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Sažetak:
Svemir kakvog poznajemo, star je otprilike 13.7 milijardi godina, a prosječne je temperature od 2.73

K. Sastav današnjeg svemira čini otprilike 5% vidljive materije, 23% tamne materije i 68% energije u

obliku kozmološke konstante ili nekog drugog oblika tamne energije. Postoje razni kozmološki modeli

i modeli čestične fizike koji pokušavaju objasniti parametre koje mjerimo postojećim detektorima na

Zemlji i u svemiru. Za opaženu strukturu smatra se da je posljedica malih početnih perturbacija koje je

zatim inflacija, odnosno naglo širenje svemira, prenijela. Trenutna teorija bazira se na tome da se svemir

širi i dalje, što se pripisuje tamnoj energiji. Uz barionsku i tamnu materiju te tamnu energiju, postoje

još mnoge fizikalne opservable u svemiru, a jedna od njih su gravitacijski valovi. Gravitacijski valovi

su pojam koji neizostavno vežemo uz kozmologiju, a čije je postojanje potvrd̄eno tek 2015. godine. Uz

detektirane astrofizikalne gravitacijske valove, pretpostavljeno je postojanje primordijalnih gravitaci-

jskih valova koji su nastali u razdoblju ranog svemira. U ovom radu, cilj je razviti mehanizam kojim

ćemo, pomoću poznate teorije i podataka, moći razlikovati astrofizikalne od primordijalnih valova te

time utvrditi njihovo do sada teoretizirano postojanje. Prvo uvodimo pregled standardnog kozmološkog

Lambda-CDM modela, a zatim podjelu izvora gravitacijskih valova na astrofizikalne i promordijalne.

Slijedi matematički formalizam za opis gravitacijskih valova. U poglavlju 3 uvodimo metodu pristranih

(eng. biased) galaktičkih tragača koja se koristi u teoriji formiranja velikih struktura, a koju želimo

primijeniti na gravitacijske valove. Uzimamo u obzir samo linearni dio perturbacijske teorije. Sama

primjena je u sljedećem poglavlju te dobivamo spektar snage gravitacijskih valova u odnosu na spektar

snage tamne materije. Na ovaj način, tretirajući gravitacijske valove kao skalare, dobijemo distribuciju

tamne materije na velikim skalama. Simuliran je graf spektra snage materije, pomoću internetskog alata

CAMB, a koristeći taj rezultat konstruiramo spektar snage gravitacijskih valova kao linearnog tragača

pristranosti (eng. bias). Generiramo spektar za različite vrijednosti Hubbleove konstante i parametra

pristranosti (eng. bias), pokazujući različitosti amplituda i ovisnosti o skali. Naši rezultati se stoga

mogu koristiti kao komplementarne kozmološke probe u podacima za buduće svemirske detektore grav-

itacijskih valova poput LISA-e i drugih.
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1 Introduction

It could be said that today’s hottest topics in the society, especially amongst non-physicists, are
related to the studies of the Universe and elementary particles. Those two hardly exclude each
other once you study them - we could imagine the Universe as a soup of baryonic matter and
some other unknown ingredients such as dark matter and dark energy. To be precise, our cur-
rent knowledge of this cosmic soup says that there is around 5% of visible matter, 23% of dark
matter and 68% of energy in a form of a cosmological constant or some other dark energy as
shown in Figure 1 [1, 2]. Our Universe started in a Big Bang and is approximately 13.7 billion
years old, while currently being at a temperature of around 2.73 K.The success of the Big Bang
paradigm rests on a number of observational pillars: the Hubble diagram that measures expan-
sion; light element abundances that are in accord with Big Bang Nucleosynthesis; temperature
and polarization anisotropies in the cosmic microwave background that agree well with theory;
and multiple probes of large-scale structure that also agree with models. However, this success
has come at a price, we were forced to introduce several ingredients, as mentioned, that go be-
yond the Standard Model of particle physics; dark matter and dark energy which dominate the
energy budget of the universe; and a mechanism generating the small initial perturbations out
of which structure formed, the most popular explanation being inflation. [1]
These ingredients are shown as illustrations at Figure 1 and Figure 2.

Figure 1: A pie chart of what currently comprises our Universe. (Figure taken from [2])
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Figure 2: The evolution of our Universe. (Figure taken from [3])

1.1 A history of the Universe in a nutshell

We have solid evidence that the universe is expanding - this means that early in its history, the
distance between us and distant galaxies was smaller than it is today. We conveniently introduce
this effect by using a scale factor a, whose present value is set to 1 by convention, while at ear-
lier times, a was smaller than it is today. We can imagine placing a grid in space which expands
uniformly as time evolves. Points on the grid, which correspond to observers at rest, maintain
their coordinates, so the comoving distance between two points - which just measures the dif-
ference between coordinates, and can be obtained by counting grid cells - remains constant.
However, the physical distance is proportional to the scale factor, and the physical distances
evolves with time. Directly related effect is that the physical wavelength of light emitted from a
distant object is streched out proportionally to the scale factor, so that the observed wavelength
is larger than the one at which the light was emitted. Conveniently, this stretching factor is
defined as the redshift z:

1 + z ≡ λobs

λemit

=
aobs

aemit

=
1

aemit

. (1.1)

Additionally, the smooth universe is characterized by one other parameter - its geometry. There
are three possibilities: Euclidean or a "flat universe" (particles travel in a parallel), closed (par-
ticles’ path converge), open (particles’ path diverge). General relativity connects energy and

2
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geometry. This means that the total energy density in the universe determines the geometry: if
the density is higher than a critical value, ρc ≈ 10−29gcm−3, the universe is closed; if the density
is lower, it is open; if the density is equal to critical then it is a Euclidean universe. No matter
how this seems unlikely to happen, all observations indicate that the universe is Euclidean to
within errors and inflation provides a natural explanation for this. To understand the history
of the universe, evolution of the scale factor a with cosmic time t has to be determined. At
the earlier stage of the evolution of the universe, a ∝ t1/2, while at later times the dependence
switches to a ∝ t2/3. The variation of the scale factor is determined by the evolution of the
energy density in the universe. At earlier times, radiation dominates, while later, nonrelativis-
tic matter accounts for most of the energy density. To quantify the change in the scale factor
and its relation to the energy, Hubble rate is introduced as H(t) ≡ 1

a
da
dt

, which measures how
rapidly the scale factor changes. With subscript 0, we denote the value of a quantity today, so
H0 ≡ H(t0) is known as Hubble’s constant. General relativity predicts that the scale factor is
determined by the Friedmann equation:

H2(t) =
8πG

3

[
ρ(t) +

ρc − ρ(t0)

a2(t)

]
, (1.2)

where G is Newton’s constant, ρ(t) is the energy density in the universe as a function of time
with ρ(t0) its value today; ρc critical density. To use the Friedmann equation, we must know
how the energy density evolves with time but this is a complicated question because ρ in it is
the sum of several different components, each of which scales differently with time. Consider
first nonrelativistic matter, which means that the energy of a given constituent particle is es-
sentially equal to its rest mass energy, which remains constant with time. The energy density
of a collection of these particles is therefore equal to the rest mass energy times the number
density. The densities were necessarily larger when the scale factor was smaller. Apart from
matter, there is a sea of massless photon that permeates the universe, discovered in 1965. These
photons have traveled freely since the universe was very young. Nowadays, their wavelengths
lie in the microwave part of the spectrum so they comprise what is called the cosmic microwave
background (CMB). For further details, see [1].
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Figure 3: Evolution of the scale factor of the universe with cosmic time. Today’s universe corresponds
to the upper-right corner of the plot, where a(t0) = 1 and the temperature T = 2.73 K. In the very early
universe, radiation was the dominant component and the scale factor increased at t1/2. At the indicated
point, the universe transitioned to matter domination, during which a(t) ∝ t2/3. Recently, the expansion
law changed again due to dark energy, with a(t) transitioning to an exponential function of time. [1]
(Figure taken from [1])

1.2 The topic of this thesis

In this thesis we build on these cosmological ingredients by introducing gravitational waves and
the stochastic background that they produce. Gravitational waves have been of great interest in
the last decade, especially since their first detection. It is expected that gravitational waves are
going to be even more intensely studied in the following years. We could use gravitational waves
as cosmological and astrophysical probes for our theories and that is where one of many of their
interesting features lie. In this work, we would like to model their behaviour on large scales.
In Chapter 2 we briefly introduce gravitational waves; their different sources; signal properties;
and mathematical formalism behind them. This is followed by introducing bias galaxy tracers,
in Chapter 3, that are often used in the theory of the large-scale structure. In Chapter 4 we
apply bias to gravitational waves. Implications of this application and conclusions are drawn in
Chapter 5.
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2 Stochastic gravitational-wave background

2.1 Gravitational waves

Einstein’s theory of General Relativity predicts many different phenomena such as black holes,
gravitational lensing and gravitational waves (GW). Gravitational waves are the ripples in the
fabric of spacetime and they contract or expand it on their way. There are various sources to
gravitational waves, which will be discussed later in this chapter, but one way of producing them
is in a binary system of two stars orbiting one another. Gravitational waves carry away angular
momentum and energy from the forementioned system which can be indirectly detected. This
has been done by R. Hulse and J. Taylor, while observing the pulsar PSR 1913+16 [4]. However,
the first direct observation of gravitational waves was made in 2015 from a binary black hole
merger, 100 years after the first theoretical prediction, by Laser Interferometer Gravitational-
Wave Observatory (LIGO) and Virgo collaboration [5]. Figure 4 shows an illustration of the
second detection of gravitational waves at LIGO.

Figure 4: This is an illustration of the second ever detection of gravitational waves at LIGO. It shows the
merger of two black holes and the gravitational waves that ripple outward. The black holes were 14 and
8 times the mass of the Sun and, when they merged, formed a single black hole 21 times the mass of the
Sun. If seen in reality, the area near the black holes would appear highly warped and the gravitational
waves would be difficult to see directly. [6] (Figure taken from https://www.ligo.caltech.edu [6])
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2.2 Motivation

A stochastic background of gravitational radiation is a superposition of gravitational-wave sig-
nals that are either too numerous or too weak to individually detect. Such individual signals
are thus unresolvable, unlike the large signal-to-noise ratio binary black hole (BBH) and bi-
nary neutron star (BNS) merger signals. Although, individual signals that contribute to the
gravitational-wave background (GWB) cannot be resolved, the detection of such a background
would provide useful information of statistical or population properties of the source. [7] The
next step would be to create a GW analogue of the cosmic microwave background (CMB)
shown in Figure 5, which is a sky map of the temperature fluctuations, relative to T0 = 2.73

K isotropic component, in the CMB blackbody radiation [7, 9, 10]. The nature of the CMB is
that it is a relic of the electromagnetic radiation, dating back to approximately 380,000 yr after
the Big Bang [11]. At that time, the universe was at around 3000 K which is a low enough
temperature to form first hydrogen atoms and, in the absence of free electrons, for photons to
move unhindered [7]. What we see in the CMB is the "screenshot" of the density perturbations
from the time of last scattering of photons, which is a "seed" for large-scale structure formation
in the early universe [7]. Due to the different nature of gravitational interaction in comparison
to the electromagnetic force, GWB would give information of the universe as it was about 10−22

seconds after the Big Bang [12]. This is why detecting cosmological GWB would be extremely
important, since it would be our window into the earliest moments of the universe.

Figure 5: Skymap of ∆T/T0 for the cosmic microwave background radiation [7]. (Figure taken from
https://www.cosmos.esa.int [8])
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2.3 Different sources of gravitational-wave background

A stochastic background of gravitational radiation arises from an extremly large number of
weak, independent and unresolved gravitational-wave sources [13]. Such backgrounds could
have been produced in the early universe from inflation, phase transitions or cosmic strings [13].
Other way to produce a GWB is from many unresolved astrophysical sources, for example by
combining signal from binary black hole and binary neutron star mergers that evolved from
stars, the so called stellar-mass BBH and BNS mergers. Mass of the binary system is reciprocal
to the frequency of the gravitational wave it produces. Since stellar-mass BHs and NSs have
relatively small masses, the signal they produce is at the high frequency end (from around 10 Hz
to a few kHz) of the spectrum. This part of the spectrum is in the sensitive band for the ground-
based detectors like LIGO and Virgo. Systems that are bigger in mass produce lower-frequency
GWs that are also expected to be a part of the gravitational-wave background and they are
potentially detectable with proposed detectors such as space-based gravitational wave detector
Laser Interferometer Space Antenna (LISA). If we were to plot a gravitational-wave spectrum,
we obtain the Figure 6. Frequencies in Figure 6 range from 10−17 Hz, with a corresponding
period equal to the age of the universe, to a few kHz, with a period of a few miliseconds. [7]
Furthermore, the potential sources of gravitational-wave background are shown together with
detectors relevant for the each frequency. Next, we will look deeper into the nature of the
sources.

Figure 6: Gravitational wave spectrum with detectors and potential sources of gravitational-wave back-
ground. GWB signal from cosmic strings and phase transitions depends on different parameters so they
stretch across a whole spectrum and peak at basically any frequency. Relic gravitational waves, pre-
dicted by standard inflation, that constitute the primordial background, also stretch across the whole
frequency band. [7] (Figure taken from [7])
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2.3.1 Cosmological or primordial sources

Gravitational-wave sources of cosmological origin are produced in the very early universe, be-
fore the formation of stars and galaxies. We could divide them into relic gravitational-waves
due to inflation, those created by cosmic phase transitions and cosmic strings [13].

Relic GWs are quantum fluctuations in the geometry of spacetime, driven to macroscopic
scales by inflation - a period of rapid expansion, mere 10−32 s after the Big Bang [7]. Cosmic
phase transitions are macroscopic cosmic events so dramatic that they are capable of leaving
imprint via non-adiabatic vacuum fluctuations and creation of particles, formation of defects,
generation of magnetic field, generation of baryonic asymmetry, and the gravitational-wave
background [14]. Cosmic strings are line-like topological defects associated with phase transi-
tions in the early universe [7].

This relic background potentially has an effect on the polarization of the CMB radiation
which makes it detectable [15].

2.3.2 Astrophysical sources

Compact astrophysical objects such as white dwarfs, neutron stars and black holes lay grounds
to create gravitational waves. It is convenient to split astrophysical sources of gravitational
waves into three main categories, according to the temporal behavior of the produced wave-
forms: burst, periodic and stochastic sources [13].

Burst sources can be divided into coalescing compact binaries and supernovae. Amongst all
binary systems that radiate GWs, the most interesting ones of compact binaries are: neutron
star - neutron star (NS/NS), neutron star - black hole (NS/BH) and black hole - black hole
(BH/BH) binaries. [13] Compact binaries emit gravitational waves in three phases: (i) as they
spiral in toward one another, (ii) as they merge to create a single object and (iii) as the resulting
object rings down to a symmetric configuration, moreover, understanding each of these phases
enhances our chances to detect the GW signals from binaries [16]. Neutron stars and black
holes of stellar masses form in a gravitational core-collapse of a massive star, which leads to a
supernova type II. The gravitational wave form produced in this type of event is unpredictable
due to the yet incomplete knowledge of the collapse. [13]

Representative example for periodic gravitational waves are spinning neutron stars. Neutron
star emits gravitational waves only if it has some kind of asymmetry because a rotating body
that is perfectly symmetric around its rotationg axis does not emit GWs. There are several
mechanisms that could cause the asymmetry. Stochastic sources are, like it’s been previously
mentioned, a large number of weak, independent, unresolved GW sources coming from the
early universe or the populations of astrophysical sources (e.g. many binary systems). [13]

8



Tamara Rom: Stochastic gravitational-wave background

2.4 Signal properties

Different sources of GWB have different properties of the observed signal and these properties
allow us to identify sources that contribute to the background. The difference is seen in terms of
(i) angular distribution of GW power on the sky, (ii) temporal distribution and amplitude, (iii)
power spectra. [7]

(i) Background that comes from cosmological sources such as cosmic strings or relic GWs
is expected to be statistically isotropic, exactly like CMB. The GW power in this background
is anisotropic since it follows the spatial distribution of its belonging sources, however, when
averaged over different realizations of the sources, it has no preferred direction. Different sta-
tistically isotropic backgrounds are defined by different angular power spectra, Cl as a function
of multipole moment l, where

C(θ) =
∞∑
l=0

2l + 1

4π
ClPl(cosθ), (2.1)

is the angular correlation between GW power coming from two directions separated by angle
θ. If the monopole, C0, is the only non-zero element, it means that GWB is then exactly
isotropic and that is the simplest model for stochastic backgrounds. On the other hand, there are
statistically anisotropic backgrounds that have preferred directions in the distribution of power
in the sky, even when averaged over different realizations of the sources. [7] Figure 7 shows a
simulation of sky maps for statistically isotropic and anisotropic background.

Figure 7: Simulation of sky maps for a GW power of a statistically isotropic background (in the left
panel) and an anisotropic background (in the right panel). The anisotropic background follows the
galactic plane in equatorial coordinates as an example of one possible anisotropy. [7] (Figure taken
from [7])

(ii) Next difference in stochastic backgrounds is due to temporal distribution and amplitude.
The rate estimates and durations of individual merger signals are such that the BBH background
is expected to be popcorn-like which means that it is consisting of non-overlapping mergers,
while that of BNS background is expected to be stationary and confusion-limited which means

9
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that it is consisting of several overlapping BNS mergers at any instant of time. [7]

(iii) As shown in Figure 8, stochastic backgrounds can also differ in their power spectra. In
the same figure, the simulated time-domain data, including the signals for an individual BNS
merger and toy-model BBH ringdown (stage after the merging of two black holes, damping
of the resulting black hole "ring" by emission of gravitational waves [17]), histograms and
power spectra for three different types of gravitational-wave background. For these simulations,
a sufficient number of individual BNS merger and BBH ringdown signals were overlapped
to result in a Gaussian-stationary GWBs (shown in the second and the third columns). The
difference between these backgrounds emerges in their power spectra which is in the fourth
column. The power spectra for the BNS merger and BBH ringdown backgrounds are shaped
the same way as those of an individual BNS merger or BBH ringdown, however, scaled by the
total number of sources contributing to the background. [7]

Figure 8: Simulation of time-domain data, including the signals for an individual BNS merger and BBH
ringdown, histograms and power spectra for three different types of Gaussian-stationary GWBs [7].
(Figure taken from [7])

2.5 Mathematics of a stochastic background

We consider the combined signal for the background since the individual signals making a
GWB are either too weak or too numerous to be individually detected. Another reason is that
such signal is for all practical purposes random which is similar to the noise in a single detector.
This means that we need to use ensemble averages of the metric perturbations to describe the
GWB statistically. [7]

10
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2.5.1 Plane-wave expansion of gravitational waves

Like previously mentioned, gravitational waves are time-varying perturbations to the geometry
of space-time and they propagate from the source at the speed of light. The metric perturba-
tions corresponding to a plane wave propagating in direction k̂ ≡ −n̂, in transverse-traceless
coordinates (t, ~x) ≡ (t, xa) where a = 1, 2, 3, have two degrees of freedom. Those degrees
of freedom correspond to the amplitudes of the plus (+) and cross (×) polarizations of the
gravitational wave (shown in Figure 9). [7]

Figure 9: Two possible orthogonal polarizations of a gravitational wave. Test particles, in a circular
ring in the plane orthogonal to the direction of propagation of the wave, are deformed into ellipses as
space is "squeezed" and "stretched" by the passing wave. [7]

Taking everything mentioned into consideration, the metric perturbation for the most general
GWB can then be written as a superposition of such waves

hab(t, ~x) =

∫ ∞
−∞

df
∫

d2Ωk̂

∑
A=+,×

hA(f, k̂)eAab(k̂)ei2πf(t−k̂·~x/c), (2.2)

where f denotes the frequency of the component waves, k̂ direction of propagation and A =

+,× their polarization. The direction to a particular GW source is given by n̂ = −k̂ and the
quantities eAab(k̂) are polarization tensors, given by

e+
ab(k̂) = l̂al̂b − m̂am̂b,

e×ab(k̂) = l̂am̂b − m̂al̂b,
(2.3)

where l̂, m̂ are any two orthogonal unit vectors in the plane orthogonal to k̂. For stochastic
background analyses, l̂, m̂ are tipically taken to be proportional to the standard angular unit
vectors tangent to the sphere in a way that {k̂, l̂, m̂} is a right-handed system (displayed in
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Figure 10):

k̂ = −sinθcosφx̂− sinθsinφŷ − cosθẑ = −r̂,

l̂ = +sinφx̂− cosφŷ = −φ̂,

m̂ = −cosθcosφx̂− cosθsinφŷ + sinθẑ = −θ̂.

(2.4)

Figure 10: Coordinate system and unit vectors we use in the plane-wave expansion of a gravitational-
wave background [7].

In the case of analyzing non-stochastic GW sources that have a symmetry axis, such as the
angular momentum vector for binary inspiral, l̂ and m̂ are taken to be rotated relative to−φ̂ and
−θ̂, where the rotation angle is the polarization angle of the source. [7]

2.5.2 Ensemble averages

The Fourier coefficients of the plane wave expansion are the quantitites hA(f, k̂) and since the
metric perturbations for a stochastic background are random variables so too are the Fourier
coefficients. This means that the probability distributions of the Fourier coefficients define the
statistical properties of the background. We can assume that the expected value of the Fourier
coefficients is zero, without losing the generality

〈hA(f, k̂)〉 = 0, (2.5)
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where angle brackets mean ensemble average over different realizations (for example different
backgrounds observed by different spatially-located observers in a homogeneous and isotropic
universe) of the background. What’s interesting are the second-order moments, or in other
words, quadratic expectation values which denote possible correlations between the Fourier
coefficients. If the background is unpolarized, stationary and isotropic, then we have

〈hA(f, k̂)h∗A′(f ′, k̂′)〉 =
1

16π
Sh(f)δ(f − f ′)δAA′δ2(k̂, k̂′), (2.6)

where Sh(f) is the strain power spectral density of the background, having units of strain2 Hz−1.
Lets analyze the right-hand side of the Equation 2.6. Proportionality to the δ(f−f ′) is due to the
assumption of stationarity which means that there is no preferrerd origin of time. Dependence
on the polarization indices which are only via δAA′ is due to the fact that the background is
unpolarized, or in other words, the + and× polarization components are statistically equivalent
and uncorrelated with one another. Consequence of isotropy, or the fact that the power in the
GWB has no preffered direction and that the GWs propagating in different directions have
uncorrelated phases, is seen in the dependence on GW propagation directions via δ2(k̂, k̂′).
If we let the background to be either anisotropic or statistically isotropic, dropping the last
assumption, the Equation 2.6 becomes

〈hA(f, k̂)h∗A′(f ′, k̂′)〉 =
1

4
P(f, k̂)δ(f − f ′)δAA′δ2(k̂, k̂′), (2.7)

where
Sh(f) =

∫
d2Ωk̂P(f, k̂). (2.8)

P(f, k̂) is the strain power spectral density per unit solid angle with units strain2 Hz−1 sr−1. For
statistically isotropic backgrounds, the angular power spectrum is given by the coefficientsCl of
a Legendre series expansion (Eq. 2.1) of the two-point functionC(θ) ≡ 〈P(f, k̂)P(f, k̂′)〉skyavg,
for all k̂, k̂′ having cos= k̂ · k̂′. What’s interesting is that for Gaussian backgrounds, all cubic
and higher-order moments are either identically zero or can be written in terms of the second-
order moments, thus, the quadratic expectation values of the Fourier coefficients give complete
statistical properties of a Gaussian-distributed background. For more details, see [7].

2.5.3 Energy density spectrum

Sh, strain power spectral density of the GWB, can be related to the normalized energy density
spectrum

Ωgw(f) ≡ 1

ρc

dρgw

dlnf
=
f

ρc

dρgw

df
, (2.9)

where the energy density in gravitational waves contained in the frequency interval f to
f + df is dρgw and the critical energy density that is needed to just close the universe today is
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ρc ≡ 3H2
0c

2/8πG. In case we use the relation which gives the energy density in gravitational
waves in terms of the quadratic expectation values of the metric perturbations

ρgw =
c2

32πG
〈ḣab(t, ~x)ḣab(t, ~x)〉, (2.10)

we get this result

Sh(f) =
3H2

0

2π2

Ωgw(f)

f 3
. (2.11)

Alongside Sh(f) and Ωgw(f), we can describe the strength of a GWB with the dimensionless
characteristic strain hc(f) which is defined as

hc(f) =
√
fSh(f). (2.12)

For backgrounds that are described by a power-law dependence on frequency,

hc(f) = Aα

(
f

fref

)α
⇔ Ωgw(f) = Ωβ

(
f

fref

)β
, (2.13)

where α and β are spectral indicies and there is no sum over them. Aα is the amplitude of the
characteristic strain and Ωβ is the amplitude of the energy density spectrum, both at some refer-
ence frequency f = fref. Using these definitions and relationships between Ωgw(f), Sh(f), hc(f),
we obtain

Ωβ =
2π2

3H2
0

f 2
refA

2
α, β = 2α + 2. (2.14)

For standard inflatory backgrounds, we have Ωgw(f) = const., for which β = 0, and α = −1,
while for GWBs associated with compact binary inspirals, both neutron stars and stellar-mass
black holes, and for supermassive black hole binaries we have Ωgw ∝ f 2/3 for which β = 2/3

and α = −2/3 (relevant for advanced LIGO, Virgo, etc.). [7]
Characteristic strain dependence of frequency is shown in Figure 11 alongside different fre-
quency bands where space and ground-based detectors operate.
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Figure 11: Plot of the characteristic strain against the frequency of sources. Gravitational-wave spec-
trum, showing frequency bands where different detectors such as LISA and LIGO plan to operate or
already operate, respectively. (Figure generated by http://gwplotter.com/, based on [18])

3 Biased galaxy tracers

So far we have looked at gravitational waves and now we turn to biased tracers, let us see how
they work.

There is no direct way of measuring the matter power spectrum; the bulk of matter is in form
of dark matter and even much of the baryonic matter is not readily observable (e.g. dilute hot
gas), however, there are many observables that probe the matter distribution indirectly [1].

Perhaps the most important observable is galaxy clustering which uses galaxies, or, generally
speaking, any astrophysical object, as tracers of the large-scale matter distribution [1]. Such
observed distribution of galaxies, quasars and clusters of galaxies - the large-scale structure
(LSS) of the Universe (shown in Figure 12) is one of the foundations of our knowledge of
the history of the Universe. If we understand how the distribution of tracers is related to the
underlying distribution of matter, we can access a bunch of information on the composition
of the Universe, properties of gravity, dark matter and dark energy, as well as the nature of
producing the initial "seeds" of structure. [19]

We will make use of a relation known as bias, which connects luminous tracers (galaxies,
voids, quasars, Lyman-α forest, 21cm hydrogen hyperfine structure transition lines, etc. [21,
22]) and matter, thus forming a key ingredient in the interpretation of the observed large-scale
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structure. In standard cosmological models, the initial conditions of the LSS of the Universe
is due to the quantum mechanical vacuum fluctuations and because of its origin, we cannot
deterministically predict the precise initial conditions of the Universe as we observe it, therefore,
our theoretical treatment of the LSS is based on describing random fields. [19]

Figure 12: 2D slice projections of the locations of galaxies in CfA2, 2dF and SDSS galaxy redshift
surveys are shown in the top left half. On the lower right, galaxies which were assigned to dark matter
halos in the Millennium gravity-only N-body simulation using a semi-analytical prescription are shown
- it is apparent that the simulation which assumes a flat ΛCDM cosmology, qualitatively reproduces the
observed large-scale structure of the Universe quite well. [19] (Figure taken from [20])

Beyond qualitative conclusion it is difficult to extract information from the 1-point function
(mean of a random field) of galaxies - therefore, cosmological conclusions have been based
on the next-order statistic of the galaxy density field, the two-point correlation function and its
Fourier transform, the power spectrum [19]. Two-point correlation function basically tells us
what is the probability that we will find two objects, lets says galaxies, within a fixed distance
r of each other.
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Consider a simple ansatz (linear bias relation) which locally relates the density contrast of
galaxies or clusters of galaxies to that of matter at a fixed time

δg(~x) ≡ ng(~x)

n̄g

− 1 = b1δm(~x) = b1

(
ρm(~x)

ρ̄m

− 1

)
, (3.1)

where all the quantities are evaluated at the same fixed time, which is left implicit here, δm(~x)

represents the matter overdensity, n̄g is the mean comoving number density of galaxies, while
ρ̄m is the comoving background matter density and b1 is a parameter called bias [19]. Because
galaxies are complicated and highly nonlinear tracers of the LSS, their density perturbation is
not the same as that of matter, however, their linear relation is a guranteed result at linear order
in perturbations and on large scales [1]. In this thesis we will focus on linear theory and relation.
We can write the Equation 3.1 as:

δg(~x) = b1δm(~x). (3.2)

Bias parameter, b1, incorporates the local physics (physics of small scales) such as galaxy mass,
AGN feedback, metallicity, etc. While bias parameter completely describes all the complexi-
ties of galaxy formation, this is a nontrivial result that heavily relies on the fact that, on large
scales, gravity drives the structure formation. Most of matter in the Universe comes in form of
dark matter and this is the key information we use when connecting galaxies to matter like in
Equation 3.2 because galaxies "float" in dark matter halos.

The Equation 3.1 of the simple linear bias can be generalized as

δg(~x, τ) =
∑
O

bO(τ)O(~x, τ), (3.3)

where O are operators, or statistical fields, that describe the galaxies’ density dependance on
their environment. Furthermore, each operator is multiplied by a corresponding bias parameter
bO which is a number at a fixed time and they are known as local bias parameters. Thus, we say
that Eq. 3.3 can describe local density distribution. Equation 3.1 is an example of the Equation
3.3 with O = δm and bO = b1. [19]

Overdensities are useful because we can obtain the correlation function whose Fourier trans-
form is the power spectrum. The correlation function will only depend on the absolute distance
from the objects due to the homogeneity and isotropy of our Universe. The power spectrum is
then possible to observe using different detectors and sky surveys such as Planck or SDSS.
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The correlation function, ξ, is mathematically defined as

ξ(|~r|) = 〈δg(~x)δg(~x′)〉 =
1

V

∫
d3~xδg(~x)δg(~x− ~r), (3.4)

where ~r = ~x′ − ~x. The relationship to the power spectrum, P (~k), is then derived as:

ξ(|~r|) =

∫
d3k

(2π)3
P (k)ei

~k·(~x−~x′). (3.5)

The matter power spectrum, the Fourier transform of the correlation function, describes the
difference between the local density and the mean density (so called density contrast) of the
Universe as a function of scale. The overall shape of the matter power spectrum is best un-
derstood in terms of the linear perturbation theory analysis of the growth of structure, which
predicts to first order how the power spectrum grows, but this will be further discussed in the
next chapter. On large scales, gravity competes with cosmic expansion, and there is growth of
structure in accordance with the linear theory. In this regime, the power spectrum is sufficient to
completely describe the density field. [23] The spectrum as inferred from various cosmological
probes is shown in Figure 13.

Figure 13: Matter power spectrum inferred from various cosmological probes [23]. (Figure taken from
[24])
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4 Method of bias applied to gravitational waves

For this description of bias applied to gravitational waves we can take as an example the sources
that come from black holes. Black holes are mostly located in galaxies and we know that
gravitational waves come from black hole mergers. Since they are connected to the galaxies,
we can apply the idea, of bias for galaxies and matter, to gravitational waves and galaxies as
well. What we get is

δGW(~x) = bGWδg(~x) = bGWb1δm(~x) = c1δm(~x), (4.1)

where bGW gives information, for example, on type of galaxy or gravitational wave source, other
factors are same as in previous chapter and c1 is the combined bias parameter, containing both
information from matter and gravitational wave sources. However, to get the gravitational-wave
overdensity here, we used the connection to the astrophysical sources. The motivation behind
this is that we know astrophysical sources very well and if we derive an observable that gives
us the whole overdensity, then we will be able to see if there is any discrepancy between the
theory and the data. If there were any discrepancies and our theory for the astrophysical data has
already been checked, that would mean we have successfully detected primordial gravitational
waves. We are interested in is the correlation fuction of these overdensities

ξGW(|~r|) = 〈δGW(~x)δGW(~x′)〉 , (4.2)

where ~r = ~x′ − ~x, but first have to asses several things.

Correlation function for galaxies in the previous chapter is for the 3D distribution, however,
gravitational waves were defined over 2D spherical distribution. We want to derive the 3D
gravitational-wave density field and "reduce" it to the 2D projection on the sky because the
relations for bias are used for the three-dimensions only. We follow the formalism shown for
galaxies in [1]. Let’s define the distribution of distances, W (χ)

W (χ) =
1

NGW

dNGW

dχ
, (4.3)

where NGW is the total number of gravitational waves, W (χ) is normalized to unity over the
interval χ ∈ [0,∞) and χ represents comoving distance. Practically, W (χ) drops to zero below
some minimum and above some maximum distances - gravitational waves at large distances are
too faint to be detected and there are not that many gravitational waves at low redshifts because
the volume is small. Here we assume that W (χ) is determined because photometric redshifts
are difficult to determine on their own. It’s important to define the Hubble rate which measures
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how rapidly the scale factor a changes:

H(t) ≡ 1

a

da

dt
. (4.4)

The total comoving distance, χ, that is traveled by light that began its journey from an object at
time t when the scale factor was equal to a (or redshift z = 1/a− 1) is then

χ(t) =

∫ t0

t

dt′

a(t′)
=

∫ 1

a(t)

da′

a′2H(a′)
=

∫ z

0

dz′

H(z′)
, (4.5)

where we have changed the integration over t′ to a′, which brings in the additional factor
ȧ = aH in the denominator, and then finally to z′. Now, we can imagine dividing the sky
area into small pixels and counting the gravitational waves in each pixel, futhermore, subtract-
ing and dividing by the mean, we obtain the projected overdensity ∆GW(~̂n). This gives us a
superposition of many slices of 3D gravitational-wave density field at different distances χ,
weighted by the distance distribution, so we obtain

∆GW(~̂n) =

∫ ∞
0

dχW (χ)δGW,obs(~x = ~̂nχ, η = η0 − χ), (4.6)

where η is a variable we can call comoving horizon and even conformal time and is defined as:

η(t) ≡
∫ t

0

dt′

a(t′)
. (4.7)

We use ∆GW to distinguish the projected gravitational-wave density from the three-dimensional
one δGW,obs. The projection involves the gravitational-wave density given at different times
η and more distant gravitational waves are seen at an earlier time since they all travel at the
speed of light. Now we can insert the Fourier transform of δGW,obs and use the expansion of the
exponential to get

∆GW(~̂n) =

∫ ∞
0

dχW (χ)

∫
d3k

(2π)3
ei
~k·~̂nχδGW,obs(~k, η(χ))

= 4π

∫
d3k

(2π)3

∑
lm

ilYlm(~̂n)Y ∗lm(~̂k)

∫ ∞
0

dχW (χ)jl(kχ)δGW,obs(~k, η(χ)),
(4.8)

where we have abbreviated η(χ) = η0 − χ and
∑

lm ≡
∑∞

l=0

∑l
m=−l. The right-hand side is

an expansion of ∆GW(~̂n) in spherical harmonics, which can be read off as the coefficients of
Ylm(~̂n):

∆GW,lm = 4πil
∫

d3k

(2π)3
Y ∗lm(~̂k)

∫ ∞
0

dχW (χ)jl(kχ)δGW,obs(~k, η(χ)). (4.9)

The angular power spectrum of gravitational-wave counts on the sky is proportional to the
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expectation value of |∆GW,lm|2, thus we have to evaluate

〈
∆GW,lm∆∗GW,l′m′

〉
= (4π)2il−l

′
∫

d3k

(2π)3

∫
d3k′

(2π)3
Y ∗lm(~̂k)Yl′m′(~̂k′)

∫ ∞
0

dχW (χ)jl(kχ)

×
∫ ∞

0

dχ′W (χ′)jl′(k
′χ′)

〈
δGW,obs(~k, η(χ))δ∗GW,obs(

~k′, η(χ′))
〉
,

(4.10)

where the brackets 〈...〉 denote an ensemble average over all realizations of the density field [1].
The ensemble average over the two fields immediately sets ~k′ = ~k, due to homogeneity, and we
can use the orthonormality of spherical harmonics to obtain

〈∆GW,lm∆∗GW,l′m′〉 = δll′δmm′CGW(l) (4.11)

where the angular power spectrum is defined as

CGW(l) =
2

π

∫
k2dk

∫ ∞
0

dχW (χ)jl(kχ)

∫ ∞
0

dχ′W (χ′)jl(kχ
′)

× PGW,obs(~k, η(χ), η(χ′)).

(4.12)

We see that the angular power spectrum CGW(l) of gravitational waves involves the unequal-
time power spectrum of GWs because we are projecting along the lightcone. This unequal-time
power spectrum is nonzero because the density perturbations remain in place as they grow.
Equation 4.12 is the exact result for the angular power spectrum of gravitational-waves, given
their 3D power spectrum PGW,obs(~k, η, η

′) (allowing for anisotropy) and the selection function
W (χ). Now, we can make an assumption, to simplify the equations, that we are looking at the
small scales. For this assumption, l � 1, the gravitational-wave pairs contributing to CGW(l)

subtend a small angle on the sky, roughly θ ∼ 1/l, so for the Equation 4.12 in this regime, we
get for the integral over k

2

π

∫
k2dkjl(kχ)jl(kχ

′)PGW,obs(~k, η, η
′). (4.13)

If PGW,obs(~k) were independent of k, it can be pulled out of the integral and it would reduce to

2

π

∫
k2dkjl(kχ)jl(kχ

′) =
1

χ2
δ

(1)
D (χ− χ′). (4.14)

With this simplification, the Equation 4.12 reduces to a single integral over χ, but in reality
PGW,obs is not independent of k. For high l, the product of spherial Bessel functions is very
sharply peaked at kχ ≈ kχ′ ≈

√
l(l + 1) ≈ l + 1/2. While PGW,obs(~k) varies slowly over

the narrow range ∆k over which the Bessel functions are nonzero, ∆k ∼ 1/(lχ), we can
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approximate it as constant. The described approximation is known as the Limber approximation
and it is usually very accurate at l & 20. This approximation is also very useful since many sky
surveys are limited to a smaller angle on the sky and not the whole field. The core prediction of
this approximation is

CGW(l) =

∫
dχ

χ2
W 2(χ)PGW,obs

(
k =

l + 1/2

χ
, µk = 0, η(χ)

)
, (4.15)

which is easier to calculate than the Equation 4.12. In Limber aproximation χ = χ′ which
implies η(χ′) = η(χ) so the Equation 4.15 only involves the equal-time power spectrum. It also
means that the k modes involved do not have a line-of-sight component since that would mean
different distances of different points along the perturbation, in other words χ′ 6= χ, so, k has
to be transverse to the line of sight: µk = 0. [1]

Our goal was to get to the Equation 4.15 since it can give us an observable that is useful for
detectors. However, we should discuss the gravitational wave power spectrum element in that
equation. In the Equation 4.15, PGW,obs is defined in our regime as

PGW,obs(~k, η, η
′) = c1(η)c1(η′)Pm(~k, η, η′) (4.16)

following from the Equation 4.2. Next, we can state Pm of dark matter explicitly as

Pm(~k, η, η′) = D+(η)D+(η′)Pm(~k, 0, 0), (4.17)

where D+ denotes the linear growth factor in the density and Pm(~k, 0, 0) is commonly referred
to as the primordial matter power spectrum which is related to the physics of inflation [23].
The simplest primordial matter power spectrum is the Harrison Zel’dovich spectrum, which
characterizes Pm(~k) according to a power law, Pm(~k) = Ak, where A represents the scalar
spectral index or the amplitude of fluctuations in the spectrum [23]. It is worth noting that
in the Harrison Zel’dovich spectrum, the power of k is not exactly equal to 1 but around 0.9.
In Figure 14, the simulation of the matter power spectrum is shown for different values of
the Hubble constant, H0, that have been possible candidates for the true value of H0. This
simulation is made using online tool CAMB that has various cosmological parameters already
given. Specifically here, we used that the cold dark matter is around 23% and baryonic around
5% so the total matter is around 28%.

What interests us more than the matter power spectrum, is the simulation of the gravitational
wave power spectrum. For when the bias parameter equals to 1 it is the same as the matter
power spectrum shown in Figure 14. However, for different values of the bias parameter we
have a different picture. This difference is shown in Figure 15 for when the Hubble constant,
H0 is equal to 67 km s−1 Mpc−1. This value is chosen because according to the latest Planck
collaboration data that is close to the current value of H0 [26]. Bias in the legend means that
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Figure 14: Simulation of the matter power spectrum using online tool CAMB. This figure also represents
the gravitational wave power spectrum for when bias parameter equals to 1 according to the Equation
4.16. URL given at [25].

c1(η)c1(η′) = 1, c1(η)c1(η′) = 2, etc. The shape and the amplitude of this spectrum gives
us astrophysical information, while we can only get cosmological from the dependence on the
dimensionless number h which defines the Hubble constant as H0 = 100h kms−1Mpc−1.

Figure 16 illustrates the physical reason behind the Limber approximation. Focusing on
small scales corresponds to looking at small angles, θ ∼ 1/l � 1. Modes with longitudinal
wavenumber µkk much greater than χ−1 do not give rise to angular correlations because of
cancelations along the line of sight - only modes with µkk of order χ−1 or smaller lead to
angular correlations. Thus, the relevant transverse wavenumbers l/χ are much larger than the
relevant longitudinal wavenumbers and we can neglect the latter which then corresponds to
setting χ′ = χ. [1]

Finally, the angular correlation fuction wGW(θ) can be written. On small scales, in the flat-sky
approximation, we can treat CGW(l) as the 2D power spectrum on a plane, so

wGW(θ) =

∫
d2l

(2π)2
ei
~l·~θCGW(l). (4.18)

CGW(l) depends only on the magnitude of l so the angular part of the integration over l is
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Figure 15: The simulation of the gravitational wave power spectrum derived from the matter power
spectrum by multiplying with different values of bias.

Figure 16: Two plane-wave perturbations and their contributions to the angular power spectrum [1].
Left panel shows a transverse mode with µkk < χ−1, while the right panel shows a perturbation with
longitudinal wavenumber µkk � χ−1 (the ~̂z direction is vertical) [1]. Angular correlations due to the
mode in the right panel are negligible since there are cancelations along the line of sight, while those do
not occur for the transverse mode on the left [1]. (Figure taken from [1])

∫ 2π

0
dΦeilθ cos Φ which is proportional to J0(lθ), the Bessel function of order zero. [1] Finally,

wGW(θ) =

∫ ∞
0

dl

2π
lCGW(l)J0(lθ). (4.19)
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Figure 17 shows the projected correlation function measured by the Dark Energy Survey
(DES) for the galaxies. However, the same could be done by observing gravitational waves.
This could then be used for many cosmological tests.

Figure 17: Angular correlation function of galaxies in the photometric Dark Energy Survey. The cor-
relation function w(θ) = wg(θ) has been multiplied by θ in order to reduce the dynamic range, as wg

grows strongly toward small θ. The gray region involves comoving scales smaller than 8 h−1 Mpc,
which are significantly affected by nonlinear evolution and bias. The line shows the best-fit model based
on the linear bias. [1] (Figure taken from [1])
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5 Implications and conclusion

In this thesis we first review the standard cosmological model. Next we introduce the reader to
the basic cosmological terms needed, followed by a mathematical formalism behind the gravita-
tional waves and their features that are important for the ground-based detectors such as LIGO
and Virgo, but also future space detectors such as LISA. The categorization of astrophysical
and cosmological gravitational-wave sources is made according to their detected and proposed
features. Furthermore, we describe the basics of bias galaxy tracers and the worth of using bias
that is commonly used in the theory of the large-scale structure formation.

The novel and original content of the thesis is presented in Chapter 4. In this chapter we
are applying the bias tracer method to the gravitational waves. This means that we use traces
of dark matter to outline where our gravitational waves should be "clumped" together. Or vice
versa, we are using gravitational waves as one of the tracers of dark matter fluctuations. We
do this using bias formalism on variables such as matter power spectrum and angular power
spectrum. Further work could be done by simulating the Equation 4.15 for the data we got from
CAMB. The approach, describing the distribution of stochastic gravitational wave sources as
being proportional to dark matter fluctuations, is a valid description on the largest cosmological
scales.

Moreover, for the final procedure, we simplify the tensor nature of gravitational waves, and
use the approach of modeling the gravitational waves source signals as scalar field. This pro-
cedure is justified since most detectors, that are used for detecting gravitational waves, still
don’t detect the polarization of the wave. Our approach can be readily modified in the future to
incorporate the outlined tensor formalism.

Our results are useful for various gravitational-wave detectors for a given matter and gravitational-
wave power spectrum, which are equivalent for the unity bias value. In general, bias values do
not necessarily have to be equal to unity, different amplitudes of the spectrum are expected for
different types of biased tracers. On the other hand the shape of the power spectrum, i.e. the
dependence on the wave number, can differ for different values of cosmological parameters like
the Hubble constant, as is shown in Figures 14 and 15. These results can be used to test current
theories and data, such as inflation, Lambda-CDM model and gravity. For example, primordial
waves have not yet been detected and are only speculated by the current cosmological theories
of inflation. The power of applying the bias method to gravitational waves lies in the fact that
once we measure the correlations of gravitational wave stochastic background, we can see if it
matches the theoretical prediction obtained for astrophysical sources. Any unaccounted residual
signal on large scales would indicate the potential primordial gravitational wave origin.
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