbits with p and q sufficiently close. We first show
that C = O⊥

p and Oq intersect in exactly one point.

We have seen in the proof of the previous theorem that, for p and q sufficiently
close, C and Oq can have at most one common point. To show their intersection is
not empty, we show that there exists a geodesic normal to Op intersecting Oq. This
is obvious from the fact that orbits form a locally trivial collection - through any
point in C there must pass some orbit, but by local triviality, these are precisely all
orbits around p.

• Now define f : p 7→ f(p) where f(p) is the sole element in Oq ∩O⊥
p
5. We obviously

have gf = fg for all g ∈ G because g(f(p)) = g(Oq ∩ O⊥
p ) = Oq ∩ O⊥

g(p) = f(g(p)),

as gOq = Oq is of course fixed. It is clear now (by chain rule) that this must also
hold for the derivative of f (which we denote by the same symbol) when Gp acts on
TpM (via derivatives).

• Take now e1, ..., ek to be a basis for TpOp on which the isotropy group Gp acts
transitively and let gi ∈ Gp be given by gie1 = ei. As we have f(ei) = f(gie1) =
gif(e1), it is clear that all f(ei) are of same length (gi are isometries). Therefore, f
maps a basis of unit vectors in TpOp to a basis of vectors in Tf(p)Of(p) all of which
have the same length. In other words, f is a conformal map.

5Of course, one does not need axiom of choice for this as one is not really making a choice. We are
picking the only possible element from each set. Explicitly, f(p) =

⋃
Oq ∩O⊥

p .
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• Moreover, the conformal factor in constant on each Oq because we can compose

Tp′Op
h−→ TpOp

f−→ Tf(p)Of(p)
h−1

−−→ Th−1f(p)Of(p) = Tf(p′)Of(p),

where h is an isometry in G that sends p ∈ Op to p′ ∈ Op.

A couple of comments are in order. Note that in a vector space of any signature, one
may find a basis ei all of whose vectors have equal g(ei, ei). It is intuitively clear that one
can focus all the vectors in one direction (say where the metric is positive g(v, v) > 0) and
spread the vectors out just enough as to make them linearly independent6. Therefore it
is possible that the isometry group act transitively on a basis even in a space of indefinite
signature (it cannot act transitively on an orthonormal basis of course)

The argument that showed the existence of a normal geodesic from Op to Oq relies on
the fact that the orbits form a locally trivial collection (and is in that case obvious). It
is not clear (at least not to me) how one would prove this otherwise. Thus theorem 10 is
essential here. This is also not explicitly mentioned in [21] or, for that matter, anywhere
in the physics literature (where I looked).

Assuming the conclusions of the previous two theorems are satisfied, the metric can
be put in a particularly neat form. First, one can choose a (local) coordinate system
(xα, xA), where α = 1, ..., k and A = k + 1, ..., n so that XA = const. describes the orbits
and xα = const. describes the space orthogonal to the orbits. Note here that, locally
speaking, the space looks like a product Op × C so one can take the product chart. In
these coordinates the metric has the form:

g = B2(xA)gαβ(xα)dxαdxβ + gAB(xA)dxAdxB,

where the first term is a metric on the orbits and the second is a metric on the orthogonal
space C. The B2 is the conformal factor that changes from orbit to orbit. In other words,
M is locally isometric to a warped product Op ×B C.

Finally, applying the above general theorems to a special case of maximally symmetric
orbits, we get:

Corollary 13
Let M be a semi-Riemannian manifold and let Lie group G act on M via isometries.
Assume that the orbits are k-dimensional semi-Riemannian surfaces that foliate M . Let
dimG = k(k+1)

2
so that the orbits are maximally symmetric spaces. Then the assumptions

of the previous two theorems are satisfied and the metric locally has the form

g = B2(xA)gαβ(xα)dxαdxβ + gAB(xA)dxAdxB,

where gαβ(xα)dxαdxβ is a metric of constant curvature on the orbit xA = const.

Proof. As orbits are maximally symmetric, they are locally either Rn
s , Sn

s or Hn
s . Because,

locally speaking, group G of isometries (of orbits) is maximal, the isotropy group Gp is
maximal as well and, in particular, the orbits are locally isotropic. In other words, locally

6More precisely, take Rn with standard basis ei and metric g of signature s. Take v ∈ Rn to have
g(v, v) > 0. Now vi = v + εei all have g(vi, vi) > 0 (for a sufficiently small ε), but are also linearly
independent.
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speaking, its isotropy group acts transitively on all vectors of the same norm g(v, v) (i.e.
the pseudosphere).

This guarantees that no vector can remain fixed under the action of isotropy group
and that there exists a basis on which the isotropy group acts transitively (as we have
previously commented). It is now obvious that the results from the previous two theorems
apply as was to be demonstrated.

Since spheres are maximally symmetric, it is now relatively straightforward to explic-
itly find the metric of a spherically symmetric spacetime. Indeed, we see that the metric
of such a spacetime must be of the form

ds2 = dτ 2(t, r) + Y 2(t, r)dΩ2(θ, ϕ),

where dΩ2(θ, ϕ) = dθ2 + sin2 θdϕ2 is the metric of the unit sphere and dτ 2 is the indef-
inite metric (signature (−,+)) on the space orthogonal to the spheres parametrized by
coordinates t and r. Y 2 > 0 is just the conformal factor.
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Chapter 2

Examples of Black Hole Spacetimes

Historically, one of the earliest known exact solutions to Einstein vacuum equations was
also a solution that contained a black hole. This is the Schwarzschild metric describing
a spherically symmetric vacuum. Here we prove a stronger result: any spherically sym-
metric spacetime must be (locally) isometric to Schwarzschild spacetime - a fact known
as Birkhoff’s theorem (so, modulo global topology, Schwarzschild metric is the spherically
symmetric vacuum solution).

Later we discuss the case of an axially symmetric, i.e. rotating black hole; this is the
Kerr solution. It is worth noting that an axially symmetric black hole solution was found
only relatively late in the game (Kerr 1963), with the help of Petrov types.

2.1 Schwarzschild metric and Birkhoff’s Theorem

The Schwarzschild metric is given by:

ds2 = −(1 − 2mG

r
)dt2 + (1 − 2mG

r
)−1dr2 + r2dΩ2 (2.1)

and is obviously spherically symmetric. Here rs = 2mG ≥ 0 (the so-called Schwarzschild
radius) is just some number parametrizing the family of metrics. G = 7.41 · 10−28kg−1m
is the universal gravitational constant, which guarantees that m will be in units of mass
(we are taking the speed of light c to be 1; in SI units G = 6.67 · 10−11m3kg−1s−2). Note
that r coordinate becomes timelike and t coordinate spacelike for r < 2mG.

We also notice a break-down of coordinates at r = 2mG. This can be remedied by
passing to Eddington-Finkelstein coordinates. Indeed, if one draws the radial light
geodesics, it appears as though they fly off to infinity at r = 2mG and then come back
from infinity on the other side (r < 2mG). Let us therefore try to find coordinates in
which radial lightlike geodesics are straight lines (this way we control the behavior around
r = 2mG). For a radial light geodesic we have:

0 = −(1 − 2mG

r
)dt2 + (1 − 2mG

r
)−1dr2.

From here it follows that dt
dr

= ±(1 − 2mG
r

)−1 (− for ingoing and + for outgoing light
geodesics). This has a solution (easily checked by taking the derivative):

t = ±r∗ + const,
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where r∗ = r+ 2Gm ln| r
2Gm

−1|. We see that the light geodesics would indeed be straight
lines if we had r∗ instead of r as a coordinate. Thus changing the r coordinate to r∗, the
metric becomes:

ds2 = (1 − 2mG

r
)(−dt2 + (dr∗)2) + r2Ω2

Define v = t+ r∗, then:

ds2 = −(1 − 2mG

r
)dv2 + 2dvdr + r2dΩ2.

Note that the determinant of the metric is −r4 sin2 θ. We therefore see that the metric is
non degenerate at r = 2mG (even though one of its components vanishes there) and the
coordinate system has incorporated the event horizon r = 2mG.

We finally state the main theorem of this chapter:

Theorem 14 (Birkhoff)
Let M be a spherically symmetric spacetime so that in any case the orbits of SO(3) ⊂
I(M) are locally isometric to a sphere. Assume M is Ricci flat, i.e. the metric g satisfies
the vacuum Einstein equations Rµν = 0, where Rµν is the Ricci tensor. Then (in any
sufficiently small neighborhood) the metric g must be given by the following expression:

ds2 = −(1 − 2mG

r
)dv2 + 2dvdr + r2dΩ2.

It is beneficial to prove the theorem in Eddington-Finkelstein coordinates, instead of
the original (Schwarzschild) coordinates. Otherwise, we would have to treat the event
horizon as an exception and the expression for the metric would then split between the
interior and the exterior of the black hole, which complicates the discussion. In this regard
we more or less follow [52].

First, the metric ds2 = dτ 2(t, r) + Y 2(t, r)dΩ2(θ, ϕ) can be further simplified:

Lemma 15
Every spherically symmetric metric can be brought into the following form:

ds2 = F (v, r)dv2 + 2X(v, r)dvdr + Y 2(v, r)dΩ2.

The metric is Lorentzian whenever X ̸= 0 (while there are no restrictions on F ).

Proof. Indeed, we generally have τ(t, r) = −Adt2 + 2Bdrdt + Cdr2. Note that this can
be written as:

τ(t, r) = −A(dt+Ddr)2 + 2(AD +B)(dT +Ddr)dr,

where C − AD2 − 2BD = 0. Now define a 1-form ω = dt + Ddr and let µ ̸= 0 be its
integral factor, i.e. µω = dv for some function v = v(r, t). We then have:

τ(v, r) = −(A/µ2)dv2 + 2
AD +B

µ
dvdr,

which was to be proven.

The metric −Adt2 + 2Bdrdt+Cdr2 will be Lorentzian when AC +B2 > 0 (i.e. when
it has a negative determinant) so Fdv2 + 2Xdvdr will be Lorentzian for X2 > 0, i.e.
X ̸= 0.
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Let us comment on the existence of integral factors. Let ω = Mdx + Ndy be some
general 1-form in two dimensions. We then have

dω =
∂M

∂y
dy ∧ dx+

∂N

∂x
dx ∧ dy=⇒dω =

(
∂N

dx
− ∂M

∂y

)
dx ∧ dy.

We therefore see that dω = 0 iff ∂M
∂y

= ∂N
∂x

. Note that every closed form (dω = 0) is

locally exact (ω = dh) because every sufficiently small neighborhood is diffeomorphic
to Rn, whose de Rham cohomologies all vanish (this is the so-called Poincaré lemma).
Therefore, on a sufficiently small neighborhood, we have ∂M

∂y
= ∂N

∂x
iff ω = dh for some

function h.
Finally, if ω is not closed, multiply by some integral factor µ. Then µω will be closed

iff ∂
∂x

(µN) = ∂
∂y

(µM) i.e. iff

∂yµM + µ∂yM = ∂xµN + µ∂xN⇐⇒(∂yµ)M − (∂xµ)N = µ(∂xN − ∂yM).

This is a linear partial differential equation (of 1st order) so it will always have a (local)
solution. There is a geometric proof of this fact (using the language of 1-jet bundles - see
Arnol’d [16]).

We conclude that one can always choose an integral factor µ ̸= 0 in such a way that
µω is closed (and therefore exact).

Proof of theorem 14. The proof is now relatively simple. Denote by f ′ = ∂rf the r deriva-
tive, by ḟ = ∂vf the v derivative and compute the Ricci tensor (using e.g. einsteinpy -
see appendix B).

• First note that Y can be taken as a coordinate. Indeed, the rr component of the
Ricci tensor is:

Rrr =
2

XY
(−XY ′′ +X ′Y ′) = 0.

This implies 0 = XY ′′−X′Y ′

X2 = (Y
′

X
)′, from which we conclude that either Y ′ = 0 or

X = ξ(v)Y ′ for some function ξ of v. If Y ′ = 0, then we can calculate Rθθ = 1, which
cannot satisfy the vacuum equations. Now from Y ′ ̸= 0 we get (locally) dY ̸= 0 so
by submersion theorem, Y = const are (locally) embedded manifolds, represented
as hyperplanes in the adapted coordinate system Y, x2, ...xn. As dY = Ẏ dv + Y ′dr
(and X = ξY ′), we have:

ds2 = (F − 2ξẎ )dv2 + ξdvdY + Y 2dΩ2

Setting F̃ = (F − 2ξẎ ) and dṽ = ξdv, we get:

ds2 = F̃ dv2 + 2dṽdY + Y 2dΩ2.

For convenience we rename the variables once more and write ds2 = Fdv2 +2dvdr+
r2dΩ2.

• We now compute the θθ component of the Ricci tensor. Note that X = 1 and Y = r
so Y ′ = 1, Y ′′ = Ẏ = 0. This gives

Rθθ = F + 1 + rF ′ = 0.
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Separating the variables in the equation F + 1 + rF ′ = 0 we get:

dF

F + 1
= −dr

r
.

Integrating we get ln(F + 1) = − ln r + C = ln(r−1) + C where C depends only on
v. Taking the exponential:

F = mr−1 − 1,

where m = eC > 0 depends only on v.

Therefore the metric is:

(mr−1 − 1)dv2 + 2dvdr + r2dΩ2

and we only need to show that m is constant.

• For this we compute the uu component of the Ricci tensor:

Ruu =
1

2
FF ′′ +

1

r
FF ′ +

1

r
Ḟ = 0.

Substituting F = mr−1 − 1 into the above expression we get (F ′ = −m
r2

, F ′′ = 2m
r3

):

0 =
1

r4
m2 − 1

r4
m2 +

ṁ

r2
=
ṁ

r2

and it is clear that ṁ = 0, i.e. m = const.

Birkhoff’s theorem is only a local result. Globally, one looks for extensions. Gener-
ally, an extension of a (connected) spacetime M is a (connected) spacetime M̃ for which
we can find an isometry i : M → M̃ and i(M) ̸= M . In other words, M can be iso-
metrically embedded as an open subset of M̃ (as dimensions of M and M̃ must be the
same, i is, in particular, a submersion and therefore an open map). One is most inter-
ested, of course, in maximal (or inextendible) spacetimes, namely those which do not
posses an extension. Let us note here that a given spacetime M may have many different
maximal extensions (so we cannot speak of the maximal extension)1. Birkhoff’s theorem
can now be stated much more eloquently: every spherically symmetric spacetime which
satisfies the vacuum equations is locally isometric to a piece of the maximally extended
Schwarzschild spacetime.

By extending the Schwarzschild spacetime to Eddington-Finkelstein coordinates, we
found that the apparent singularity at r = 2MG in the Schwarzschild metric disappears.
The singularity at r = 0, however, does not. Indeed, by calculating the tidal forces, we
see that they become infinite as r → 0. Alternatively, one can calculate the so-called
Kretschmann scalar K = RabcdRabcd = 48G2M2

r6
.

1Indeed, as a counterexample we can take R2 and the flat torus. Both are complete (and therefore
inextendible) as well as flat (so extend the same local geometry), but are not homeomorphic. One can
however prove that a simply connected analytic spacetime (under some condition on geodesics) has a
unique maximal analytic extension (see Chruściel [6] theorem 4.4.4). This is not terribly useful for e.g.
Kerr spacetime as it is not simply connected. Nevertheless one can prove (see Chruściel [6] theorem 7.3.3
and O’Neill [2]) the uniqueness of the maximal Kerr extension and, by extension, the uniqueness of the
maximal Schwarzschild extension - the Kruskal spacetime.
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2.2 Kerr Spacetime

We now discuss the 2-parameter family of spacetimes describing a rotating black hole.
This solution to the Einstein vacuum equations is also important because of the Hawking-
Carter-Robinson uniqueness theorem (see chapter 5). A lovely and thorough reference is
O’Neill [2].

The only reasonable place to start from is, of course, the metric:

ds2 = ρ2(
dr2

∆
+ dθ2) + (r2 + a2)sin2θdϕ2 − dt2 +

2mr

ρ2
(a sin2 θdϕ− dt)2, (2.2)

where we have defined ρ2 = r2 + a2 cos2 θ and ∆ = r2 − 2mr + a2. We should note
that ∆

r2
= 1 − 2m

r
+ a2

r2
generalizes the Schwarzschild horizon function r 7→ 1 − 2m

r
. The

parameter a can be interpreted as angular momentum (per unit mass). Then a = 0 means
simply that the black hole isn’t spinning (so we get the Schwarzschild metric). We also
mention that the electrovac solution to the uniqueness problem is the 3-parameter (m, a,
e) Kerr-Newman family of metrics. The metric has the same form, but we must take
∆ = r2 + a2 + e2 − 2mr. We don’t really expect to see black holes with large charge to
mass ratio e, though, since such a body would selectively attract particles of the opposite
charge. We may therefore neglect the electromagnetic contribution and assume e to be 0.

We can now define several regimes as determined by the roots of the function ∆:

1. a = 0, i.e. Schwarzschild spacetime, then ∆ has roots 0 and 2m.

2. 0 < a2 < m2, the slowly rotating Kerr spacetime, then ∆ has two roots 0 <
r± = m±

√
m2 − a2 < 2m.

3. a2 = m2, the extreme Kerr spacetime, then ∆ = (r − m)2 has only one root
r = m.

4. a2 > m2, the rapidly rotating Kerr spacetime, then ∆ has no roots.

We call {∆ = 0} the horizon. Therefore, in the fast rotating case there is no horizon, in
the extreme case there is only one, and in the slow case we get two. It turns out that
the exterior horizon is the event horizon and the interior one is a Cauchy horizon (which
we define in the next chapter). Roughly, the causal structure becomes quite pathological
beneath the Cauchy horizon. In a bit more detail, given an initial data outside the black
hole, one can predict the future up to the second horizon. We can analytically extend
the Kerr solution beyond the Cauchy horizon, but this extension is not unique among all
smooth extensions.

The Σ = {ρ = 0} can be shown to be a real singularity (not just a coordinate one as
with {∆ = 0}). Notice that the singularity is a ring or, more accurately, the set of all
points on the chart for which ρ = 0, has topology S1 × R (because ρ = 0 iff r = 0 and
cos θ = 0). This is to be contrasted with the Schwarzschild case where we get a single
point or rather a line R.

We now define the following regions (all of which are connected Lorentzian 4-manifolds):

1. For slow Kerr:

• I: r > r+
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• II: r− < r < r+

• III: r < r−

2. For extreme Kerr:

• I: r > m

• III: r < m

3. Fast Kerr has no horizon so can be regarded as a single region III = I homeomorphic
to (R2 × S2) \ Σ.

One can then, for instance, find a maximal analytic extension of Kerr spacetime by
gluing these regions in the appropriate way (in particular, the topology of the slow case
is most interesting and turns out to be a bundle - see [2]).

As a preparation for the next chapter, we now discuss causality in Kerr spacetime. We
shall say M is causal if there exist no timelike nor lightlike (i.e. no nonspacelike) curves
which are closed. If this condition is broken, then by traveling along such a (timelike)
curve, one can travel into the past, or (using lightlike curves) one could send signals into
the past. We first examine the exterior region I and region between the two horizons II:

Proposition 16
Blocks I and II are causal.

Proof. See proposition 2.4.6 in [2]. In fact, as we will mention later on, a more general
statement holds: these regions are globally hyperbolic (for proof see [54])

However, the region below the second horizon III is very pathological. Note that ∂ϕ
becomes timelike in region III near the singularity. Since the integral curves of ∂ϕ are
closed, this region is not causal. The set on which gϕϕ < 0 is usually called Carter time
machine.

In fact, causality fails in quite a spectacular manner:

Proposition 17
Block III is vicious, i.e. given any events p, q ∈ III, there exists a timelike curve in III
from p to q.

Proof. (for proof see proposition 2.4.7 in [2])

From the point of view of Einstein equations, such spacetimes are pathological, so
instead of worrying about time paradoxes, let us return to a physically meaningful dis-
cussion by explaining how one might extract energy from a Kerr black hole (or any black
hole with an ergoregion).

The idea is due to Penrose ([50]) and is known as the Penrose process. The region
S in blocks I and III where X = ∂t is spacelike is called the ergosphere. These form
enveloping zones around block II that becomes thinner at higher latitudes, leaving the
poles uncovered. The idea here is that it is impossible for a particle to follow the integral
curves of the field ∂t, i.e. to remain at rest when viewed from infinity. More precisely, it
is impossible for (approximately inertial) observers at infinity, which follow the timelike
integral curves of the Killing field X = ∂t, to synchronize their clocks with particles in
the ergosphere.
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We can now throw a particle from the infinity into the ergosphere. Since the particle
follows a geodesic and X is a Killing field, E = −pµXµ > 0 is a conserved along its
worldline, where p = mu is the 4-momentum (tangent to the worldline). Assume now
that the particle splits into two particles with momenta p1 and p2, where p = p1 + p2.
Since X is spacelike on the ergosphere, we can chose p1 to be a future-pointing timelike
vector such that E1 = −pµ1Xµ < 0. Then E2 = −pµ2Xµ must be greater than E. But this
means that the second particle can escape to infinity, where it will have more energy than
we gave the original particle, so we have effectively extracted energy from the black hole.

Lastly, we should mention that one can discuss relativistic jets and accretion disks
in the context of spinning black holes as described by the Kerr solution. This is an
interesting topic, which fits mostly in the domain of numerical simulations (and which
I do not intend to treat here). The usual approach treats the Kerr metric as a fixed
background on which some (charged) fluid is moving as prescribed by the equation of
motion ∇ · T = 0 and conservation of matter ∇ · (nu) = 0, where n is particle number
density and u 4-velocity of matter. In the simplest case, we can take the stress-energy
tensor Tµν to be the sum of a perfect fluid part T µν

PF = (ρ + p)uµuν + pgµν and an
electromagnetic part T µν

EMF
µαF ν

α − 1
4
gµνFαβFαβ. For more information on these kinds of

models see e.g. Gammie et al. [48] and [49].
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Chapter 3

Causality and Global Hyperbolicity

Causality theory was instrumental in proving certain theorems about black holes (see
chapter 4) and providing a language in which a general theory could then be devel-
oped systematically. It is therefore crucial that we introduce some elementary notions of
causality theory, of which the most important are: causal and chronological future/past,
causality conditions (causal, strongly causal and especially globally hyperbolic), achronal
sets, Cauchy surfaces, Cauchy developments and Cauchy horizons. As a main result, we
prove a characterization theorem for globally hyperbolic spacetimes.

3.1 Causality Conditions

Definition 18.

1. We write p≪ q if there exists a (future-pointing) timelike curve from p to q and say
that p and q are chronologically connected (they can be experienced in succession
by some observer). For a subset A ⊂M we write I+(A) = {q ∈M | (∃p ∈ A)(p≪
q)} and call I+(A) the chronological future of A.

2. Similarly, we write p < q if there exists a (future-pointing) causal curve (i.e. lightlike
or timelike) from p to q and say p and q are causally connected (an observer can
send a signal at event p that will be received by another observer at q thereby
influencing that observer). As usual we write p ≤ q to mean either p < q or p = q.
For a subset A ⊂ M we define J+(A) = {q ∈ M | (∃p ∈ A)(p ≤ q)}, which we call
the causal future of A.

We can, of course, completely analogously define chronological and causal pasts (de-
noted by I−(A) and J−(A) respectively). There are some reasonable restrictions one can
impose on chronology and causality on M :

Definition 19. We say that M satisfies the chronology condition if M contains no
closed timelike curves, so that an observer cannot return to his past. In particular, this
means that ≪ must be irreflexive (p ≪ q=⇒¬(q ≪ p)) so that (M,≪) is a partially
ordered set. Similarly, we say that M satisfies the causality condition (or is causal) if
there are no closed causal curves, so that an observer cannot signal anyone in the past.

It is interesting to note that compact spacetimes necessarily have closed timelike loops,
i.e. violate both the chronology and causality conditions. This is easy to see:
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Lemma 20
I+(p) are open.

Proof. Choose q ∈ I+(p). We show that q is contained in an open set, which itself is
contained in I+(p). We first take a timelike curve from p to q and follow it until we reach
a point r sufficiently close to q so that q is in a normal neighborhood of r. q can now be
reached by a timelike geodesic from r (a straight line from r to q in normal coordinates).
The exponential function at r, expr, sends a small open cone (focused around a line joining
q and r) with vertex at r (i.e. 0 ∈ TrM) diffeomorphically to an open set in M , which
contains q. This open set is contained in I+(p).

Proposition 21
Let M be a compact spacetime, then M is not causal.

Proof. {I+(p) | p ∈ M} is an open cover, which, by compactness, must have a finite
subcover I+(p1), ..., I

+(pn). We can assume that I+(p1) is not contained in any other
I+(pi) (otherwise we can just discard it and still have an open subcover) so no other
I+(pi) can contain p1 (for then we would have I+(p1) ⊂ I+(pi)). But now we must have
p1 ∈ I+(p1) and so there is a closed timelike loop from p1 back to p1.

One can impose some even stronger conditions on M :

Definition 22.

1. We say M satisfies the strong causality condition at p if given any neighborhood
U ⊂M of p, there is a neighborhood V ⊂ U of p such that no causal curve intersects
V more than once. In other words, any causal curve with endpoints in V lies in V .

2. We say M is stably causal if there exists a continuous nonvanishing timelike vector
field X such that the metric g −X♭ ⊗X♭ contains no closed timelike loops.

Intuitively, the strong causality condition is saying that causal curves which start
arbitrarily close to p and leave some neighborhood of p cannot return arbitrarily close to
p, i.e. there are no ”almost” closed timelike curves at p.

On the other hand, stably causal spacetimes are precisely those whose metric is causal
even after a small perturbation. To see this let g be a metric on M , p ∈ M and X
a timelike vector at p, whose dual is X♭ = g(X, ·). Define a new metric on TpM by
g̃ −X♭⊗X♭. The light cone of g̃ is strictly larger than the lightcone of g (every timelike
and null vector of g is a timelike vector of g̃). Therefore if we ”open up” the lightcone at
every point and still do not find a closed timelike curve, we have a stably causal spacetime.
There is an alternative characterization of stable causality, which we state, but will not
use (or provide proof of):

Proposition 23
M is stably causal iff there exists a globally defined continuous function f : M → R, which
is (strictly) increasing along every future-directed causal curve.

Proof. See Hawking & Ellis [3] (proposition 6.4.9)

We call such an f a global time function.
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3.2 Convex Sets

We should first note a couple of things. An open neighborhood C is called convex if it
is an a normal neighborhood of all of its points. So for any p ∈ C the exponential map
is a diffeomorphism from some open Up ⊂ TpM to C. It is well known that around any
p ∈M convex neighborhoods exist (see e.g. [14]).

It is useful to introduce the following notation: If γ is a geodesic from p = γ(0) and
γ(1) = q, then −→pq is a vector γ′(0) ∈ TpM . Define a map ∆ : C×C → TM, (p, q) → −→pq.
Note that it is the inverse of E : ∆(C×C) → C×C, v 7→ (π(v), exp(v)) = (p, expp(v)).
Since E is a diffeomorphism, ∆ is smooth.

Convex neighborhoods have particularly nice causal properties:

Lemma 24
Let C be a convex neighborhood and put I±C (p) = I±(p) ∩ C (similarly for J±

C (p)) then:

1. For p ̸= q in C, we have q ∈ J+
C (p) iff −→pq is a future-pointing causal vector. A

complete analogue holds for I+ (replacing the word ”causal” with ”chronological”).

2. Closure of I±C (p) in C is J±
C (p).

3. Causality relation ≤ is closed in C: if pn → p and qn → q (pn, qn, p, q ∈ C), then
qn ≤ pn (qn ∈ J+

C (pn)) holding for all n implies q ≤ p (q ∈ J+
C (p))

4. A causal curve in a compact subset of a convex neighborhood C is continuously
extendible.

Note that 1 shows C to be causal. If p ∈ J+
C (q) and q ∈ J+

C (p), then −→pq is both
past-pointing and future-pointing; a contradiction.

Proof.

• 1 follows because if q ∈ J+
C (p), then we can connect p and q with a geodesic starting

at p. This geodesic is generated by some unique −→pq ∈ T , which therefore must be
causal. Conversely, if −→pq ∈ T is a causal future-pointing vector, then it generates a
causal geodesic connecting p and q.

• 2 follows because the closure of I±(p) is indeed J±(p) in Minkowski space TpM . On
the other hand, exp is a diffomorphism and sends I±(p)∩U to I±C (p) and J±(p)∩U
to J±

C (p) (where U is the domain of expp on TpM).

• 3 follows from 1 and the fact that (p, q) 7→ −→pq is a continuous map (which therefore
must preserve limits).

• Finally, we prove 4. Let γ be a curve contained in a compact set K ⊂ C. We
assume γ is defined on [0, b), b ≤ ∞ and cannot be further extended. In particular,
given a sequence of points si → b and ti → b we cannot consistently assign a value
to b, i.e. limi γ(si) ̸= limi γ(ti). We now show this is false. First note that, since K
is compact, we can find a sequence si → b such that γ(si) converges to some p ∈ K.
Let now ti → b be a set of points converging to b with γ(ti) → q ̸= q. By 3, this
must mean that q ∈ J+

C (p) and p ∈ J+
C (q), which is impossible.
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Lemma 25
Generally, we have I+(J+(p)) = I+(p).

This means that, if we can reach r by first going from p to q via some causal curve,
followed by going from q to r via some chronological curve, then we can reach r from p by
a curve that is chronological all the way. We now see that J+(p) ⊂ I+(p). Indeed, take
q ∈ J+(p) and a sequence qn ∈ I+(q) converging to q; then qn ∈ I+(p) so q ∈ I+(p).

Proof. Let us thus consider the simplest (nontrivial) situation. We have a causal curve
from p to q (q ∈ J+(p)) lying inside a convex set V and then a chronological curve γ
from q to r (r ∈ I+(q)) also lying inside a convex set U . Now we go from r to q via
the (past-directed) chronological curve γ. We stop as soon as we are inside set V - at
some point γ(s) = x. Point q is in J+(p), but, at least inside convex neighborhoods, this
means that any neighborhood of q must intersect I+(p). In particular, I−(x) for some x
slightly in the future of q must intersect I+(p) and so we can go via some chronological
(past-directed) from r to x to, finally, p.

Generally, for r ∈ I+(q) and q ∈ J+(p), we take first a causal trip from p to q, then
a chronological one from q to r. Since the whole trip is some curve [a, b] → M , we may
(by compactness) cover this curve by finitely many convex neighborhoods U0 (around q),
U1 (around some p1 ∈ J−(q)), . . . , UN (around p). The argument then goes the same as
before: first take a chronological (past-directed) trip from r to q, but stop when you enter
U1 ∩ I+(p1) - this is event x1. Then take a chronological (past-directed) trip from x1 to
p2, but again stop after entering U2 ∩ I+(p2), and so on. Eventually we get to p via some
past-directed chronological trip.

An analogous argument shows that we also have J+(I+(p)) = I+(p). Intuitively, by
taking a causal path from p to q to r that starts as a timelike segment (from p to q), we
cannot reach any other event other than those already available to timelike paths from p
in the first place. In other words, that timelike segment ruins the whole path.

Note the following: if q ∈ J+(p) \ I+(p), then any causal curve connecting p with q is
a null geodesic. This certainly holds in convex neighborhoods 1, but now we may cover
the curve with finitely many convex nieghborhoods and conclude it is a null geodesic (up
to reparametrization).

3.3 Limits of Causal Paths: a Couple of Technical

Lemmata

We say q is an endpoint of curve γ if γ enters and stays inside every neighborhood of q.
More precisely, q is a future endpoint if for every open neighborhood U of q we can find
some t such that for s > t we have γ(s) ∈ U . A past endpoint is defined analogously.
γ is future (reps. past) inextendible if it has no future (resp. past) endpoint. An
inextendible curve γ : (a, b) → M is therefore one for which there exists no limit when t
goes to a or b (else one could extend the curve to include that limit as well).

We approximate a causal curve with some discrete points:

1Since we cannot reach q by a causal curve from points in I+(p) (because J+(I+(p)) = I+(p)), any
curve connecting p with q must lie on the light cone J+(p) \ I+(p). The light cone is a null hypersurface
so a causal curve lying on this hypersurface will be a null geodesic up to reparametrization.
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Definition 26. Let C be a covering of M with convex neighborhoods and γn a sequence
of future-directed causal curves in M . A limit sequence for γn relative to C is a (finite or
infinite) sequence of points p0 < p1 < p2 < . . . in M , which satisfy the following:

• For each pi we can find a subsequence γm, and for each m we can find numbers
t
(0)
m < t

(1)
m < · · · < t

(i)
m such that limm→∞ γm(t

(j)
m ) = pj for all j = 0, . . . i.

• For each j < i, the points pj, pj+1 and the segments γm|[t(j)m ,t
(j+1)
m ]

are contained in a

single Cj ∈ C

• If the sequence pi is infinite, it must not converge. If it is finite, it must have more
than one point and be maximal in the sense that no sequence that is strictly longer
should satisfy the previous two points.

Connecting points pi with geodesics we get the quasi-limit of γn. This is a broken
geodesic which can be treated as an approximate limit (the finer the convex covering, the
better the approximation).

Lemma 27
Let γn be a sequence of future-pointing causal curves which satisfy γn(0) → p, but γn do
not accumulate around p (there is a neighborhood of p which contains only finitely many
curves γn).

Proof. As M is paracompact, C has a locally finite refinement. In other words, we can find
a covering C ′ of M with open sets B (we can assume B is so small that B is compact), such
that each B is contained in some member of C and any point x ∈M has a neighborhood
which intersects only finitely many B ∈ C ′. The assumptions of this proposition guarantee
that C ′ contains (or can be made to contain) a B0 such that infinitely many curves γn
start in B0 and leave B0. Call these curves γ

(1)
n .

Let γ
(1)
n (tn) be points at which γ

(1)
n intersect ∂B0 for the first time. since ∂B0 is

compact, we may pass to a subsequence of γ
(1)
n (t

(1)
n ), which converges to some p1 ∈ ∂B0.

We now choose B1 ∈ C ′ containing p1. If again infinitely many γ
(1)
n leave B1, we repeat

the argument and find a subsequence γ
(2)
n whose earliest intersections with ∂B1 converge

to some point p2 ∈ ∂B1. We repeat this as many times as possible, but with the following
condition: if it possible to chose multiple elements of C ′ as Bi (i.e. multiple elements
contain pi), then pick the one which has been chosen the fewest times before.

In such a way we have obviously constructed a sequence of points pi such that
limm→∞ γm(t

(j)
m ) = pj and the segments γm|[t(j)m ,t

(j+1)
m ]

are contained in a single Cj ∈ C,

where Cj is any member of C that contains Bj. Since relation ≤ is closed on Ci (and

γ
(i)
n (t

(i)
n ) ≤ γ

(i+1)
n (t

(i+1)
n )), we have pi ≤ pi+1. But the construction guarantees pi ̸= pi+1,

so pi < pi+1.
If the sequence pi is infinite, we must show that it is not convergent. Assume to the

contrary that pi → q and pick a b ∈ C ′ containing q, then pi ∈ B for all but finitely many
i ≥ 0. Since B has compact closure and C ′ is locally finite, only finitely members of C ′

intersect B. Thus only finitely many members of C ′ cover the tail of the sequence pj, so
one set must have been chosen as Bi for infinitely many i. This is impossible because B
was the candidate infinitely many times but was chosen only finitely many times. Indeed,
because it contains the tail of the sequence pi, only finitely many can be in the ∂B.

If, on the other hand, the sequence is some finite set p = p0 < · · · < pk, then we
must show it is maximal, i.e. cannot be extended while satisfying the first two points in
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the definition of a limit sequence. In fact, this may not be the case, but the extension
can have at most one more point. Since the sequence ends after k steps, only a finite
number of curves γ

(k)
n leave Bk. Let γm be those curves trapped in Bk, then by lemma 24

they are extendible. We thus may assume γm are defined on [0, bm] (where γm(bm) is the
future endpoint of γm), but then we can find a subsequence for which γm(bm) converge
to some q ∈ Bk. If q = pk, then p = p0 < · · · < pk is maximal and if q ̸= p, then
p = p0 < . . . pk < q is maximal.

Lemma 28
Let K ⊂M be a compact set on which strong causality holds. If γ is a future-inextendible
causal curve starting in K, then γ eventually leaves K and doesn’t return. More precisely,
there exists s > 0 such that γ(t) /∈ K for all t ≥ s.

Proof. Aiming for a contradiction, let us assume that the conclusion is false. Then either
γ remains in K for all times, or leaves but persistently returns. Assume the domain of γ
is [0, b), where b ≤ ∞.

We thus conclude that there is a sequence of numbers ti ∈ [0, b) such that ti → b and
γ(ti) ∈ K. As K is compact, the sequence γ(ti) has a subsequence which converges to
some p ∈ K. As γ is future-inextendible, there must exist a sequence si → b such that
γ(si) does not converge to p (otherwise we would be able to extend γ to include b).

We can suppose that some neighborhood U of p contains no α(sj); take a subsequence
of sj if needed, which converges to some q ∈ K. Since both si and ti converge to b, we
can find subsequences that alternate: t1 < s1 < t2 < s2 < . . . . But now we see that the
curves γ|[ti,ti+1] must exit neighborhood U (to reach γ(si)) and return (to reach γ(ti+1)).
These curves are therefore almost closed at p, but this contradicts strong causality on
K.

Lemma 29
Let K ⊂M be a compact subset on which strong causality holds. Let γn be a sequence of
future-pointing causal curves in K for which γn(0) → p and γn(1) → q ̸= p. Then there
exists a future-pointing broken causal geodesic γ from p to q and a subsequence γm of γn
for which limm→∞ l(γn) ≤ l(γ).

Proof. By applying lemma 27 to sequence γn, we get a limit sequence pi starting at p.
Assume for the moment pi to be infinite, then the corresponding quasi-limit, the broken
geodesic γ, is a future inextendible causal curve starting at p. It thus must leave K never
to return. This means, in particular, that some pi is not in K, which implies that γn leave
K, which is contrary to the assumptions of the theorem.

Thus pi is a finite sequence, which starts at p and ends at q = limn γn. The quasi-
limit γ which passes through pi is thus a broken geodesic from p to q. Now restrict to a
particular convex set Ci, where the i-th segments of γn live. The length of these segments
are bounded by the separation vectors between the p

(i)
m = γm(t

(i)
m ) in Ci (because geodesics

give maximal length):

l(γn|[s(i)m ,s
(i+1)
m ]

) ≤ |
−−−−−→
p(i)m p

(i+1)
m |.

Summing over i we get:

l(γn) ≤ ln =
k∑

i=0

|
−−−−−→
p(i)m p

(i+1)
m |.
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Since −→pq depends continuously on (p, q), the norm |−→pq| does as well. Thus ln converges
to

∑k
i=0 |

−−−→pipi+1| = l(γ). Taking a subsequence if needed, we get the result.

So far, for a given convex covering, we have managed to find a set of points pi which
give a quasi-limit of some sequence of curves. It turns out one can even find a continuous
curve all of whose points behave as pi do.

To explain this, though, we must extend the notion of being causal or timelike to
continuous curves as well. We say a continuous curve γ is causal (resp. timelike), if any
two sufficiently close points on γ can be connected by a causal (resp. timelike) smooth
curve. More precisely, we say γ is future-directed causal (resp. timelike) if for any p ∈ Im γ
there exists an open neighborhood U of p such that if γ(t1), γ(t2) ∈ U and t1 < t2, then
there exists a future-directed causal (resp. timelike) smooth curve from γ(t1) to γ(t2).

Thus by allowing continuous curves we do not change our notion of causality (if there
exists a continuous causal curve between p and q, then there also exists a smooth one).

Definition 30. A point p is a limit point of γn if every open neighborhood of p intersects
infinitely many γn. We say γ is a limit curve of γn if each p ∈ γ is a limit point.

We now have:

Lemma 31
Let γn be a sequence of future-inextendible causal curves with limit point p. Then there
exists a causal future-inextendible limit curve γ passing through p.

In fact, from this proposition we get our previous one: Cover the limit curve by a finite
set of convex neighborhoods, then chose some set of points on the limit curve within each
one of those neighborhoods and connect them with geodesics; this gives a quasi-limit.

Proof. We follow Hawking & Ellis [3], but the argument is quite similar to the proof of
27.

Let C1 be a convex neighborhood around p with compact closure and Bq(r) ⊂ C1 a
ball (in normal coordinates at p) with radius r and center p. We chose some subsequence
γm converging to p and, as before, pick a further subsequence converging to some point
x11 ≥ p in ∂Bp(r).

We have thus found a limit point in the future of p as in the proof of lemma 27. Now,
we wish for an entire limit curve, rather than just a discrete set of points which may serve
as a quasi-limit. Here, instead of going farther into the future (as we did before), we must
build the limit points between p and x11.

Indeed, consider balls whose radii are rational multiples of r, i.e. Bp(ir/j), where
i, j ∈ N = {1, 2, 3 . . . } are relatively prime and i < j.
At each step (i, j) = (1, 2), (1, 3), (2, 3), (1, 4), (2, 4), (3, 4), . . . we extract a limit xij ∈
∂Bp(ir/j) of some subsequence γm. In the next step we extract a further sub-subsequence
and so on. We can therefore define a curve γ : [0, 1] ∩ Q → C1,

i
j
7→ xij. It is obvious

that for a, b ∈ [0, 1] ∩Q and a < b we have γ(a) ≤ γ(b), so the curve is causal.
Note that, by the above construction, γ is continuous. Finally, we can take the closure

of this curve γ : [0, 1] → C1: for x ∈ [0, 1] take some sequence of rational numbers ai → x
and set γ(x) = limi γ(ai). Continuity of γ guarantees that γ(x) does not depend on the
sequence ai chosen. It is also obvious that each point on γ is a limit point of γn.

We may continue now by choosing some C2 around x11 = p1 and doing the same
thing all over again. Continuing inductively for p2, p3 . . . we get a limit curve which is
inextendible.
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3.4 Achronal Sets

We start off with a couple of definitions:

Definition 32. We call a set A ⊂M achronal if p≪ q never holds for any p, q ∈ A, i.e.
if no two points in A are comparable in the relation ≪. Similarly, A is acausal if p < q
never holds for any p, q ∈ A.

We note here that the closure of an achronal set is achronal. If that were not the case,
we would have p, q ∈ A with p ≪ q, but then I−(q) is an open neighborhood of p and so
must intersect A - let x ∈ A ∩ I−(q). We now have q ∈ I+(x), but then I+(x) is an open
neighborhood around q, which intersects A, contradicting the achronality of A.

Definition 33. For (an achronal) A ⊂M we define the future Cauchy development
D+(A) as the set of all points p ∈ M such that every past inextendible causal curve
through p meets A. Similarly, define the past Cauchy development of A, D−(A).
Then D(A) = D+(A) ∪D−(A) is called simply the Cauchy development of A.

Intuitively, D+(A) is the part of causal future of A that is predictable from A (as no
past-inextendible causal curve can reach q ∈ D+(A) without first going through A).

Definition 34. For a (closed achronal) set A, the future Cauchy horizon is H+(A) =
D+(A) \ I−(D+(A)).

In other words, H+(A) contains precisely those p ∈ D+(A) for which I+(p) does not
meet D+(A), i.e. from which we cannot reach (via a timelike curve) any point predictable
from A. This separates D+(A) from the rest of J+(A). H−(A) is defined completely
analogously.

Note that for an open U , we have U ⊂ I−(U) (p ∈ U implies q ∈ I+(p) for some
q ∈ U ; we see this using normal neighborhoods). This means that the interior of D+(A)
does not intersect H+(A); in other words H+(A) is contained in ∂D+(A).

In fact, we shall see that H+(A) is more or less the boundary of D+(A) (excluding A
itself).

I−(A)

D+(A)

D−(A)

Figure 3.1: Cauchy development of some achronal set A (blue). Note that A is not acausal
(a piece of it is contained in the null cone)

Lemma 35
Let C ⊂ M be a closed set and γ a past-inextendible causal curve starting at p that does
not meet C (Im γ ∩ C = ∅). If q ∈ I+(p) ∩M \ C, then there exists a past-inextendible
timelike curve starting at q that does not meet C.
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Proof. We work inside the open set (submanifold) M \ C. The idea is to push γ slightly
into the future. As γ is past inextendible, we may take its domain to be (−∞, 0] and
that the sequence γ(n), n ∈ N does not converge. Put p0 = q. Since γ(t) is past directed
and p0 = q ∈ I+(p), we have γ(1) ≤ γ(0) ≪ p0, but we have seen that I+(J+(γ(1))) =
I+(γ(1)), so γ(1) ≪ p0.

We now find a point p1 between γ(1) and p0. Inductively, we find a sequence pn such
that γ(n) ≪ pn ≪ pn−1. We chose pn so close to γ(n) so that pn do not converge2.

Now we just connect the events pn to get a past inextendible timelike curve α in M \C
with α(0) = p0 = q.

Some authors (e.g. [32]) use timelike curves in the definition of D+(A). The following
result shows that (at least for closed sets) the two definitions are essentially equivalent:

Proposition 36
Let A be a closed achronal set. Then p ∈ D+(A) iff every past-inextendible timelike curve
from p passes through A.

Proof. Assume every past-inextendible timelike curve from q passes through A, then either
q ∈ I+(A) or p ∈ A. We must show that every open neighborhood of q intersects D+(A).
If q ∈ A ⊂ D+(A), there is nothing to prove, so assume q ∈ I+(A).

Let p ∈ I−(q) ∩ I+(A) and suppose p /∈ D+(A), i.e. suppose some past inextendible
causal curve γ starting at p does not meet A. Then lemma 35 gives us an inextendible
timelike curve through q that does not meet A. But this contradicts our assumption, so we
must have p ∈ D+(A). As every open neighborhood of q ∈ I+(A) intersects I−(q)∩I+(A),
we have that every open neighborhood if q intersects D+(A), i.e. q ∈ D+(A).

Conversely, let q ∈ D+(A). To arrive at a contradiction let us further assume that
there exists a past-inextendible timelike curve γ through q which does not meet A. We
then have q /∈ A and, as A is closed, q has a convex neighborhood C disjoint from A. We
now move from q in the past direction on γ to x ∈ C. Then I+C (x) contains q and some
point p ∈ D+(A) (q is assumed to be in the closure). Following a geodesic from p to x
and then curve γ, gives a past-inextendible timelike curve through p that does not meet
A (contradicting p ∈ D+(A)).

Proposition 37
If A is a closed achronal set, then H+(A) ∪ A = ∂D+(A)

Proof. We have seen that in general H+(A)∪A ⊂ ∂D+(A), so we only need to prove the
converse. If p ∈ ∂D+(A) \ A ⊂ D+(A), then the preceding proposition gives p ∈ I+(A).
If we assume p /∈ H+(A), i.e. p ∈ I−(D+(A)), then there is a point q ∈ I+(p) ∩D+(A).
This however means that I+(A) ∩ I−(q) is a neighborhood of p contained in D+(A),
contradicting the fact that p is a boundary point.

Definition 38. The edge of an achronal set A is the set of all points p ∈ A such that
every neighborhood U of p contains a timelike curve going from I−U (p) to I+U (p) that does
not meet A.

More precisely, for every neighborhood U of p there exist x ∈ I−U (p) and y ∈ I+U (p)
and a timelike curve γ from x to y contained in U that does not meet A.

2Choose a metric d on M and choose pn so as to satisfy d(pn, γ(n)) <
1
n .
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Let X be a topological manifold. Recall that S ⊂ X is a topological hypersurface if
around any p ∈ S we can find a neighborhood U in X and a homeomorphism ϕ from U
to an open set in Rn such that ϕ(U ∩ S) = ϕ(U) ∩ Π, where Π is a hyperplane in Rn.

Proposition 39
An achronal set A is a topological hypersurface iff A and the edge of A are disjoint (that
is A does not contain any of its edge points).

Proof. Let A be a topological hypersurface and p ∈ A. We show p cannot be an edge
point. Take a neighborhood U so small as to be connected and U \A has 2 components.
I±U (p) are open connected sets that do not meet A (as A is achronal), so they must be
contained in different components of U \A (this certainly holds if we take U to be convex,
by making it smaller if needed). This shows p cannot be an edge point, as any curve in
U must cross A going from one component to the other.

Conversely assume A contains none of its edge points. Take p ∈ A and take some
(smooth) coordinate system ϕ = (x0, x1, x2, x3) on U around p with ∂/∂x0 timelike and
future-pointing. We can now find (a possibly smaller) neighborhood V such that ϕ(V )
has the form (a − ε, b + ε) × N ⊂ R1 × R3 = R4, where {x0 = a} ∩ V is in I−U (p) and
{x0 = b} ∩ V is in I+U (p).

For a sufficiently small neighborhood U and y ∈ N , the x0 curve t 7→ ϕ−1(t, y) (t ∈
(a, b)) must meet A, as p is not an edge point. As A is achronal this meeting point must
be unique; we call its x0 coordinate f(y).

We shall show f : N → (a, b) is continuous; it then immediately follows that

(u0, u1, u2, u3) = ψ = (x0 − f(x1, x2, x3), x1, x2, x3)

is a homeomorphism which carries A∩V to {u0 = 0}∩ψ(V ) ⊂ R4. Thus, A is a topological
surface.

Let yn → y, it is sufficient to prove f(yn) → f(y). Assume to the contrary, f(yn) does
not converge to f(y), then some subsequence f(y′m) converges to some r ̸= f(y) (values of
f are bounded). We now see that either time r is (strictly) bigger than f(y), or (strictly)
smaller. In other words, ϕ−1(y, r) is either in the (chronological) future of q = ϕ−1(y, f(y))
or in the past, so ϕ−1(y, r) lands in the open set I−V (q)∪ I+V (q). Therefore, the same must
be true for some ϕ−1(ym, f(ym)) ∈ A, contradicting the achronality of A.

In fact, f , i.e. the time coordinate of y, is actually a Lipschitz continuous map of
x1, x2, x3, since no two points on A have a timelike separation. Indeed, for any x = (x0,−→x )
and y = (y0,−→y ) on A, x must lie outside the lightcone of y, so the Minkowski norm is
−|x0 − y0|2 + |−→x −−→y |2 ≥ 0, i.e. |x0 − y0| ≤ |−→x −−→y |, where the norm on the right is 3D
euclidean.

Corollary 40
An achronal set A is a closed topological hypersurface iff the edge of A is empty.

Proof. If A is a closed hypersurface, then by the preceding proposition A and the edge of
A are disjoint, but A ⊂ A = A, so the edge is actually empty.

Suppose conversely that the edge is empty, then A is a topological hypersurface by
the preceding proposition. We only need to show A is closed, and this follows from the
fact that all boundary points in A \ A must be edge points. Indeed, as A is achronal, if
q ∈ A \ A, then no timelike curve through q can meet A.

We call F ⊂ M a future set if I+(F ) ⊂ F . For example, J+(S) is a future set for
any S ⊂M . If F is a future set, then M \ F is a past set (I−(M \ F ) ⊂M \ F ).
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Corollary 41
Boundary of a future set F is a closed achronal topological surface.

Thus, in particular, ∂J±(S) = ∂I±(S) is a topological surface.

Proof. Take p ∈ ∂F . If q ∈ I+(p), then I−(q) is an open neighborhood of p so must
contain some point in F . Thus, q ∈ I+(F ) ⊂ F , from which we conclude I+(p) ⊂ F and
by a completely analogous argument, we also get I−(p) ⊂ M \ F . We thus see I+(∂F )
and I−(∂F ) are disjoint, so ∂F must be achronal. We also see that ∂F must have empty
edge, since I+(p) (as an open set) is actually contained in the interior of F , and I−(p) in
the exterior of F . The result thus follows from the previous corollary.

3.5 Cauchy Surfaces

Definition 42 (Cauchy surface). A Cauchy surface is a subset S ⊂ M that is met
exactly once by every maximally extended (i.e. inextendable) timelike curve in M .

Example 43.

1. A most trivial example one can immediately think of is any spacelike plane in
Minkowski space.

2. In Schwarzschild spacetime as well, one can immediately (in the exterior solution)
see that taking the t = 0 slice gives a Cauchy surface. However, it is not entirely
clear that one can find a surface spanning the interior as well. One sees that this
is the case by considering the maximally extended Kruskal spacetime and taking a
t = 0 slice ([32]).

3. In Kerr region I, again the t = const are Cauchy surfaces; However, here it is even
less obvious that there is a Cauchy surface for the region I ∪ II. For a construction
see [54] proposition C.11. By considering the Cauchy development of such a Cauchy
surface, we see that the interior horizon is a Cauchy horizon.

Proposition 44
Cauchy surface S (if it exists) must be a closed achronal topological hypersurface (a 3-
manifold) and, in fact, it is met by every inextendible causal curve.

Proof. Immediately from definition we have that S must be achronal and that M must
be the disjoint union of I+(S), S and I−(S). A timelike curve passing through S must
intersect both I+(S) and I−(S), so S is the common boundary of the future sets I+(S)
and I−(S). At this point corollary 41 guarantees that S is a topological hypersurface.

Now, we only need to show that S is met by every inextendible causal curve γ. Assume
to the contrary, γ does not meet S. Then either γ(0) ∈ I+(S) or γ(0) ∈ I−(M) - we
assume γ(0) ∈ I+(S). Lemma 35 now gives a past-inextendible curve α starting in I+(S)
that does not meet S; a contradiction.

Note that an achronal set S is a Cauchy surface iff D(S) = M . Thus, one can think
of D(A) as the largest subset for which A plays the role of a Cauchy surface.

Proposition 45
Any two Cauchy surfaces (if they exist) must be homeomorphic. Additionally, any Cauchy
surface of a connected spacetime M is itself connected.
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Proof. Since we assume M to be time orientable, let X be a global (nowhere vanishing)
timelike vector field on M 3. Then a maximal integral curve through p ∈ M of X meets
S at a unique point ψ(p). We claim ψ : M → S is a continuous surjective open mapping
leaving S fixed. Indeed, maximal integral curves of X must be inextendible. Let now
φ : D → M be the (maximally extended) flow of X. D is an open set in M × R and S
is a hypersurface in M , so DS = (S × R) ∩ D must be a topological hypersurface in D .
If we now restrict φ to φS : DS → M , then φS must be continuous and bijective (S is a
Cauchy surface after all).

A continuous bijection need not have a continuous inverse, but recall the following
famous result of Brouwer’s: if U ⊂ Rn is an open subset, f : U → Rn an injective
continuous map, then V = f(U) is open, and f a homeomorphism between U and V .

Since, φS is a mapping between two manifolds of the same dimension, we may apply
the above result locally and conclude that φS has a continuous inverse, i.e. is a homeo-
morphism between DS and M . Note that ψ(φS(p, t)) = ψ(γp(t)) = γp(0) = p, where γp is
the integral curve of X through p ∈ S. This shows ψ◦φS = π, where π : S×R → S is the
projection mapping. As π is open, continuous and surjective, ψ = π ◦ φ−1

S : M → S is as
well. Clearly ψ(S) = S so S is fixed under ψ. In other words, ψ is a retraction mapping
from the manifold M onto S.

In particular, if M is connected, the Cauchy surface must be as well. Finally, let S
and Σ be two Cauchy surfaces in M . Then the restrictions ψS|Σ and ψΣ|S are obviously
mutual inverses.

3.6 Globally Hyperbolic Spacetime

Definition 46. If strong causality condition holds onM and each causal diamond J(p, q) =
J+(p) ∩ J−(q) is compact, we say M is globally hyperbolic.

Note that J(p, q) contains all causal curves from p to q. Roughly speaking, the com-
pactness of the causal diamonds J(p, q) then guarantees that no naked singularities can
occur (otherwise a ”visible hole” in spacetime would make J(p, q) noncompact as one can
take a sequence of points in J(p, q) ”converging” to the singularity; such a sequence does
not have a limit point in J(p, q)).

Later we shall see alternative characterizations of global hyperbolicity, but this seems
to be the most popular definition and is the one given in O’Neill [1], Hawking & Ellis [3]
and Chruściel [6].

In fact, we can replace strongly causal by causal (or even distinguishing) as shown by
Bernal and Sánchez in [24]. That it has taken so long to realize this, what amounts to
essentially an elementary result, is quite surprising. We therefore give a proof here:

Lemma 47

3We should note the following: if M has a nowhere vanishing globally defined vector field X, then
there exists a time-orientable Lorentzian metric on M (i.e. a metric which admits a nonvanishing globally
defined timelike vector field). Indeed, g − X♭ ⊗ X♭ is again a Lorentzian metric, but in this metric X
becomes timelike.
On the other hand, if M admits a Lorentzian metric, it must have a nonvanishing (globally defined)

vector field. Topologically, M has a global nonvanishing vector field iff M is noncompact or M is compact
and has Euler characteristic 0. On the other hand this is precisely the obstruction for the existence of a
Lorentzian metric (see [1]). Thus, there is no additional obstruction for the existence of a time-orientable
Lorentzian metric.
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If all causal diamonds J(p, q) = J+(p) ∩ J−(q) are compact, then J±(p) must be closed
for all p.

Note that, when the conclusion of this lemma is satisfied, we have J±(p) = I±(p).

Proof. Suppose to the contrary, J+(p) is not closed, then one can find a sequence xn ∈
J+(p) converging to a point x ∈ J+(p) \ J+(p). Take some q ∈ I+(x), then I−(q) is an
open neighborhood of x. Therefore, for sufficiently large n, we have xn ∈ J+(p)∩ I−(q) ⊂
J+(p) ∩ J−(q). As J+(p) ∩ J−(q) is compact, the limit of xn, namely x, should be in
J+(p) ∩ J−(q), but this is not the case as per our choice of x - a contradiction.

Proposition 48
Let M be a spacetime in which all causal diamonds J(p, q) = J+(p) ∩ J−(q) are compact
(when nonempty). Then the following are equivalent:

1. M is distinguishing, i.e. I±(q) ̸= I±(p) for any p ̸= q.

2. M is causal.

3. M is strongly causal.

Proof. Following [6], we divide the proof into 3 statements:

• First note that any distinguishing spacetime is causal.

If M were not causal, then we have some closed causal future-directed curve γ. We
now take p and q to be two distinct points on this curve. If x ∈ I+(p), then we can
ride γ from q to p and then some timelike curve from p to x. We therefore have
I+(p) ⊂ I+(q). The other inclusion follows by a completely analogous argument, so
we get I+(q) = I+(p) and M cannot be distinguishing.

• If all causal diamonds J(p, q) = J+(p) ∩ J−(q) are compact and M is causal, then
M must be distinguishing.

If M were not distinguishing, then there would exist two points p ̸= q with I+(p) =
I+(q). This then gives q ∈ I+(q) = I+(p) = J+(p) (where the last equality follows
from the fact that J+(p) ⊂ I+(p); the other inclusion is trivial ). Now q ∈ J+(p) =
J+(p) as J+(p) are closed. By a completely symmetric argument we have p ∈ J+(q)
as well and, since p ̸= q, M is not causal.

• Causal spacetime in which all J±(p) are closed must be strongly causal.

We prove the contrapositive. Suppose that there is a point p at which strong causal-
ity is violated. Let C be a convex neighborhood around p. For any open U ⊂ C
around p, we can therefore find a future-directed causal curve γ intersecting U more
than once.

Note that this curve must exit C, i.e. it cannot turn around inside C. Indeed, C
has a very nice causal structure, given by normal coordinates, which foliate C. If
we only allow curves that completely lie inside of C, then C is strongly causal. This
means that the curve γ cannot intersect U more than once, but at the same time
remain in C.

We may therefore construct a sequence of curves γi each of which exits C at some
qi ∈ ∂C, enters C again and ends at some point pi near p, where pi → p. Taking
some subsequence, we can assume that qi → q ∈ ∂C.
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Taking the limit of some subsequence of γi, we get a continuous causal curve from
p to q. We thus have q ∈ J+(p).

Take some sequence xn ∈ I−(q) (i.e. q ∈ I+(xn)) converging to q. We now construct
a future-directed causal curve going from xn to pi by following some timelike curve
from xn to qi (for i large enough this is possible since qi are near q and so will
eventually be in I+(xn)) and then γi from qi to pi. We now see that pi ∈ J+(xn)
(for i large enough). Since J+(xn) is closed, we get p ∈ J+(xn) (pi → p). In other
words, we have xn ∈ J−(p) and as J−(p) is closed as well, we have q ∈ J−(p)
(xn → q).

Finally, note that obviously q ̸= p because p is in the interior of C (and q is in the
boundary) and, since q ∈ J+(p) ∩ J−(p), M cannot be causal.

It has only recently been shown by Hounnonkpe and Minguzzi in [26] that, for non-
compact spacetimes (which in any case cannot be causal) of dimension > 2, we can even
drop the causality condition. The proof of this fact is also given in Chruściel [6].

The crucial fact about globally hyperbolic spacetimes is that they are foliated by
Cauchy surfaces:

Theorem 49 (Geroch)
A globally hyperbolic spacetime M must have a Cauchy surface. If fact, it must have a
globally defined time function, whose level sets are Cauchy surfaces.

We should note here that if M admits a global time function, then M admits a smooth
global time function (see Bernal and Sánchez [23] or [25]). Of course, a smooth f will be
increasing along causal curves iff its gradient ∇f is a past-directed timelike vector field.

Proof. As the proof uses some analytic machinery (involving measure theory), we relegate
this to appendix B.

Let C(p, q) be the space of all continuous future-directed causal curves from p to q.
We endow C(p, q) with the following topology. Every sufficiently small neighborhood in
C(p, q) will contain precisely those curves that are sufficiently close in M . More rigorously,
for an open U ⊂ M we define sets OU = {α ∈ C(p, q) | Imα ⊂ U}. It is now clear that
OU ∩OV = OU∩V so these sets are a topological base (an open set is a union of OU).

Note that, as M is second-countable, C(p, q) is as well. Indeed, we can find a countable
basis for C(p, q) by finding a countable basis Ui for M and just taking OUi

.

Proposition 50
Assume M has a Cauchy surface S, then C(p, q) is compact.

Proof. Since C(p, q) is second-countable, it is sufficient to show that an infinite set of
points must have a limit point in C(p, q)4.

Considering the topology on C(p, q), we can use the lemma 31 for this purpose.

4Take a second-countable topological space X and a cover Ui of X. We can immediately see that
second-countability allows us to take a countable subcover. Now if every infinite set of X has a limit
point, we can actually take a finite subcover. Indeed, suppose this is not the case and consider the rising
open sets Vn =

⋃n
i Ui. As there is no finite subcover X \ Vn are nonempty so we may choose countably

many points xn ∈ X \ Vn. As the set {xn} has a limit point x, we have that Vn for a sufficiently large
n ≥ N must contain x and therefore all xn, n ≥ N ; a contradiction.
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First consider the case p, q ∈ D−(S) (where p and q are in the past to the Cauchy
surface S). Let γi be a sequence in C(p, q). If we now remove point q from M , we find
that γi are inextendible curves in M \ {q} starting at p, so they have a limiting curve γ -
this curve is inextendible in M \ {q} as well. Since no curve γ enters the open set I+(S),
γ doesn’t either. Note that γ cannot remain inextendible when we put the point q back.
Indeed, since M has a Cauchy surface, an inextendible curve must intersect S and enter
I+(S). Therefore, we may take the point q to be an endpoint of the curve γ. We thus get
the desired limit point and C(p, q) is compact.

By a completely analogous argument we get the same result when p, q ∈ D+(S).

Finally, the only remaining case is p ∈ D−(S) and q ∈ I+(S) (p and q are on opposite
sides of the Cauchy surface). Take again a sequence of curves γn in C(p, q). An identical
argument to one before gives us a limit curve γ starting at p and going through S into
I+(S) (though not necessarily ending at q). Choose a point x ∈ Im γ ∩ I+(S) and take a
subsequence γ̃m so that points on γ between p and x are convergence points. This gives
us one half of the desired curve.

To get the other half, invert the argument: consider the sequence of past-inextendible
curves γ̃m in M \ {p} starting at q. Same as before, we get a limit curve γ̃ starting at
q and entering I−(S). Since x was is convergence point of subsequence γ̃m, we find that
γ̃ must pass through x. Thus, by following γ from p to x and γ̃ from x to q, we get the
desired limit curve from p to q.

Proposition 51
If C(p, q) is compact, then J+(p) ∩ J−(q) is as well.

Proof. We need to prove J+(p) ∩ J−(q) is compact. To do this, it is sufficient to show
that any infinite set of points xn ∈ J+(p) ∩ J−(q) has a limit point in J+(p) ∩ J−(q). It
is obvious how to proceed.

Take a sequence of causal curves γn from p to q such that each γn passes through xn.
Since C(p, q) is compact, we get a subsequence γ̃m converging to some continuous causal
γ ∈ C(p, q). Since Im γ is compact, we can cover it with finitely many neighborhoods Bi

with compact closure (take some small open coordinate balls, then Bi is compact) and
taking the union of Bi we find an neighborhood U of Im γ with compact closure.

From the definition of topology on C(p, q), it follows that Im γi ∈ U for infinitely many
i ∈ I ⊂ N. Since xi ∈ Im γi we get an infinite set of points {xi}i∈I contained in U . This
set of points must therefore have a limit point in U , which is also a limit point of the
original set {xn}n∈N.

Note that if M has a Cauchy surface, then M is causal. Indeed, if we have some
closed timelike curve, it can be extended by repeatedly going around, but now this is
an inextendible curve and it must therefore intersect each Cauchy surface precisely once.
This is of course a contradiction, since the curve is closed.

We can summarize these results as follows:

Theorem 52 (Characterization of Global Hyperbolicity)
Let M be a spacetime. Then the following are equivalent:

1. M is globally hyperbolic.

2. M has a Cauchy surface (this is the definition in Wald [4]).
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3. M is stably causal and level sets of its time function are Cauchy surfaces. (this is
more-or-less the definition in Godinho and Natário [7]).

4. M is (strongly) causal and C(p, q) is compact (this seems to be the original definition
by Leray).
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Chapter 4

Theorems of Penrose and Hawking

One might expect that the unusual breakdown of the metric and curvature at r = 0 in
the Schwarzschild solution is somehow due to high degree of symmetry. A similar thing
also happens in the highly symmetric FRW spacetime. Celebrated theorems of Penrose
and Hawking tell us that this situation is in some sense actually generic.

In proving these results, the outline we follow is roughly that of Godinho and Natário
[7]. The central definition is the following:

Definition 53. A spacetime M is called singular if it is not geodesically complete, i.e.
there exist maximally extended geodesics γ : I →M defined on some open interval I ̸= R
(allowed to be infinite).

Intuitively, a singular spacetime has a point beyond which no timelike or lightlike
curve can be continued (e.g. r = 0 in Schwarzschild coordinates). Though, this ”point”
(the singularity) is not a part of spacetime so the only way one can test for its presence
is to trace out maximally extended geodesics and see if any of them ends abruptly.

Note that we do not mention ”curvature blowing up”, or ”matter density becoming
infinite”. Certainly, if the curvature blows up, one cannot extend the geodesics past that
point, but this behavior is not necessary for a singularity to occur. It is this definition of
singularity that is used when proving the singularity theorems.

4.1 Geodesic Congruence

We shall give conditions under which singularities will arise, but to do that we first must
discuss geodesic congruence.

Let γ be a timelike geodesic so that the metric is positive definite on the instantaneous
rest space γ̇⊥. Geodesic deviation (or Jacobi) equation states that J̈ = R(γ̇, J)γ̇ = Fγ̇J ,
where we define the tidal force operator:

Fγ̇ : γ̇⊥ → γ̇⊥, J 7→ R(γ̇, J)γ̇

We also define Bγ̇ : γ̇⊥ → γ̇⊥, J 7→ ∇J γ̇, which is valid along γ. Note that, if we put
N = γ̇ for the normal vector to the space on which B is defined, then B : X 7→ ∇XN . In
a local frame B is simply Bi

j = (∇∂j γ̇)i. We then have Bγ̇J = ∇J γ̇ = ∇γ̇J = J̇ .
By simply substituting B into the the geodesic deviation equation we get

Fγ̇J = (Bγ̇J)′ = Ḃγ̇J +Bγ̇J̇ = Ḃγ̇J +B2
γ̇J.
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From this it follows that (on γ̇⊥):

Ḃγ̇ +B2
γ̇ = Fγ̇.

Taking the trace we get the Raychadhuri equation.

To get an explicit expression, split the tensor B = Bγ̇ according to symmetries (i.e.
irreducible representations) of SO(3) - that is to say, the symmetries of the positive
definite metric on γ̇⊥:

B =
1

2
(B −BT )︸ ︷︷ ︸

ω

+

[
1

2
(B +BT ) − 1

3
(trB)I

]
︸ ︷︷ ︸

σ

+
1

3
(trB)I︸ ︷︷ ︸

1
3
θI

= ω + σ +
1

3
θI.

Here ω is the antisymmetric part of B, σ is the trace-free symmetric part, and θ is the
trace.

Taking the trace, it is not too difficult to show that:

θ̇ = trωωT − trσσT − 1

3
θ2 − Ric(γ̇, γ̇).

As we generally have trXXT = XijX
ij ≥ 0, in index notation the formula becomes:

θ̇ = ωijω
ij − σijσ

ij − 1

3
θ2 −Rij γ̇

iγ̇j. (4.1)

We now give an intuitive interpretation of B and its trace θ. Recall that for a sub-
manifold S ⊂ M we can decompose the connection as ∇XY = (∇XY )∥ + (∇XY )⊥. The
second fundamental form is then defined by II(X, Y ) = (∇XY )⊥ for any X and Y tan-
gent to S. If S is a hypersurface with the (unique up to orientation) unit normal vector
field N , then we can define a symmetric 2-tensor containing precisely all the information
of the 2. fundamental form K(X, Y ) = −⟨II(X, Y )|N⟩. For a hypersurface, we therefore
do not distinguish between the two and simply call K the second fundamental form (or
extrinsic curvature). Let us note that most mathematicians take K to have the opposite
sign (e.g. O’Neill [1]); for some reason our convention seems to be prevalent in the physics
community (Wald [4], Hawking & Ellis [3], Sean Carroll [19], Baez and Muniain [20]). The
associated linear operator L of K is defined by ⟨LX|Y ⟩ = K(X, Y ) (raise one index) and
called the shape operator. In fact, one can show the Weingarten formula L(X) = ∇XN .

Let S be a spacelike hypersurface in M orthogonal to some congruence (i.e. family)
of geodesics. Let K be its extrinsic curvature (the second fundamental form). We then
have Kµν = ∇µNν , where N is the normal unit vector field on S (N is therefore tangent
to the congruence of geodesics). Now it is clear that Kµν is simply the tensor B for this
congruence, so its trace is θ. Note that K must be symmetric (i.e. ω = 0) as the second
fundamental form is symmetric (an easy consequence of zero torsion). One could also
argue that, since the congruence is orthogonal to some surface, it must be irrotational by
the Frobenius integrability condition.

Note that K can be written as a Lie derivative. Indeed as already mentioned, for a
Levi-Civita connection we have:

LNg(X, Y ) = g(∇XN, Y ) + g(∇YN,X) = K(X, Y ) +K(Y,X) = 2K(X, Y ),
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so we see that:

K =
1

2
LNg.

Now, if h is the metric on S, then h and g agree on all vectors tangent to S. Also, K is
only defined on vectors tangent to S so we have K = 1

2
LNh.

We now simplify this expression even further by a convenient choice of coordinates

Definition 54. Let S ⊂ M be a spacelike hypersurface and denote by NpS = TpS
⊥ the

orthogonal complement of TpS in M . Let exp : D ⊂ TM → M be the exponential map
of M (mapping each v ∈ D to cv(1), where cv is the geodesic with initial velocity v).
We may now restrict exp to the normal bundle NS =

⋃
p∈S NpS of S to get the normal

exponential map exp : U ⊂ NS → M (U = D ∩ NS) which traces out (timelike)
geodesics normal to S.

Definition 55 (Conjugate points). Let v ∈ U be in the domain of the normal exponential
map exp and let q = exp(v) ∈M . We say q is conjugate to S (or a focal point of S) if
v is a critical point of exp, i.e. exp is not of full rank at v.

Intuitively, the exponential maps a family of vectors orthogonal to S to a congruence
of geodesics covering some open neighborhood of M . When we go too far out, however,
the geodesics can converge and exp will then no longer have full rank (the image will
become lower dimensional). One can show that q will be conjugate to S iff one can find
a nonzero Jacobi field along a geodesic connecting S to q, vanishing at both q and S.

Let S be a spacelike hypersurface and φ = (x1, x2, x3) be coordinates in some neigh-
borhood U ⊂ S. Now take a unit normal vector field N on that neighborhood (providing
U with orientation in the process) - generally one would take a basis to NpS at each point
p ∈ U . This gives us coordinates on NS, defined by (t, x1, x2, x3) 7→ (x, tNx).

Assuming that (p ∈ S) q = expp(t0Np) is not conjugate to S, we may then construct
the so-called synchronized coordinates in some neighborhood V of q in the following
manner. First, as q is not conjugate, exp will be a diffeomorphism on V ≃ Ṽ ⊂ NS if we
take V to be small enough. Now it is clear that one can transfer the coordinate system
on NS to M via the exp map.

Intuitively, each r ∈ V lies on some geodesic r = expx(tNx) and the coordinates of r
are (t, x1, x2, x3), where (x1, x2, x3) are coordinates of x on S.

We should note that the metric splits in these coordinates. First, on S we certainly
have g0i = 0 as in these coordinates ∂/∂t is normal to S. On the other hand:

∂tg0i = ∂t⟨∂t|∂i⟩ = ⟨∂t|∇t∂i⟩ = ⟨∂t|∇i∂t⟩ =
1

2
∂i⟨∂t|∂t⟩ = 0,

where we have used the fact that torsion vanishes as well that coordinate vector fields
commute. We conclude that surfaces of constant t remain orthogonal to the geodesics
and the metric must be of the form g = −dt⊗ dt+ h.

In synchronized coordinates B is the extrinsic curvature for each surface of constant
t (in particular for t = 0 it is the extrinsic curvature K of S). Now the formula for B
simply becomes B = 1

2
L∂th = 1

2
∂th.

Finally, it is clear that

θ = trB =
1

2
hij∂thij =

1

2
tr((hij)

−1∂t(hij)) =
1

2
∂t log(dethij) = ∂t log(

√
dethij),
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where we have used the fact that for any curve A : R → GL(n) the following holds:
tr(A−1A′) = (log(detA))′ 1. This shows that the expansion gives the variation of the
3-volume element as measured by synchronized observers.

In particular, when the determinant dethij vanishes (i.e. the expansion θ blows up),
the synchronous coordinate system breaks down (i.e. ∂t, ∂1, ∂2, ∂3 fail to be linearly inde-
pendent) in which case we must have a conjugate point.

4.2 Time Separation Function

For a causal curve γ : [a, b] → M , denote by l(γ) =
∫ a

b
|γ′(t)|dt its length. Define the

time separation of two points p, q ∈M by

τ(p, q) = sup{l(γ) | γ is a future-pointing causal curve from p to q}.

Here if q /∈ J+(p) (i.e. p ̸≤ q), we set τ(p, q) = 0 2. Then one has the following result:

Proposition 56
Assume that p < q and that the set J(p, q) = J+(p) ∩ J−(q) is compact. Assume further
that strong causality holds on J(p, q), then there is a causal geodesic of length τ(p, q)
connecting p and q.

Proof. By definition of supremum, we can find future-directed causal curves γn from p to
q, whose lengths converge to τ(p, q). These curves are all in J(p, q), so by 29 we can find
a broken geodesic α from p to q with length l(α) ≥ limn→∞ l(γn) = τ(p, q). Since τ(p, q)
is supremum, we actually have l(α) = τ(p, q). Therefore, τ(p, q) is finite.

We now show that the breaks on the geodesic must all be trivial. Indeed, first note
that on each smooth segment we have consistently either a timelike or a null geodesic. A
break cannot go from timelike to null for it would shorten the length of the total curve
(this certainly holds on convex neighborhoods). Therefore, either p and q cannot be
connected by a timelike curve or p and q can be connected by a timelike broken geodesic.
In the former case we have seen that the only curve connecting p and q is a null geodesic,
and in the latter case the first variation formula (see the next section) gives the desired
result.

Lemma 57
τ : M ×M → [0,∞] is lower semi-continuous.

Proof. For q /∈ I+(p), we have τ(p, q) = 0, and there is nothing to prove. We therefore
assume τ(p, q) > 0 and q ∈ I+(p). Given a ε > 0 we must find open neighborhoods U of
p and V of q such that for all p′ ∈ U and q′ ∈ V we have τ(p′, q′) > τ(p, q) − ε. Take a
timelike curve γ from p to q with l(γ) > τ(p, q)− ε. Let C be a convex neighborhood of q
and take x to be a point on γ slightly to the past of q in C. Since the length of geodesic
segments depends continuously on its endpoints, we can find a neighborhood V of q such
that, for any q′ ∈ V , the segment x → q′ is causal (we can take V so small as to satisfy

1Indeed, the derivative of determinant at X in direction Y is (ddet)X(Y ) = detX tr(X−1Y )).
Therefore, a curve going through A with velocity A′ will have d

dt detA(t) = detA tr(A−1A′), i.e.
(log(detA))′ = 1

detA (detA)′ = tr(A−1A′).
2One should note that, precisely because we incorporate time orientation, τ will be symmetric only in

trivial instances.
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V ⊂ I+(x)) and strictly longer than l(x→ q)− ε. Since the segment x→ q is a geodesic,
it must be at least as long as the segment of curve γ going from x to q.

We now do the same thing at the endpoint p, which gives a neighborhood U such that
any p′ ∈ U and q′ ∈ V can be joined by a causal curve of length l > l(γ)−2ε > τ(p, q)−3ε.
Since ε is arbitrary, this gives the desired result.

If by any chance we have τ(p, q) = ∞, the same argument actually shows that for
any M > 0, we get neighborhoods U and V such that τ(p′, q′) > M for any p′ ∈ U and
q′ ∈ V .

In fact, when M is globally hyperbolic, we get a stronger result:

Lemma 58
τ is continuous on M ×M for a globally hyperbolic spacetime M .

Proof. The previous result shows lower semi-continuity and we also know τ(p, q) is finite
in globally hyperbolic spaces. We therefore only need to show upper semi-continuity, i.e.
for any (p, q) ∈ M ×M and ε > 0 there exist an open neighborhoods U × V such that
for any (p′, q′) ∈ U × V we have τ(p′, q′) < τ(p, q) + ε. We assume to the contrary that τ
is not upper semi-continuous at some (p, q) ∈ M ×M . We can therefore find ε > 0 and
sequences pn → p and qn → q, for which τ(pn, qn) ≥ τ(p, q) + ε for all n.

As τ(pn, qn) > 0, there exists a causal curve γn from pn to qn satisfying l(γn) >
τ(pn, qn) − 1/n. Take some point p− in the chronological past of p and q+ in the chrono-
logical future of q. By looking only at sufficiently large n, we may assume pn and qn are
contained in I+(p−) and I−(q+) respectively. Now γn are all in J(p−, q+). As J(p−, q+)
is compact, we apply lemma 29 to get a causal curve α from p to q, which satisfies
l(α) ≥ τ(p, q) + ε. This is a contradiction as τ is a supremum.

Proposition 59
Let M be globally hyperbolic and S a Cauchy surface and q ∈M . Then J+(S) ∩ J−(q) is
compact.

In particular, S ∩ J−(q) is compact.

Proof. First define C(S, q) to be all continuous future-directed causal curves from S to q.
Then, analogously to proposition 50, one can prove C(S, q) is compact. Again, a proof
analogous to one used to prove proposition 51 gives the result.

For subsets A,B ⊂M define τ(A,B) = sup{τ(a, b) | a ∈ A, b ∈ B}. Then we have:

Proposition 60
Let S ⊂ M be a Cauchy surface. If q ∈ D+(S), then there exists a geodesic from S to q
of length τ(S, q). This geodesic must be timelike (except in the trivial case q ∈ S).

Proof. As J−(q)∩S is compact and τ continuous on J−(q)∩S, it must achieve a maximum
at some p ∈ J−(q)∩S. Obviously we have τ(p, q) = τ(S, q), but now proposition 56 gives
a geodesic γ from p to q of length τ(p, q). Let now q /∈ S, then there certainly exists a
timelike curve from S to q, so τ(p, q) > 0 and q ∈ I+(p), therefore γ is timelike.
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4.3 Hawking’s Singularity Theorem

To prove Hawking’s singularity theorem, we must work with a Cauchy surface that is also
a smooth manifold (so that second fundamental form and various other quantities are well
defined). As we have previously mentioned, a globally hyperbolic space will always have
a smooth Cauchy surface, thus we actually require no additional assumptions, other than
M being globally hyperbolic. We also must assume a certain condition on the energy
tensor:

Definition 61 (Strong energy condition). We say M satisfies the strong energy con-
dition if Ric(X,X) ≥ 0 for all timelike vector fields X ∈ X(M).

Intuitively this just means that ”gravity attracts” as the volume of a free-falling ball
of particles will shrink when the condition is satisfied. We can now show:

Lemma 62
Let M be a globally hyperbolic spacetime satisfying the strong energy condition, S ⊂M a
(smooth) Cauchy hypersurface, and p ∈ S a point where θ = θ0 < 0. Then the geodesic γ
through p contains a point conjugate to S, at a distance of at most −3/θ0 to the future of
S (assuming that it can be extended that far).

The lemma simply states that if the surface S is curved in such a way to focus the
geodesics at p ∈ S, then the geodesics will eventually meet above p.

Proof. Since the antisymmetric part ω vanishes as the congruence is irrotational, the
Raychaudhuri equation becomes:

θ̇ +
1

3
θ2 = −σijσij −Rij γ̇

iγ̇j ≤ 0,

where by the strong energy condition Rij γ̇
iγ̇j ≥ 0. Integrating the inequality θ̇+ 1

3
θ2 ≤ 0

(i.e. d
dt
θ−1 ≥ 1

3
) we get:

1

θ
≥ 1

θ0
+
t

3
.

It is clear that θ now must blow up at t no greater than −3/θ0.

Let us recall the first and second variation formulae. Let γs be a (regular, i.e. non
null) family of geodesics - a variation of γ = γ0. Suppose γ is parametrized by arclength
and denote by ϵ = ⟨γ′|γ′⟩ = ±1 the sign of γ. Now let L(s) the length of γs so L : R → R.
Finally, we let V (t) = d

ds

∣∣
s=0

γs(t) and A(t) = d2

ds2

∣∣
s=0

γs(t) denote the transverse velocity
and acceleration and V ′ and A′ their (∂/∂t) derivatives.

We then have the first variation formula:

L′(0) = −ϵ
∫ a

b

⟨γ′′|V ⟩dt+ ϵ⟨γ′|V ⟩
∣∣∣∣b
a

.

If γ is a geodesic (γ′′ = 0), then L′(0) = ϵ⟨γ′|V ⟩
∣∣∣∣b
a

.

For a piecewise variation we let t1 < · · · < tk be the times at which V is not differ-
entiable, and write ∆V = V (t+i ) − V (t−i ) for the jump at ti. Applying the first variation
formula to each smooth segment and summing, gives:
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L′(0) = −ϵ
∫ a

b

⟨γ′′|V ⟩dt− ϵ
∑
i

⟨∆γ(ti)|V (ti)⟩ + ϵ⟨γ′|V ⟩
∣∣∣∣b
a

. (4.2)

So a curve which is stationary for piecewise smooth variations with fixed endpoints
(V (a) = V (b) = 0) must in fact be smooth (i.e. the jumps are trivial).

We also have Synge’s formula:

L′′(0) = ϵ

∫ b

a

(
⟨(V ⊥)′|(V ⊥)′⟩ + ⟨R(V, γ′)V |γ′⟩

)
dt+ ϵ⟨γ′|A⟩

∣∣∣∣b
a

.

Fixing the end points, one gets:

L′′(0) = ϵ

∫ b

a

(
⟨(V ⊥)′|(V ⊥)′⟩ + ⟨R(V, γ′)V |γ′⟩

)
dt.

This can be regarded as a quadratic form on the space of all piecewise differentiable vector
fields along γ. The corresponding bilinear form is then the so-called Morse index (or index
form):

Iγ(V,W ) = ε

∫ b

a

(
⟨(V ⊥)′|(W⊥)′⟩ + ⟨R(V, γ′)W |γ′⟩

)
dt.

Of course, symmetries of the Riemann tensor guarantee that Iγ is symmetric. If ∆V =
V (t+i ) − V (t−i ) is a jump at ti, then integration by parts then gives:

Iγ(V,W ) = −ϵ
∫ b

a

⟨(V ⊥)′′ +R(V ⊥, γ′)γ′|W⊥⟩dt− ϵ
∑
i

⟨∆(V ⊥)′|W⊥⟩(ti). (4.3)

Lemma 63
Let M be globally hyperbolic and S a Cauchy surface. Let γ : [a, b] → M be a geodesic
from S to q ∈ M parametrized by arclength (so in particular γ′ ̸= 0). If γ maximizes the
length L′(0) = 0, then γ is orthogonal to S.

Proof. We are trying to find which endpoint γ(a) ∈ S extremizes the length of the
geodesic, provided we fix the point q = γ(b). Therefore, we take the variation field
V (t) to be tangent to S at γ(a) and zero at γ(b). Then the conclusion is obvious from the

first variation formula, when γ is a geodesic: 0 = L′(0) = ϵ⟨γ′|V ⟩
∣∣∣∣b
a

= ⟨γ′(a)|V (a)⟩.

It is a well known fact that geodesics do not minimize (or in the case of timelike curves
maximize) length past conjugate points. In our case this means:

Lemma 64
Let M be a globally hyperbolic spacetime, S a Cauchy hypersurface, q ∈ M and γ a
timelike geodesic through q orthogonal to S. If there exists a conjugate point between S
and q, then γ does not maximize length (among the timelike curves connecting S to q).

We shall give two proofs of this fact.
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Proof 1. Certainly, this can be checked by calculating the index form. We follow Sternberg
[14] (chapter 8).

It is sufficient to find a vector field X normal to γ that has Iγ(X,X) > 0, for then γ
cannot be a local maximum by the second variation formula.

We are given a geodesic γ : [a, b] → M starting orthogonally at S and ending at q.
Let r = γ(t0) be the first conjugate point between S and q along γ. We can thus find a
(nonzero) Jacobi field J along the restriction of γ to [a, t0] vanishing at both t = a and
t = t0. We now extend J to a field

Y =

{
J(t), t ∈ [a, t0]

0, t ∈ [t0, b].

At t0 field Y must have a jump ∆Y ′ ̸= 0 since, if the jump were to be 0, we would have
(∇ċJ)(b) = 0 and J(b) = 0 so J would have to be 0.

Plugging Y into the formula for Iγ, we see that the integral vanishes (as Y satisfies the
Jacobi equation and is orthogonal to γ). So with ϵ = 1 (γ is timelike) we get Iγ(Y, Z) =
−⟨∆Y ′|Z⊥⟩(t0) for any vector field Z along γ. In particular Iγ(Y, Y ) = 0 because Y (t0) =
0. Now take W to be any vector field along γ with W (t0) = ∆Y ′(t0) ̸= 0, then I(Y,W ) <
0. Now it is clear (from bilinearity and symmetry of Iγ) that for sufficiently small δ > 0
we get:

Iγ(Y + δW, Y + δW ) = −2δIγ(Y,W ) − δ2Iγ(W,W ) < 0,

which was to be proven.

One doesn’t have to rely on the second variation formula to prove this result. Indeed,
for null geodesics, we cannot apply the variation formulae, so it will be beneficial to see
how this is done. Roughly the argument goes as follows:

Proof 2 (heuristic). Let r be the first conjugate point on γ between p ∈ S and q. We
can then use synchronized coordinates around γ in the portion between p and r. Since r
is conjugate to S (r is a critical point of exp), we can find another (distinct) geodesic α
orthogonal to S with same length as γ (up to r), which approximately (up to first order
as far d exp is concerned) intersects γ at r.

Now, if γ and α really intersected at r (exactly), we could get a broken curve by
following α from S to r and then γ from r to q. Since a broken geodesic does not
extremize length (twin paradox), this would actually give the result.

However, γ and α do not intersect exactly, so some care is needed. Take some small
convex neighborhood C around r and let x′ ∈ C be a point along α between in the
chronological past of r (since α comes close to γ this is possible) and w be a point along
γ between r and q (thus w is in the chronological future of r). By following α from S to
x′ and then the unique timelike geodesic from x′ to w and then γ from w ro q, we get a
curve with strictly greater length than γ. To make this rigorous one can refer to Penrose
[8] theorem 7.27.

Finally, we can now with relative ease show the following:

Theorem 65 (Hawking)
Let M be a globally hyperbolic spacetime satisfying the strong energy condition, and sup-
pose that the expansion satisfies θ ≤ θ0 < 0 on a Cauchy hypersurface S, then M is
singular.
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Proof. It is sufficient to show that no future-directed geodesic orthogonal to S can be
extended to proper time greater than τ0 = −3/θ0 (to the future of S). Assuming to the
contrary that this is not so, we could find a future-directed timelike geodesic α orthogonal
to S and parameterized by proper time defined on some interval [0, τ0 + ε] for ε > 0. So
let q = α(τ0 + ε), then according to proposition 60 we could find a timelike geodesic γ of
maximal length connecting S and q, which by lemma 63 must be orthogonal to S. Thus
the proper time of γ necessarily exceeds τ0 + ε. Now lemmata 62 and 64 guarantee that γ
would develop a conjugate point at a distance of at most τ0 and that it would then cease
to be maximizing beyond this point. This is clearly absurd and the statement follows.

4.4 Null Hypersurface

To deal with null hypersurfaces, it will be beneficial to first explain null hyperplanes in
Lorentzian vector spaces.

Let V be a vector space with a nondegenerate scalar product g. If W ⊂ V is a
vector subspace, we set W⊥ = {v ∈ V | g(v, w) = 0 (∀w ∈ W )}. One then shows
dimW + dimW⊥ = dimV = n. This, however, does not mean V = W ⊕W⊥, as W
can, for instance, contain W⊥. V = W ⊕W⊥ will hold precisely when g is nondegenerate
on W . We say W is null if g is degenerate on W . We can also show that, generally,
(W⊥)⊥ = W .

If W is a hyperplane, so that dimW = dimV − 1, then dimW⊥ = 1. We can thus
find a vector N ∈ V that generates W⊥, i.e. W⊥ = RN .

Note that a hyperplane W is null iff N is a null vector, i.e. g(N,N) = 0. Indeed, if N
is spacelike or timelike, we can use Gram-Schmidt procedure to build an orthogonal basis
N, v2, ...vn for V . This means that g(vi, vi) ̸= 0 and since vi span W , we get that W is
nondegenerate.

Note also that the normal vector N is null precisely when W⊥ ⊂ W . Indeed, N is
orthogonal to W by definition, so if W⊥ ⊂ W , then N must be orthogonal to W⊥ as
well, meaning g(N,N) = 0 (as N ∈ W⊥). Conversely, if g(N,N) = 0, then in particular
g(N, cN) for any c ∈ R, so N is perpendicular to W⊥, i.e. N ∈ (W⊥)⊥ = W . This implies
cN ∈ W for all c ∈ R, i.e. W⊥ ⊂ W .

Since no timelike vector is orthogonal to a (nonzero) null vector, we see thatW contains
only null and spacelike vectors. Indeed, assume t is timelike g(t, t) < 0 (in particular
t ̸= 0), u is null g(u, u) = 0 and g(u, t) = 0; then a simple calculation shows that u = 0.
Take an orthonormal basis with a multiple of t as its timelike member (so that t = (t0, 0)).
g(t, u) = 0 then gives t0u0 = 0=⇒u0 = 0 but now 0 = g(u, u) = −(u0)2 + |−→u |2 = |−→u |2.
Since |−→u | is the euclidean norm, this gives −→u = 0, i.e. u = (u0,−→u ) = 0.

We say a submanifold S ⊂M is a null hypersurface if TpS ⊂ TpM are null hyperplanes
for all p ∈ S. Such hypersurfaces have the peculiar property that their normal vector
fields N are also tangent. At least locally, we can find a nonvanishing future-pointing null
smooth vector field N . Now N generates TpS

⊥ (at each p ∈ S on which N is defined).
In fact, in a time orientable Lorentzian spacetime, the null field N on S is globally

defined. To see this, first note that we have a globally defined timelike vector field X;
restricting X to S we get a globally defined (on S) transverse vector field.
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Thus b = X♭ ⊗ X♭ + i∗g is a Riemann metric on S (where i∗g is the pullback of g
on S via the inclusion). To see b is positive definite, note that g(Y, Y ) > 0 on spacelike
Y and (X♭(Y ))2 > 0 on null Y . We can now take the dual vector field N in the metric
b of the 1-form X♭ on S and normalize it (in b norm). In other words, N is the unique
vector field in TS satisfying b(N, ·) = X♭ and b(N,N) = X♭(N) = 1. This N field is
a null vector field tangent to S. Indeed, computing the b norm gives us 1 = b(N,N) =
(X♭(N))2 + g(N,N) = 1 + g(N,N), so g(N,N) = 0. Since X was nowhere zero and
globally defined, so must N be as well.

Even though it is very simple and elegant in hindsight, the idea of taking duals twice
(in different metrics) is (at least to the author) entirely nonobvious. I have come across
this in [53].

Lemma 66
Integral curves of N are null geodesics (up to parametrization).

Before the proof note that, for a smooth function f , we have ∇µ∇νf = ∇ν∇µf .
As is often the case, the index notation here is a bit more subtle than one would like.
First, we have (∇f)ν = g(∇f, ∂ν) = df(∂ν) = ∂νf = ∇νf . Next, as usual, ∇µXν

means (∇µX)ν = g(∇µX, ∂ν), thus ∇µ∇νf = ∇µ(∇f)ν = (∇µ(∇f))ν . The statement
now becomes (∇µ(∇f))ν = (∇ν(∇f))µ, which is not entirely obvious, but holds for any
Levi-Civita connection and is not difficult to prove3.

Proof. Since g(N,N) = 0, we have Xg(N,N) for all vector fields X tangent to S. This
means that d(g(N,N)) annihilates TS ⊂ TM . Thus ∇(g(N,N)) must be normal to
S, because g(∇(g(N,N)), X) = d(g(N,N))(X) = 0 for all X tangent to S. In other
words, ∇(g(N,N)) is proportional to N . Let f be a function that locally defines S, i.e.
S = {f = 0}, then df annihilates S, therefore ∇f must be proportional to N .

It is sufficient to prove the theorem for N = ∇f (as any normal field is proportional
to any other normal field). Now we get

N ∼ ∇µ(g(N,N)) = 2g(∇µN,N) = 2N ν∇µNν = 2N ν∇µ∇νf = 2Nν∇ν∇µf = 2∇NNµ

Thus, parallel transporting N along its integral curve again gives some vector that is tan-
gent to the curve. In other words, the integral curve is a geodesic (up to reparametriza-
tion).

As a corollary, we have that every point p ∈ S lies on some (unique) future inextendible
null geodesic, which in turn lies on S. S is thus foliated by inextendible null geodesics,
which are called its null generators.

We may thus generalize the notion of a null hypersurface from smooth to topological
hypersurfaces, by requiring they be foliated by null geodesics in this manner4. This

3Indeed, since ∇ is compatible with the metric, we get Xg(∇f, Y ) = g(∇X∇f, Y )+g(∇f,∇XY ),
and since torsion vanishes ∇XY − ∇Y X = [X,Y ]. Thus, g(∇X∇f, Y ) − g(∇Y ∇f,X) = Xg(∇f, Y ) −
g(∇f,∇XY )−Y g(∇f,X)+ g(∇f,∇Y X) = Xdf(Y )−Y df(X)− g(∇f,∇XY −∇Y X) = XY f −Y Xf −
g(∇f, [X,Y ]) = (XY − Y X)f − df([X,Y ]) = 0. The special case X = ∂µ and Y = ∂ν now proves the
statement.

4Though, a smooth hypersurface S foliated by null geodesics is not necessarily a null hypersurface as
previously defined - take for instance a timelike plane in Minkowski space. However, the result does hold
for all achronal planes in Minkowski space. Thus, if we require S to be locally achronal, it will hold on
S as well.
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weakening is necessary when discussing black hole event horizons in full generality (as
they need not be smooth).

The following shows that for a closed subset C, the boundary of J+(C), which is a
topological hypersurface, comes quite close to being a null hypersurface:

Proposition 67
Let C be a closed subset of the spacetime M . Then every point p ∈ ∂J+(C) (except
perhaps p ∈ C) lies on some null geodesic γ, which in turn lies entirely in ∂J+(C). γ is
either inextendible or has a past endpoint in C

Of course, an analogous statement holds for J−(C) by flipping time orientation.

Proof. Let p ∈ ∂J+(C) = ∂I+(C) and choose a sequence pn ∈ I+(C) which converges to
p. For each pn we find a past directed timelike curve γn connecting pn and some point in
C. Since, C is closed, M \ C is an open subset of M and therefore a manifold in its own
right. On M \ C each γ becomes past inextendible, so we may use lemma 31 to obtain
a limit curve γ, which passes through p and is past inextendible (in M \ C). γ being
inextendible in M \C means that in M , γ either remains past inextendible, or has a past
endpoint in C.

As each point on γ is a limit sequence of points on γn (and γn lie in I+(C)), γ must lie
in I+(C). If any point on γ by any chance landed in I+(C), we could make the γ timelike
by changing it slightly (lemma 25), so we would have p ∈ I+(C). We thus see that γ is
completely contained in ∂J+(C). Finally, since ∂J+(C) is achronal (no two points can
be connected by a timelike curve), any curve connecting two points on ∂J+(C) must be
a null geodesic.

We now turn to analyzing the structure of the tangent space of a smooth null hypersur-
face S. Since on TpS the metric g is degenerate, consider the quotient TpS/N . In TpS/N
we identify X ∈ TpS and X+cN ∈ TpS for any c ∈ R. If [X] denotes the equivalence class
of X, then can define a metric on TpS/N by h([X], [Y ]) = g(X, Y ). This is indeed well
defined, as g(X + aN, Y + bN) = g(X, Y ) + ag(N, Y ) + bg(X,N) + abg(N,N) = g(X, Y ).

Note that h must be positive definite on the quotient space TpS/N , because vectors
which live in TpS, but not in RN must be spacelike.

Finally, we can introduce the Weingarten map as before and prove the Raychadhuri’s
equation. We define the null Weingarten map Lp : TpS/N → TpS/N by Lp([X]) = [∇XN ].
This is well defined as ∇X+aNN = ∇XN + a∇NN . But we have seen that ∇NN is
proportional to N , thus ∇X+aNN indeed lies in the equivalence class [∇XN ].

On the other hand, if we take some other null vector field fN , then ∇X(fN) =
f∇XN + (Xf)N , which is in the equivalence class of f∇XN . Thus the L depends on the
choice of field N (but only up to scalar multiples).

The second fundamental form is now K([X], [Y ]) = h(L([X]), [Y ]) = g(∇XN, Y ) and
the expansion is θ = trL.

We must further define the covariant derivative of a field Y along some null curve. This
is defined in the obvious way ∇N [Y ] = [∇NY ], and the usual computation: ∇N(Y +aN) =
∇NY + ∇N(aN) = ∇NY + a∇N(N) + (Na)N shows that the definition is valid.

Consider now a null curve α : [a, b] → S and a vector field V : [a, b] 7→ TS/N along α;
we assume V is smooth in the sense V (s) = [X(s)] for some smooth X along α. We then
have ∇ ˙α(s)V = [∇ ˙α(s)X]. More briefly, [X]′ = [X ′]
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Let now L be a Weingarten map for the null vectors α′, then its derivative along α is
defined in the usual way: (L′)([X]) = (L([X]))′ − L([X ′]) = [∇XN ]′ − L([X ′]), where X
is along α and tangent to S.

We also pull back the tidal operator: F : Tα(s)S/N → Tα(s)S/N , via F ([X]) =
[F (X)] = [R(α′(s), X)α′(s)].

Raychadhuri’s equation L′ + L2 = F can now be proven with ease (the argument
being basically the same as before). Indeed, by scaling N , we may assume that α is
a geodesic, i.e. ∇NN = 0. We work in a neighborhood around p = α(s), and may
assume N is extended to a vector field on a neighborhood near p. Furthermore, assume
X ∈ TpS comes from a vector field commuting with N , so that ∇NX = ∇XN . Then
R(X,N)N = ∇X∇NN −∇N∇XN −∇[X,N ]N = −∇N∇NX, so we get the usual Jacobi
equation X ′′ = R(α′, X)α′. From here:

L′([X]) = [∇XN ]′ − L([∇NX]) = [∇NX]′ − L([∇XN ])

= [X ′′] − L(L([X])) = [R(α′, X)α′] − L2([X]).

Taking the trace, as before, we get:

θ′ = −Ric(α′, α′) − σ2 − 1

n− 1
θ2, (4.4)

where n is the dimension of S (so n− 1 is the dimension of TpS/N) and σ is the traceless
symmetric part of L.

4.5 Penrose’s Theorem

We now prove Penrose’s version of the singularity theorem.

Definition 68 (Trapped surface). Let M be a globally hyperbolic spacetime, S a Cauchy
hypersurface with future-pointing unit normal vector field n and let Σ ⊂ S be compact
2-dimensional with unit normal vector field ν in S (thus, for instance, n±ν are lightlike).
Σ is said to be trapped if the expansions θ+ and θ− of the null geodesics with initial
velocities n+ ν and n− ν are both negative everywhere on Σ.

Intuitively, this means that lightlike geodesics converge on both sides of Σ. As an
example, take a sphere inside the Schwarzschild event horizon and emit a light impulse
on both sides. As light cannot escape from the black hole, both impulses will converge
and fall towards the singularity (recall that inside the event horizon r is the timelike
coordinate.). Let αp be null geodesics through p ∈ Σ with initial velocity n+ ν, then we
may take exp : (−ε, ε) × Σ → M, (p, t) 7→ αp(t), which traces out a null hypersurface
in M . Here, instead of synchronous coordinates, exp gives null coordinates.

Example 69. Take a sphere of fixed radius r < 2GM in the Schwarzschild solution 2.1.
Since r is timelike in the region r < 2GM , this defines a compact 2-dimensional spacelike
surface. It is then not difficult to see that light geodesics emanating from such a sphere
must evolve to a smaller r coordinate; thus the divergences are negative.

Definition 70 (Null energy condition). We say that M satisfies the null energy con-
dition if the Ricci tensor satisfies Ric(X,X) ≥ for all lightlike X.
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Lemma 71
Let M be a globally hyperbolic spacetime satisfying the null energy condition, S ⊂ M
a (smooth) Cauchy hypersurface with unit normal n, Σ ⊂ S a compact 2-dimensional
manifold with unit normal vector field ν in S. Let p ∈ Σ be a point where θ = θ0 < 0.
Then the null geodesic α through p with initial velocity n + ν contains a point conjugate
to S, at an affine parameter distance of at most −2/θ0 to the future of Σ (assuming that
it can be extended that far).

Proof. In the case of 4-dim spacetime, we have θ′ = −Ric(α′, α′) − σ2 − 1
2
θ2. Thus

θ′ +
1

2
θ2 = −Ric(α′, α′) − σ2 ≤ 0,

where Ric(α′, α′) ≥ 0 by the null energy condition. Integrating we get, as before,

1

θ
≥ 1

θ0
+
t

2
,

so θ must blow up at t no greater that −2/θ0.

Lemma 72
Let M be a globally hyperbolic spacetime satisfying the null energy condition, S ⊂ M
a (smooth) Cauchy hypersurface with unit normal n, Σ ⊂ S a compact 2-dimensional
manifold with unit normal vector field ν in S. Let γp be the null geodesic through p with
initial velocity n+ ν and q = γp(t0) for some t0. If there exists a conjugate point between
p and q, then q ∈ I+(Σ).

Proof. It is sufficient to show that the existence of a conjugate point guarantees that a
non geodesic causal curve connects p and q. Then it is not true that q ∈ J+(p) \ I+(p),
as in that case only a null geodesic would connect p and q.

To see roughly why the above statement is correct, let r be the first conjugate point
between p and q. Since d exp vanishes at r, up to first order, there is another (distinct)
null geodesic α which intersects c at r. We now obtain a piecewise smooth curve (that is
not a geodesic) by first following α from p to r and then γ from r to q. Again, some care is
needed here as γ and α do not intersect exactly, but the argument is almost identical to the
second proof of lemma 63 (where we use null coordinates along γ instead of synchronous
coordinates). We thus omit the rigorous proof (it can be found in [8] as theorem 7.27 for
instance). Another rigorous proof is given in O’Neill [1] as proposition 10.48.

Finally, we arrive at:

Theorem 73 (Penrose)
LetM be a connected globally hyperbolic spacetime with a noncompact Cauchy hypersurface
S, satisfying the null energy condition. If S contains a trapped surface Σ, then M is
singular.

Proof. We roughly follow Godinho and Natário [7] and O’Neill [1].

• Assume M is (future) null complete. The key point then is that, for a compact
trapped surface Σ, ∂I+(Σ) must be compact. Indeed, since θ+ and θ− are negative
everywhere on Σ, there exists a maximum θ0 < 0 such that θ+, θ− ≤ θ0. Consider a
null geodesic going out from Σ (with initial velocity n±ν), then lemma 71 guarantees
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that a conjugate point can be found at affine parameter value not exceeding u0 =
−2/θ0 to the future of Σ. By lemma 72 this means that the null geodesic enters
I+(Σ) after affine parameter value of no more than u0. Consequently, ∂I+(Σ) is a
closed subset of the compact set exp+([0, u0] × Σ) ∪ exp−([0, u0] × Σ), where exp+

refers to null geodesics with initial velocity n + ν and exp− to null geodesics with
initial velocity n− ν. Note that we use future null completeness in this last step, as
we need these null geodesics to go at least as far as u0.

• Thus, assuming M is null complete, ∂I+(Σ) must be a compact topological hyper-
surface (by corollary 41). As in 45, let ψ : M → S be a retraction projecting M to
S. We restrict to π : ∂I+(Σ) → S. Intuitively, we follow a timelike integral curve
(of some nonvanishing vector field) from S until we hit ∂I+(Σ). Once we enter
I+(Σ), we must stay within this set, so an integral curve cannot cross the boundary
of I+(Σ) more than once.

Note that π must be injective, because if π(p) = π(q), then p and q lie on the same
integral curve, which intersects ∂I+(Σ). Since the intersection is a unique point, we
have p = q.

Immediately from definition (and proposition 45) π is continuous. Since, π is an
injective continuous mapping, between topological manifolds of the same dimension,
Brouwer’s invariance of domain guarantees π is actually a homeomorphism onto
some open subset Imπ of S. Thus, Imπ is open and since ∂I+(Σ) is closed, Im π is
closed as well. This means that Imπ must be the whole of S, as S is connected.

This is impossible, because Im π is actually a compact set (∂I+(Σ) being compact)
and S is not compact by assumption. We must conclude M is not null complete,
i.e. it is singular on null geodesics.

A particular corollary is that the Schwarzschild spacetime will remain singular even if
we slightly perturb its initial conditions. One should not forget that global hyperbolicity
is in the assumptions. Therefore, the existence of a ”singularity” (more precisely incom-
pleteness) should really be thought of primarily as a breakdown of global hyperbolicity,
i.e. determinism. In other words, it may so happen that M can be extended, but it
cannot be extended as a globally hyperbolic manifold. We shall discuss in more detail the
Cauchy problem and time evolution in the next chapter.
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Chapter 5

Black Holes in General

In this chapter we give the definition of a black hole and formulate (in modern terms)
the cosmic censorship hypotheses. The so-called weak and strong cosmic censorship con-
jectures were originally formulated by Penrose in 1969 and 1972. respectively. It is
important to note that, in their modern formulation, the strong and weak cosmic censor-
ship hypotheses are independent. In particular, the strong hypothesis does not imply the
weak one, contrary to what one might expect simply based on the names alone.

5.1 Asymptotically Flat Spacetimes

In physics we often use methods such as multipole moments when the system is isolated
and we are sufficiently far away. In general relativity we would thus like to formulate
what an isolated system is, meaning it is in some sense flat at infinity.

The idea is to embed the spacetime into some larger manifold which will serve as a
boundary. This can be demonstrated in the case of Minkowski space. Take the metric in
polar coordinates:

ds = −dt2 + dr2 + r2(dθ2 + sin2 θdϕ2)

and make a change in coordinates u = t+ r, v = t− r, giving:

ds = −dudv +
1

4
(u− v)2(dθ2 + sin2 θdϕ2)

These new u and v coordinates are null. Now we ”compactify” by making the image of u
and v bounded (using one’s favorite diffeomorphism between R and some finite interval,
say u′ = tan−1 u, v′ = tan−1 v). Finally, take T = u′ + v′ and R = u′ − v′. In these new
coordinates, the metric becomes:

ds = Ω−2
(
−dT 2 + dR2 + sin2Rdθ2 + sin2R sin2 θdϕ2

)
,

where Ω−2 = 4(1 +u2)(1 + v2). We have thus preserved the null cones (by only compacti-
fying along the null directions), but the spacetime is now contained within some compact
set. To see this, one must carefully note the ranges of any such coordinates; in this case
−π < T +R < π and −π < T −R < π, as well as R ≥ 0.

(R, T ) = (0,−π) gives the lower vertex point, the past timelike infinity i−. This is
a 2-dim surface (a point in (R, T ) plane is actually a sphere in Minkowski 4-dim space).
Likewise the top vertex i+ at (R, T ) = (0, π) is called the future null infinity. i0 at
(R, T ) = (π, 0) is the spacelike infinity. Finally, we have the 3-dim surfaces I− given by
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Figure 5.1: Conformal compactification of Minkowski spacetime. The angular coordinates
have been suppressed. In 2 + 1 dimensions this becomes a double cone. Removing the
spacelike infinity i0 (in this case a circle identified to a point) transforms the boundary
into two pointed connected surfaces. Removing the timelike infinities i± these surfaces
become smooth.

T = π−R for 0 < R < π (future null infinity) and I+ given by T = R− π for 0 < R < π
(past null infinity).

The null infinities thus have the topology S2 × R. We note that the boundary is not
smooth at the vertices i± and i0. In giving a general definition, we shall focus only on the
null infinities. Thus the boundary will be smooth, but now the larger manifold need not
be compact. This is the reason why we avoid using the term ”conformal compactification”
when referring to the general construction outlined below. For a unified treatment of null
and spatial infinities see Ashtekar and Hansen [29] or Wald [4].

Definition 74 (Conformal equivalence). Let g and g̃ be two Lonrentzian metrics on
spacetime M . We say g1 and g2 are conformally equivalent if there exists a smooth
Ω : M → R, Ω ̸= 0 such that g2 = Ω2g1. A smooth mapping f : M → M̃ is conformal if
the pullback of the metric on M̃ is conformally equivalent to the one on M , i.e. f ∗g̃ = Ω2g.

Conformal mappings may change the lengths, but preserve the causal structure. In
fact, two Lorentzian metrics (scalar products) g1, g2 on some vector space V will have the
same light cone (the set of all vectors v ∈ V for which g(v, v) = 0) iff g1 = Cg2 for some
constant C ̸= 0.

Definition 75 (Asymptotically simple, Penrose). We say M is asymptotically simple
if there exists a manifold M̃ with boundary ∂M̃ , on which a Lorentzian metric g̃ is defined
and into which M embeds via some diffeomorphism φ : M → M̃ such that:

1. M̃ \ ∂M̃ = φ(M), i.e. M embeds precisely into the interior of M̃ .

2. There exists a smooth function Ω on M̃ such that on φ(M) we have φ∗g̃ = Ω2g, i.e.
φ conformally embeds M into M̃ .

3. On ∂M we have Ω = 0 and dΩ ̸= 0.

4. Every null geodesic in M has two endpoints in ∂M .

57



If in addition the Ricci tensor vanishes in the neighborhood of ∂M , we say M is asymp-
totically empty. We shall regularly assume that M̃ is strongly causal.

We sometimes say M is a physical, while M̃ is an unphysical spacetime. dΩ ̸= 0 in
particular ensures that Ω can be used as a coordinate in a neighborhood of the boundary
∂M . By Taylor expanding in Ω we can then control the falloff towards infinity (∂M) of
various physical fields. One can prove that the boundary of an asymptotically simple and
empty space has a particularly nice topology:

Proposition 76
In an asymptotically simple and empty space M , the boundary I = ∂M is a null surface
(i.e. its normal vector is null).

Proof. We follow Hawking & Ellis [3].
We first show that ∂M is null. This follows from the fact that Ricci tensor of the

unphysical metric g̃ is related to the Ricci tensor of the physical metric g in the following
manner:

R̃ν
µ = Ω−2Rν

µ − 2Ω−1g̃να∇̃µ∇̃αΩ +
(
−Ω−1∇̃α∇̃βΩ + 3Ω−2∇̃αΩ∇̃βΩ

)
g̃αβδνµ

This is a standard result one gets when computing how Riemann curvature changes under
conformal transformations.

Simplifying we get:

R̃ = Ω−2R− 6Ω−1g̃αβ∇̃α∇̃βΩ + 3Ω−2g̃αβ∇̃αΩ∇̃βΩ.

Since we require that Ricci curvature be smooth at ∂M (at least C1), where Ω = 0,
we get that (on ∂M) g̃αβ∇̃αΩ∇̃βΩ = 0. This means that ∇Ω is a null vector and, since
dΩ ̸= 0, it must be a nonzero null vector, whose integral curves are null generators of ∂M .

Proposition 77
I = ∂M has two components:

• The future null infinity I+, i.e. the set of future endpoints of light geodesics (the
set of boundary points where the future light geodesics are outward-pointing). This
means for each point p ∈ I+, the past null cone lies in M̃ .

• The past null infinity I−, i.e. the set of past endpoints of light geodesics (the set
of boundary points where the past light geodesics are outward-pointing). This means
for each point p ∈ I−, the future null cone lies in M̃ .

Proof.

• To show ∂M has at least two components, we proceed as follows.

Let p ∈ I. Since I is the boundary of M̃ , we can find some chart on a neighborhood
U (in M̃) around p such that I ∩ U looks like a hyperplane, where M ∩ U is on
one side of that hyperplane. As I is null, either I+(p) or I−(p) do not intersect M .
But if the open set, say, I+(p) does not intersect the open set M , then the same
holds if we take the closure I+(p). Since J+(p) is contained in that closure, we see
that causal curves ending at p must all be future-pointing or all be past-pointing.
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In other words, a point in I can’t be both a past and a future endpoint at the same
time.

If p ∈ I is a future endpoint of some geodesic, then so too must be all points in
some neighborhood of p. Indeed, one can could otherwise construct a sequence of
curves with past endpoints pn → p; but then the limit must have a past endpoint
at p.

Therefore, we can cover I with sufficiently small open sets which consist entirely of
either future endpoints or past endpoints. U+ which have future endpoints in I are
mutually disjoint with U− having past endpoints in I. Taking the union of all U+

and U− we get two open sets whose union is ∂M ; ∂M is thus not connected.

• For spacetime of dimension > 2 there can be only 2 components (for dimension 2
Minkowski space gives a counterexample; there are two future and two past null
infinities). The proof hinges on the fact that in dimension > 2, the space of future
null directions at p is connected (this is not the case in 2-dim case as it is a two
point set).

If say I+ were disconnected consisting of some two components C1 and C2, then we
will show that one can find a point p ∈M through which some future null geodesics
go into C1, and others go into C2. Now, a null geodesic at p can be identified with
its (unique) endpoint in I+. This mapping ρ : γp 7→ eγp is continuous (if αn → α
then the endpoints en of αn converge to the endpoint e of α). Thus, the set of null
directions at p has at least two components - a contradiction.

We now show the existence of point p. Assume to the contrary that for all p ∈ M
all future null geodesics go exclusively into one component but not the other. Then
we can show that around any p ∈M one can find an open set such that any future
null geodesic through that set goes into the same component as p.

Indeed, assume this fails at p, whose future null geodesics go into C1. Then we can
construct a sequence pn converging to p such that future null geodesics αn going
through pn all go into C2. But now take the limit of those geodesics and get a causal
curve α going through p and reaching C2. This causal curve is actually a geodesic,
which gives a contradiction.

To see that the curve indeed is a geodesic, we must show that no two points on
α can be connected by a timelike curve. This is true because if q ∈ Imα and
q ∈ I+(p)∩C is a point in some small convex neighborhood around p, then q being
a limit point of the sequence αn implies that qn ∈ I+(p)∩C for n sufficiently large,
where qn ∈ Imαn. One can then repeat the argument for p as well to conclude
pn ∈ J−(qn)∩C. This is impossible because αn are null and we can take C so small
as to make some αn not have conjugate points between pn and qn. Thus we can
cover α with neighborhoods on which α is a null geodesic; so it must be globally a
null geodesic (up to reparametrization).

Thus we can cover M with open sets through which null geodesics go exclusively
into one component or the other. But the union of all open sets which go into C1 is
disjoint with the union of all open sets which go into C2 thereby showing that M is
not connected.
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We should note that, in particular, 4 is too strong as it requires that every null
geodesic reach infinity so will generally exclude black holes (which contain bound orbits).
For example, the Schwarzschild spacetime does not satisfy this criterion. Asymptotically
simple spaces are not just simple in the asymptotic region; in fact we can show:

Proposition 78
An asymptotically simple and empty spacetime must be globally hyperbolic.

One can further show that M will be topologically equal (homeomorphic) to R4 and
I± to R× S2 (see Geroch [33] or Hawking & Ellis [3] or the appendix of Penrose [51]).

Proof. We break the proof into two parts:

• M is causally simple, i.e. J±(p) are closed. For this we use the fact that every null
geodesic has two endpoints in ∂M . Take a sequence of points qn ∈ J+(p) which
converge to some q. We show that q must be in J+(p), i.e. that J+(p) is closed.

Indeed, let αn be some causal curves from p to qn. Continue these curves all the
way up to future null infinity by following some null geodesics, so that they become
future inextendible. Therefore, there must exist a future inextendible causal limit
curve α, which goes from p and passes through q.

• M is globally hyperbolic. We use results from B. First put a measure νdµ on
M with total volume

∫
M
νdµ = 1. Since M is causally simple by the previous

point, the functions V±(p) =
∫
J±(p)

νdµ are continuous. We must prove that V +

decreases to 0 along any future directed causal curve γ (since we don’t yet have
global hyperbolicity, lemma 99 doesn’t directly apply).

To do this, consider F =
⋂

p∈Im γ J
+(p); if it is empty for every future-inextendible

causal curve, we get out result. Assuming it is not empty, we get that all points
p ∈ Im γ can then be connected via causal curves to some q ∈M , i.e. Im γ ⊂ J−(q).

This means that γ cannot have an future endpoint in M . Indeed, if e ∈ M is an
endpoint, consider a limit of points pn = γ(tn) → e and a sequence of curves αn

going along γ until pn, then following some causal curve to q and finally some null
geodesic to I+. αn has a limit curve α passing through e and q, but then γ can be
future extended; a contradiction.

Thus γ goes all the way up to I+. On the other hand, this means that it must exit
J−(K) for any compact K (as causal curves in J−(K) do not reach I+). Now the
proof of lemma 99 actually applies, so we get the result. As in appendix B, the level

sets of τ(p) = V −(p)
V +(p)

are now Cauchy surfaces, so M is globally hyperbolic.

We therefore give a weaker definition:

Definition 79 (Weakly asymptotically simple, Penrose). We say M is weakly asymp-
totically simple there is a piece of M isometric to the boundary of an asymptotically
simple space. More precisely, if there exists an open set U ⊂ M and an asymptotically
simple space M ′ with an open neighborhood of the boundary U ′ ⊃ ∂M ′ such that U ′∩M ′

is isometric to U .

The idea is that a weakly asymptotically simple spacetime possesses the conformal
infinity of an asymptotically simple spacetime, but may possess other infinities as well.
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5.2 Black Holes

Finally, we can define black holes in general:

Definition 80 (Black hole). Let M be a weakly asymptotically simple spacetime and
let I+ be its future null infinity. If the (causal) past of I+, J−(I+), does not cover M ,
then we say M contains a black hole region B = M \ J−(I+). We call the topological
boundary H = ∂B = (∂J−(I+)) ∩M the event horizon of the black hole.

Intuitively, a black hole region is the set of events from which no lightlike geodesic can
escape to infinity. Analogously, one may define a white hole region as W = M \J+(I−).

Actually, we still have a problem with the definition of asymptotic simplicity - the
weak asymptotic simplicity is now too weak! In particular, the notion of a weakly asymp-
totically simple spacetime does not capture the global asymptotic structure of Minkowski
spacetime. Consider the following:

Example 81 (Geroch & Horowitz [31]). Consider Minkowski space-time with the causal
future of the origin removed (i.e., retain the region given, in the usual coordinates, by
t <

√
x2 + y2 + z2). This space-time is weakly asymptotically simple.

Thus, Minkowski spacetime with only a portion of its usual boundary (the portion
that lies outside outside the causal future of 0) is weakly asymptotically simple.

Now an immediate problem arises: the I+ in the definition of weakly asymptotically
simple space is not unique. It is therefore not clear exactly which I+ (that makes M into
a weakly asymptotically simple space) one should take in the definition of a black hole.

If we require that for at least one I+ its past J−(I+) does not cover M , then Minkowski
space has a black hole. On the other hand, if we require that it hold for all possible I+ its
past J−(I+) does not cover M , then Minkowski space-time with an asymptotic portion
of the null cone of the origin removed possesses a black hole.

Therefore, when discussing black holes it is preferable to use the following more re-
strictive definition:

Definition 82 (Asymptotically flat, Geroch & Horowitz [31]). Weakly asymptotically
simple spacetime is said to be asymptotically flat if in addition its null infinities I± are
both topologically R × S2 and I is complete1. Of course, we shall assume that such a
spacetime is asymptotically empty as well (otherwise using the term ”flat” doesn’t make
much sense).

Notice that the previous example does not have a complete I.

So far we have only defined a ”black hole region” as a collection of events. To talk
about ”black hole at time τ”, we need some additional assumptions. Following Wald [4],
we say:

Definition 83. M is strongly asymptotically predictable if in M̃ there exists an
open region Ṽ with M ∩ J−(I+) ⊂ Ṽ such that (Ṽ , g̃) is globally hyperbolic.

1One can formulate completeness in terms of the generators of the null surface I. In particular the
normal ∇Ω is also tangent to I. Therefore, its integral curves (the generators) are contained in I and
we have seen these must be null geodesics. I is complete precisely when these geodesics can be extended
indefinitely, i.e. when the normal field is complete.
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This is essentially the same definition as in Hawking & Ellis [3], if we take into con-
sideration proposition 9.2.3.

In particular, since we now have some family of Cauchy hypersurfaces S(τ) foliating
Ṽ and hence the exterior of the Black hole, we can define a black hole at some time τ
as a component of the set B(τ) = S(τ) \ J−(I+) = B ∩ S(τ). This is just the region of
Cauchy surface S(τ) from which light cannot escape to null infinity.

Note that the assumption of the exterior being globally hyperbolic has certain impli-
cations. Namely, there cannot be any ”naked” singularities. If q ∈ M ∩ Ṽ and if S(τ)
is in the past of q (q ∈ J+(S(τ))), then, by virtue of S(τ) being a Cauchy surface, all
inextendible past-directed causal curves must intersect S(τ). This means no singularities
are visible to an observer outside the black hole, i.e. we cannot have any past-directed
causal geodesics just ending (a naked singularity in the past of some observer); they must
go as far back as there are Cauchy surfaces.

The event horizon H = ∂B = (∂J−(I+)) ∩M , being the boundary of a past set, is a
closed achronal topological hypersurface. We note first that I± must be closed in M̃ , as
∂M is closed, and components of closed sets are closed. Thus (by proposition 67) every
point in ∂J−(I+) lies on some null geodesic, which must be contained in ∂J−(I+), which
is past inextendible or has a past endpoint in I+. Since we are working in the physical
spacetime M , both cases amount to the same thing.

It must be said, however, that an event horizon is not generally a smooth manifold
(actually a nowhere C1 example can be constructed; see [6]). Many authors (Wald [4]
and Hawking & Ellis [3]) assume differentiability when proving certain theorems about
horizons, in particular, the area theorem. For nowhere differentiable horizons it is not
clear that area is even well defined, but in this case it has been shown (see [6] again) that
any differentiability assumption can be dispensed with.

5.3 Cosmic Censorship

From a modern point of view, the cosmic censorship hypotheses are conjectures about the
nature of maximal Cauchy developments. We therefore first discuss the Cauchy problem
in general relativity.

Definition 84 (Cauchy problem). We follow Choquet-Bruhat [5] (as one should) in these
matters.

• An initial data set is a triple (Σ, h,K), where (Σ, h) is a Riemannian 3-manifold
and K a symmetric 2-tensor on Σ.

• A development of the initial data (Σ, h,K) is a spacetime M for which there exists
an embedding φ : Σ →M having the following properties:

1. The metric h is the pullback of g by φ, h = φ∗h, or equivalently, if we identify
Σ with its image φ(Σ) in M , then h is simply the induced metric. Since h is
Riemannian, φ(Σ) is spacelike.

2. The tensor K is the pullback by φ of the second fundamental form (extrinsic
curvature) of φ(Σ) as a submanifold of M .

• We call the development (M, g) Einsteinian if the metric g satisfies the Einstein
equations. Of course, here the initial data is just a set of initial conditions for
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Einstein equations (so is not completely arbitrary and must satisfy any relations
imposed by the Einstein equations).

• A development is called globally hyperbolic if M is globally hyperbolic with φ(Σ)
as a Cauchy surface.

• A development is called maximal (or inextendible) if it cannot be extended (i.e.
isometrically embedded) to another development. Note this does not say that it is
inextendible as a Lorentzian manifold.

Theorem 85 (Choquet-Bruhat, Geroch)
For a given initial data set (Σ, h,K) to the vacuum Einstein equations (or for a suit-
able matter system) there exists a unique (up to isometry) maximal globally hyperbolic
Einsteinian development of (Σ, h,K).

Here the fact that the development is unique and maximal, guarantees that every
other (Einsteinian, globally hyperbolic) development can be isometrically embedded into
the maximal one.

Proof. See the original paper by Choquet-Bruhat and Geroch [22] or Ringström [9] (the-
orem 16.6.) Let us note here that the original proof uses Zorn’s lemma, but this can be
avoided (i.e. a constructive proof can be given) if one wishes (see Sbierski [28]).

We can now understand the following modern formulation of the famous strong cen-
sorship conjecture:

Conjecture 86 (Strong cosmic censorship)
For ”generic” (i.e. not ”finely tuned”2) initial data for the vacuum equations or for
suitable Einstein–matter systems, the maximal Cauchy development is inextendible (as a
Lorentzian manifold).

Roughly speaking, this conjecture asserts that general relativity is a deterministic
theory in the sense that motions of all observers for all times should be determinable
from initial conditions. In particular, one should not be able follow a geodesic outside the
maximal development. In fact, if we can extend the maximal development, the extension
will usually be severely non-unique. One can therefore think about this conjecture as a
statement on uniqueness of the global solution.

Example 87. For a Kerr spacetime 2.2 take some Cauchy slice in the regions I ∪ II.
This slice is taken to be the initial condition for the maximal Cauchy development. The
maximal development then generates the Kerr spacetime, but only up to the interior
horizon (i.e. Cauchy horizon) of the Kerr black hole. We have seen that in the interior
horizon causality breaks down. The solution inside the Cauchy horizon is usually given as

2This is not really precisely defined, as a precise notion of ”generic” would require a better under-
standing of the counterexamples. One could interpret this topologically to mean dense (and open) in
the set of all possible initial data in some relevant topology. Alternatively, one could interpret it in a
probabilistic sense and introduce some probability measure in the space of all possible initial data for
which the exceptional set is of measure zero. Though, constructing such a measure (or topology) does
not seem to have a bearing on the problem. On a much more elementary level, a Kerr solution is, as we
will see, parameterized by two numbers - a and M . Schwarzschild spacetime is then exceptional in that
family for it is given by a specific choice of a = 0. In particular, it is more symmetric than the rest (by
having full spherical symmetry).
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a part of the unique analytic extension. But generally there are multiple (smooth) ways
one could extend the spacetime beyond the Cauchy horizon and from the perspective of
dynamics and Einstein equations, no way is better than the other.

Therefore, the hope is, one shouldn’t be able to cross the second horizon in any mean-
ingful sense. Given that no black hole is completely isolated from the rest of the universe,
the initial data will not be exactly that of the Kerr solution (say a gravitational wave
passes by), so Cauchy horizons should not be stable under generic small perturbations.
In fact, there are more direct physical reasons (having to do with the infinite blueshift on
the Cauchy horizon) why we believe it to be unstable.

Actually, in [27] Dafermos and Luk show that a C0 formulation of the strong censorship
hypothesis is not true - specifically in the case of Kerr spacetime (under the assumption of
stability of the exterior of Kerr spacetime). This, in particular, means that under generic
conditions, one can go beyond the Cauchy horizon if one is permitted in using a C0 metric
there.

Though, one may take this formulation to be too strong. If we require Christoffel
symbols to be locally square integrable 3 (or metric C2 for that matter), then it seems
the problem is still open. In particular, the Christoffel symbols should not blow up at the
Cauchy horizon.

We now turn to the (confusingly named) weak cosmic censorship conjecture. We
mention again that the ”weak” conjecture is not logically weaker; it does not follow from
the strong cosmic censorship. For asymptotically flat initial data one can show (see again
Geroch & Horowitz [31]) that the maximal evolution is weakly asymptotically simple (and
empty). The question remains, though - is the null infinity complete?

Conjecture 88 (Weak cosmic censorship)
For a generic asymptotically flat vacuum initial data, the maximal Cauchy development
has a complete null infinity I+.

This can be stated roughly as ”faraway observers live forever”.
The conjecture posits that there can be no ”naked singularities” visible from the

infinity, i.e. all singularities have to be hidden beyond event horizons4. The conjecture
would fail, for instance, if the Cauchy horizon cuts off the null infinity at some finite
parameter value. That the word ”generic” is necessary can be seen from the discussion
in Christodoulou [34].

5.4 Stationary Black Holes

It turns out that black hole solutions of the Einstein equations have a very restrictive
form under some additional hypotheses which guarantee that the black hole has ”settled
down” (i.e. is stationary). This is the celebrated no hair theorem. We should immediately

3With square integrable Christoffel symbols, even though one does not have the Riemann curvature
tensor in the usual sense, one can write down the Einstein equations and study their weak solutions.
Thus inextendibility here means we can rule out any reasonable notion of weak solution to the Einstein
equations.

4This is not entirely correct, as one can construct examples where the null infinity is complete, but
there is no black hole region. It is really the fact that observers on the null infinity exist for all times
that is the essence of the conjecture.

64



note that the problem has not been completely solved as it rests on certain hard to justify
assumptions that have yet to be completely removed.

The no hair theorem can be broken into two pieces - the uniqueness theorem for station-
ary axisymmetric spacetimes and the rigidity theorem which guarantees axial symmetry.

5.4.1 Uniqueness theorem

We first extend the definition of stationary and axisymmetric spacetime in the asymptotic
case:

Definition 89.

• We call M asymptotically stationary (or pseudo-stationary by Carter’s termi-
nology) if there exists a 1-parameter group of isometries gt acting on M , whose
Killing field X is timelike near I+ and I−.

• We will say an asymptotically stationary M is axisymmetric if there is a one-
parameter cyclic isometry group gϕ, (0 ≤ ϕ ≤ 2π) of M which commutes with gt,
and whose Killing field Y is spacelike near I+ and I−. We further assume that the
axis of symmetry is non-empty.

We now define Killing horizons and surface gravity:

Definition 90 (Killing horizon). Killing horizon is a null hypersurface, whose gener-
ators are given by some Killing field. It is usually required that the Killing horizon be
connected.

Thus on a Killing horizon we can choose the normal vector field to be Killing. Let X
be a Killing field and consider the set {g(X,X) = 0 | X ̸= 0}, then a Killing horizon is a
null hypersurface coinciding with a connected component of that set.

Definition 91 (Surface gravity). Surface gravity κ of a Killing horizon H defined by
some Killing field X is given by the formula d(g(X,X))|H = −2κX♭.

Since X is normal to the null hypersurface H, we have seen that d(g(X,X)) must be
proportional toX. Indeed, from g(X,X) = 0 we have Y g(X,X) = 0, i.e. d(g(X,X))(Y ) =
0 for all Y tangent to H. On the other hand, the normal space (and therefore its dual) is
at each point of H one dimensional.

The terminology stems from the fact that κ measures acceleration of integral curves
of the Killing field. This can be seen as follows:

If γ solves the equation γ̇(t) = Xγ(t), then the acceleration can be found as a = D
dt
γ̇,

so we have:

aµ =
D

dt
γ̇µ = ∇γ̇ γ̇µ = ∇XXµ = Xν∇νXµ

Since X is Killing, ∇νXµ = −∇µXν . Thus on the horizon:

aµ = Xν∇νXµ = −Xν∇µXν = −1

2
∇µ(XνXν) = −1

2
∂µg(X,X)

= −1

2
dg(X,X)(∂µ) = κX♭(∂µ) = κXµ.
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By a nondegenerate Killing horizon (with Killing field X), we mean that g(X,X) =
XµXµ has non zero gradient on the Horizon. Equivalently, the surface gravity κ of the
horizon must be non zero.

The first theorem on uniqueness of black holes (in the static vacuum case) was due to
W. Israel (1967). It gave conditions (not assuming spherical symmetry) under which the
only solution was the Schwarzschild spacetime.

In the ’70s it became clear that one could obtain a result of similar nature for an
axisymmetric spacetime. Indeed, it was the work of Carter in ’72 (and later Robinson in
’75) that gave birth to the following result:

Theorem 92 (Robinson and Carter uniqueness theorem)
Let M be a (i) strongly asymptotically predictable (ii) stationary axisymmetric spacetime
which (iii) satisfies the Einstein vacuum equations. Assume further that the event horizon
is a non-degenerate Killing horizon that is topologically a 2-sphere (in particular it is
connected). Then M is uniquely specified by two parameters - the mass m and the angular
momentum a. More precisely, the family of solutions is the two-parameter Kerr family of
metrics 2.2.

Proof. The (general electrovac5) problem reduces to a boundary value problem on some
2-manifold (see e.g. the original paper [36] or a more in-depth discussion [35] by Carter).
Uniqueness of the solution was then proven only in the vacuum case by Robinson in [39].
However, the divergence identity on which the proof hinges was only understood later by
Mazur ([38]), who then gave the proof in the general electrovac case (See e.g. Mazur [37]).
Alternatively, the proof is also given in Heusler [10].

On the other hand, Hawking had proven (1972) that, assuming analyticity, the space-
time must necessarily be axisymmetric and event horizon must be a Killing horizon.

5.4.2 Rigidity theorem

Let us define the ergosphere of a stationary regular predictable spacetime as a region of
J−(I+)∩J+(I−) on which the Killing field X is spacelike. Intuitively, it is impossible for
a particle to follow the integral curves of the field X, i.e. to remain at rest when viewed
from infinity.

We now give a description of the Rigidity theorem as can be found in Hawking & Ellis
[3].

Definition 93. We say a spacetime M is regular predictable if M is strongly asymp-
totically predictable with Cauchy surface S and the following holds:

1. S∩J−(I+) is homeomorphic to R3\V , where V is an open set with compact closure.

2. S is simply connected

3. For large enough τ , S(τ) ∩ J−(I+) is contained in J+(I−).

The condition 3 just says that we can actually fall into the black hole; in particular
for large enough τ , ∂B(τ) ⊂ J+(I−) so that we can ”see” the event horizon from past
infinity. If 1 and 2 are satisfied, the boundary of the black hole will be compact and
connected (Hawking & Ellis [3] proposition 9.2.6). In fact, we have:

5We mention that in the electrovac case there are 3 parameters (mass, angular momentum and charge);
the solution is given by the so-called Kerr-Newman metric.
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Theorem 94
For a stationary regularly predictable M , each component of the event horizon ∂B(τ) in
J+(I−) will be homeomorphic to a 2-sphere.

Proof. See Hawking & Ellis [3] proposition 9.3.2.

Theorem 95
Let M be a stationary non-static regular, predictable spacetime in which the ergosphere
intersects the domain of outer communications J−(I+) ∩ J+(I−). Assume further that
M is an analytic manifold (and the metric analytic as well), then M is axisymmetric.

Note that the static case is covered by Israel’s theorem (and later extensions thereof).

Proof. See Hawking & Ellis [3] theorem 9.3.6.

One therefore sees that a single black hole in vacuum will eventually settle down into
the Kerr family - this is the so-called no hair theorem.

Not so fast!

5.4.3 Issues and later developments

There are a couple of issues with the previous analysis (in particular with theorems 94
and 95). Let us first comment on theorem 94 (i.e. theorem 9.3.2 in [3]). There appears
to be a problem with the proof of theorem 9.3.2 as given in [3]. Namely, the argument
given does not rule out a toroidal topology. This was more or less settled by Wald and
Chruściel in [43].

There appears to have been a hole in the proof of theorem 95 (theorem 9.3.6 in [3])
as well. In fact, as it is currently formulated, theorem 95 is simply wrong - Chruściel has
constructed a counterexample in [46]. The problem is in actually globally extending the
group of isometries gt initially (and correctly) defined only near the event horizon. The
whole issue has, fortunately, been solved in Chruściel [47], providing us with the desired
axial symmetry. See also [44] and [45].

Removing the analyticity assumption is still an open problem. We should mention,
though, that there has been some notable progress. For instance, assuming some scalar
identity Ionescu and Klainerman [40] prove the rigidity theorem without analyticity.
Moreover, in [41] Alexakis, Ionescu and Klainerman prove rigidity holds provided that
the spacetime is close to Kerr; this result in particular suggests the conjecture about the
nonlinear stability of the Kerr exterior (whose veracity would, as we have mentioned, dis-
prove the C0 version of the strong cosmic censorship conjecture). Additionally, the same
authors prove rigidity for small angular momenta in [42].

Thus, the conclusion that the purported proof of theorem 95 allows us to make is:

Theorem 96 (Hawking Rigidity Theorem)
Under the assumptions of theorem 95 (analyticity being crucial), there exists a Killing field
X defined near the event horizon H, such that on H the integral curves of X coincide
with the null generators of H. Simply stated, the event horizon is a Killing horizon.
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Conclusion

The main focus of this thesis have been the classical results from the ’60s and ’70s period.
We have covered some basic causality theory, the celebrated singularity (incompleteness)
theorems, and equally celebrated ”no hair theorem”. Notably however, I have not touched
upon the subject of black hole thermodynamics, which was first developed geometrically
by Bekenstein, Carter, Bardeen, and Hawking (and again cleaned up by Chruściel). Here
it became apparent that black hole mechanics had striking similarities to thermodynamics
(surface gravity acting as temperature and area of a black hole horizon acting as entropy).

Later Hawking applied QFT to black holes and discovered Hawking radiation, thereby
establishing that the link between black holes and thermodynamics is not merely an
analogy but something more exact (the temperature of Hawking radiation being exactly
proportional to surface gravity). On the other hand, this discovery led to the black hole
information paradox, the complete resolution of which is still an ongoing area of research.
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Appendix A

Ricci Tensor of a Spherically
Symmetric Metric

Assume a metric of the form

ds2 = F (v, r)dv2 + 2X(v, r)dvdr + Y 2(v, r)dΩ2

and denote by f ′ = ∂r and ḟ = ∂vf the respective partial derivatives. Then we have:

Ruu =
1

2X2Y
(FXY F ′′ − 2FXY Ẋ ′ + 2FXF ′Y ′ − 4FXẊY ′ − FY F ′X ′

+ 2FY ẊX ′ − 4X3Ÿ + 2X2Ḟ Y ′ − 2X2F ′Ẏ + 2X2ẊẎ )
(A.1)

Rrr =
2

XY
(−XY ′′ +X ′Y ′) (A.2)

Rθθ =
1

X3
(FXY Y ′′ + FX(Y ′)2 − FY X ′Y ′ +X3 − 2X2Ẏ ′ − 2X2Ẏ Y ′ +XY F ′Y ′) (A.3)

We also have two more nonzero components Rϕϕ = Rθθ sin2 θ and Rur = 1
2X2 (−Y F ′X ′ +

2Y ẊX ′ + XY F ′′ − 2XY Ẋ ′ − 4X2Ẏ ′ + 2XF ′Ẏ ) for which we have no use. To calculate
the components of the Ricci tensor I used einsteinpy. Then the following python code
does the job:

import sympy

from einsteinpy.symbolic import RicciTensor, RicciScalar, metric

from sympy import Function, Symbol, sin

from einsteinpy.symbolic.predefined import AntiDeSitter

v = Symbol(’v’)

r = Symbol(’r’)

theta = Symbol(’theta’)

phi = Symbol(’phi’)

F = Function(’F’)(v,r)

X = Function(’X’)(v,r)

Y = Function(’Y’)(v,r)
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arr=[[F, X,0,0], [X,0,0,0], [0,0,Y**2,0], [0,0,0,Y**2*sin(theta)**2]]

syms=[v,r,theta,phi]

g=metric.MetricTensor(arr, syms)

g.tensor() #display metric

Ric = RicciTensor.from_metric(themetric)

Ric.tensor() #display Ricci tensor
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Appendix B

Proof of Geroch’s Theorem

We follow [6]. Let us state once more what is to be proven:

Theorem 97 (Geroch)
A globally hyperbolic spacetime M must have a globally defined time function τ , whose
level sets are Cauchy surfaces.

Proof. Let φi be a partition of unity on M subordinate to some convex cover. Let h be
some complete Riemann metric on M with volume form dV and µ the unique Radon mea-
sure induced by the form dV . More precisely, µ is induced (via the Riesz representation
theorem - see [17] or [18]) by the positive linear functional f 7→

∫
M
fdV defined on the

space of continuous maps f : M → R with compact support.
We put Vi =

∫
M
φidµ <∞ to be the volume of M as measured by the i-th partition of

unity. Next, set ν =
∑

i∈N
1

2iVi
φi, then νdµ is a finite measure:

∫
M
νdµ = 1. Now define

V±(p) =
∫
J±(p)

νdµ. Since J±(p) contains the open set I+(p), it is clear that V ± (p) > 0,

and since M \ J±(p) contains open sets as well, we have V ±(p) < 1.
We shall later show that, when J±(p) are closed (as in globally hyperbolic spaces), the

functions V ± are continuous. We also show that V − tends to 0 along any past directed
causal curve, while V + tends to 0 along any future-directed causal curve.

Now we set τ(p) = V −(p)
V +(p)

, then it is clear that τ is continuous. If γ : (a, b) → M is an

inextendible future-directed causal curve, then limt→b τ(γ(t)) = ∞ and limt→a τ(γ(t)) = 0.
Thus τ runs from 0 to ∞ on all inextendible future-directed curves γ.

In particular, γ intersects every level set of τ at least once. Furthermore, τ is strictly
increasing on future-directed curves, so γ intersects every level set exactly once; the level
sets are thus Cauchy surfaces. Indeed, J+(q) ⊂ J+(p) and J−(q) ⊃ J−(p) whenever
p ≤ q, but in globally hyperbolic spaces we have I±(p) ̸= I±(q) for q ̸= p. Now, since
∂I±(p) is a Lipschitz topological hypersurface, it has measure 0 (Lipschitz maps preserve
sets of measure 0), so I± and J± have the same measure. Thus, along any future-directed
causal curve γ, V + must be strictly decreasing and V − strictly increasing, so τ must be
strictly increasing.

To actually finish the proof we need to show V ± are continuous and have the appro-
priate asymptotic behavior:

Lemma 98
Suppose M is causally simple, i.e. that J±(p) are all closed sets, then V ± are continuous.
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Proof. Let pi be some sequence converging to p. We prove V ±(pi) → V ±(p). Denote by
χA the characteristic function of set A (equaling 1 on A and 0 outside A). Let q be any
point in the past of p: p ∈ I+(q) (i.e. q ∈ I−(p)). Since I+(q) is a neighborhood of p,
for large enough i, all pi fall into I+(q) (i.e. q must be in the past of pi). Thus, for large
enough i, χI−(pi)(q) = 1 = χI−(p)(q). Since χI−(p)(q) = 0 for q /∈ I−(p), we get generally
χI−(pi) ≥ χI−(p) (on M), so lim infi→∞ χI−(pi)(q) ≥ χI−(p)(q) for all q ∈M . Since ∂I± is a
topological Lipschitz surface, it has measure 0, so we get:

lim inf
i→∞

χJ−(pi)(q) ≥ χJ−(p)(q),

which holds almost everywhere (everywhere except for, perhaps, a set of measure 0).
We now must prove the converse inequality:

lim sup
i→∞

χJ−(pi)(q) ≤ χJ−(p)(q).

To establish this, it is sufficient to show that, whenever lim supi→∞ χJ−(pi)(q) is 1, χJ−(p)(q)
must be as well (note that lim supi→∞ χJ−(pi)(q) can only take values 1 or 0 as χ can only
take those values). Let q be any point for which lim supi χJ−(pi)(q) = 1, then there exists
a subsequence pj such that χJ−(pj)(q) > 0, i.e. pj ∈ J+(q). But since J+(q) is closed and
pj → p, we also must have p ∈ J+(q).

Finally, we have:
lim inf
i→∞

χJ−(pi)(q) ≥ lim sup
i→∞

χJ−(pi)(q),

which holds almost everywhere (a.e.). This means that limi→∞ χJ−(pi)(q) exists a.e. and
must be equal to χJ−(p)(q) a.e.

Since the (nonnegative) functions χJ−(p)(q) are bounded by 1 above and constant
functions are integrable in measure νdµ, the Lebesgue dominated convergence theorem
gives:

V −(p) =

∫
M

χJ−(p)νdµ = lim
i

∫
M

χJ−(pi)νdµ = lim
i
V −(pi).

Continuity of V + follows analogously (just change the time orientation everywhere in
the argument).

Lemma 99
Let M be globally hyperbolic. V − tends to 0 along any past-directed inextendible causal
curve γ : [0, b). Similarly, V + tends to 0 along any future-directed inextendible causal
curve.

Proof. Partition the manifold M using some sets Xi with compact closure; thus χXi
+

χXj
≤ 1 for i ̸= j. Using the dominated convergence theorem (twice), we get:

lim
k→∞

∞∑
i=k

∫
Xi

νdµ = lim
k→∞

∞∑
i=k

∫
M

χXi
νdµ = lim

k→∞

∫
M

∞∑
i=k

χXi
νdµ

= lim
k→∞

∫
M

χ⋃∞
i=k Xi

νdµ =

∫
M

lim
k→∞

χ⋃∞
i=k Xi

νdµ

But this just means
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lim
k→∞

∞∑
i=k

∫
Xi

νdµ = 0

Now Kn =
⋃n

i=0Xi are compact sets, but since strong causality holds on each Kn,
lemma 28 guarantees that γ must exit each Kn never to return. Since M is globally
hyperbolic, this means that for each n, there exists some tn such that J−(γ(t))∩

⋃n
i=0Xi =

∅ for all t ≥ tn (so in particular
∫
J−(γ(t))∩

⋃n
i=0 Xi

νdµ = 0). Indeed, for a compact Kn,

J−(γ(t)) ∩ J+(Kn) is compact as well, so γ must leave it at some t′n ≥ tn.
This finally gives

V −(γ(t)) =

∫
J−(γ(t))∩

⋃∞
i=n+1 Xi

νdµ ≤
∫
⋃∞

i=n+1 Xi

νdµ =
∞∑

i=n+1

∫
Xi

νdµ,

but the right side can be made as small as we wish, provided we choose n large enough.
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https://arxiv.org/abs/1309.7591

[29] Abhay Ashtekar, R. O. Hansen, A unified treatment of null and spatial infinity
in general relativity. I. Universal structure, asymptotic symmetries, and conserved
quantities at spatial infinity, Journal of Mathematical Physics 19, 1542 (1978).
https://doi.org/10.1063/1.523863

[30] Abhay Ashtekar, Geometry and Physics of Null Infinity, Surveys in Differential Ge-
ometry (2015). https://arxiv.org/abs/1409.1800v2

75

https://doi.org/10.1515/zna-1967-0911
https://doi.org/10.1007/BF01645389
https://arxiv.org/abs/gr-qc/0401112
https://arxiv.org/abs/gr-qc/0611138
https://arxiv.org/abs/gr-qc/0306108
https://arxiv.org/abs/1908.11701
https://arxiv.org/abs/1710.01722
https://arxiv.org/abs/1309.7591
https://doi.org/10.1063/1.523863
https://arxiv.org/abs/1409.1800v2


[31] Robert Geroch, Gary T. Horowtiz, Asymptotically Simple Does Not Imply
Asymptotically Minkowskian, Physical Review Letters, 40 (4). 203-206 (1978)
doi:10.1103/physrevlett.40.203

[32] Robert Geroch, Domain of Dependence, J. Math. Phys. 11, 437 (1970);
https://doi.org/10.1063/1.1665157

[33] Robert Geroch, Space-time structure from a global view point, in General Relativity
and Cosmology edited by Rainer K. Sachs, Italian Physical Society (1971)

[34] Demetrios Christodoulou, On the global initial value problem and the issue of
singularities, Class. Quantum Grav. 16 A23 (1999) https://doi.org/10.1088/0264-
9381/16/12A/302

[35] Brandon Carter, Republication of: Black hole equilibrium states Part II. General
theory of stationary black hole states, General Relativity and Gravitation 42, 653–744
(2010) https://doi.org/10.1007/s10714-009-0920-9

[36] Brandon Carter, Axisymmetric Black Hole Has Only Two Degrees of Freedom, Phys.
Rev. Lett. 26, 331 (1971) https://doi.org/10.1103/PhysRevLett.26.331

[37] Pawel O. Mazur, Black Hole Uniqueness Theorems, Proceedings of the 11th
International Conference on General Relativity and Gravitation, ed. M. A.
H. MacCallum, Cambridge University Press, Cambridge 1987, pp. 130-157
https://arxiv.org/abs/hep-th/0101012v1

[38] Pawel O. Mazur, Proof of uniqueness of the Kerr-Newman black hole solution, J.
Phys. A: Math. Gen. 15 3173 (1982). https://doi.org/10.1088/0305-4470/15/10/021

[39] D. C. Robinson, Uniqueness of the Kerr Black Hole, Phys. Rev. Lett. 34, 905 (1975).
https://doi.org/10.1103/PhysRevLett.34.905

[40] Alexandru D. Ionescu & Sergiu Klainerman, On the uniqueness of smooth, stationary
black holes in vacuum, Inventiones mathematicae 175, Article number: 35 (2009)
https://arxiv.org/abs/0711.0040

[41] Spyros Alexakis, Alexandru D. Ionescu, Sergiu Klainerman, Uniqueness of smooth
stationary black holes in vacuum: small perturbations of the Kerr spaces, Com-
mun.Math.Phys. 299, 89-127 (2010) https://arxiv.org/abs/0904.0982

[42] Spyros Alexakis, Alexandru D. Ionescu, Sergiu Klainerman, Rigidity of stationary
black holes with small angular momentum on the horizon, Duke Math. J. 163, no. 14,
2603-2615 (2014) https://arxiv.org/abs/1304.0487v2
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[44] Piotr T. Chruściel, João Lopes Costa, On uniqueness of stationary vacuum black
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